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Responsiveness and adaptation to salt stress of the REDOX RESPONSIVE 

TRANSCRIPTION FACTOR 1 (RRTF1) gene are controlled by its promoter 

Summary 

The REDOX RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) gene encodes a member 

of the ERF/AP2 transcription factor family involved in redox homeostasis. The RRTF1 gene 

shows tissue-specific responsiveness to various abiotic stress treatments including a 

response to salt stress in roots. An interesting feature of this response is an adaptation phase 

that follows its activation, when promoter levels revert to a base line level, even if salt stress 

is maintained. It is unclear if adaption is controlled by a switch in promoter activity or by 

changes in transcript levels. Here we show that the RRTF1 promoter is sufficient for the control 

of both activation and adaptation to salt stress. As constitutive expression of RRTF1 turned 

out to be detrimental to the plant, we propose that promoter-regulated adaptation evolved as 

a protection mechanism to balance the beneficial effects of short-term gene activation and the 

detrimental effects of long-term gene expression. 
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Introduction 

Transcription is the first step in a number of processes that regulate the conversion of genetic 

information into a phenotype. Induced promoters, promoters induced by environmental 

signals, during defined developmental stages or in certain cell types have been widely used 

to control the expression of transgenes, and an extensive collection of promoters has been 

assembled [1] 

. While promoter activity regulates primary transcript levels, RNA steady state levels are also 

significantly influenced by RNA stability and turnover [2]. Transcript synthesis and degradation 

are often dynamic processes when feedback loops alter the concentration of transcription 

control factors [3]  or when the induction of natural antisense transcription generates small 

RNAs that induce transcript degradation [4]. In addition, promoter regions can undergo 

epigenetic changes that alter their transcriptional competence due to changes in accessibility 

for regulatory factors [5].     

The REDOX RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) gene in Arabidopsis 

thaliana, encodes a key regulator in a redox network that is required to achieve redox 

homeostasis following exposure to photosynthetic perturbations as inactivation of RRTF1 

makes plants sensitive to high light stress [6]. RRTF1 shows an unusual activation profile in 

roots where its transcript levels increase when exposed to high NaCl levels but revert to basic 

levels even when the salt concentration remains high. This suggested that prolonged exposure 

to salt stress causes changes in promoter activity or that it induces a transcript turnover 

mechanism.  The latter assumption was supported by the observation that the gene partially 
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overlaps with a gene in antisense orientation, which could be the source for antisense 

transcripts that alter RRTF1 transcript levels. To differentiate between transcriptional and post-

transcriptional effects, we analysed the activity of the RRTF1 promoter as part of a transgene 

reporter construct. When linked to a transgene, the RRTF1 promoter still displayed the same 

expression features as shown by the RRTF1 gene, which makes it likely that induction and 

adaptation activity are regulated by the promoter and not by antisense-mediated RNA 

turnover. The unusual transient promoter activity of the RRTF1 gene under continuous stress 

may have evolved to address two conflicting features: the beneficial effects of short-term 

RRTF1 activation and the detrimental effects of prolonged RRTF1 over-expression.   

Results 

When we screened the expression profiles of Arabidopsis genes with overlapping antisense 

genes [7] on the Genevestigator platform [8], we identified an interesting adaptation feature 

for the RRTF1 gene (At4g34410). The gene was activated in roots under salt stress [9]  

reaching a peak of expression after around 6 hours, which, however, reverted to similar low 

transcript levels that it displays before stress application although the salt stress was 

maintained (Figure 1).  This suggested that the gene was activated in response to salt stress 

to which it quickly adapted by reverting to pre-stress level.  
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Figure 1:  Structure and salt induction of RRTF1 (At4g34410) 

A. Schematic map of At4g34410 and its partial overlap with At4g34412. Numbers refer to 

the positions on chromosome 4 and mark start and end points of genes. Exons are shown as 

boxes with coding regions in green.  B. Salt response profiles of At4g34410 extracted 

from AtGenExpress salt stress experiment NASCARRAYS-140 [9] with two replica values 

shown for each time point. Activation peaks after 6h, after which transcript levels return to  

pre-activation levels. 
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This unusual change in gene activity during a relatively short period of abiotic stress may have 

evolved to ensure efficient RRTF1 induction while preventing potentially detrimental effects of 

high RRTF1 concentration.  To test if a prolonged increase in RRTF1 levels was detrimental 

to the plant, we expressed the RRTF1 gene in Arabidopsis under the control of the 35S 

promoter and a heat responsive promoter, respectively. In tissue culture, 35S-RRTF1 

transformants grew slowly displaying a yellow leaf colour (Figure 2A), while in soil the 

transformants died before producing seeds (Figure 2B). The yellow leaf phenotype was also 

detectable one week after activation of RRTF1 transcription using a heat shock promoter 

(Figure 2C and D). These data imply that Arabidopsis is sensitive to prolonged increases in 

RRTF1 levels, and that the quick reduction of expression levels is required to prevent 

detrimental RRTF1 expression effects. 

 

Figure 2: Over-expression of the RRTF1 gene. 
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A. Phenotypes of 30-day-old seedlings of wildtype and 35S:RRTF1 transformants in 

tissue culture. B. Phenotypes of 35-day-old seedlings of wildtype and 35S:RRTF1 

transformants in soil. C. Phenotypes in WT and HSprom: RRTF1 transformants six days 

after 2h induction at 40oC. D. Semi-quantitative RT-PCR analysis of RRTF1 induction after 2h 

heat treatment. Con.– control without induction, Ind.- 2h induction at 40oC, -/+ negative and 

positive PCR controls, EF - EF1a  expression control. 

As the RRTF1 gene partially overlaps with a gene in antisense orientation, it was possible that 

adaptation was due to the synthesis of antisense transcripts causing double strand RNA 

formation and its breakdown into small RNAs. Alternatively, the adaptation phase could have 

been caused by inactivation of the RRTF1 promoter in response to prolonged exposure to salt 

stress. To differentiate between these alternatives, we cloned the RRTF1 promoter in front of 

a reporter gene and we tested the expression profile of the reporter construct, and of six 

deletion constructs (A-F) with different parts of the promoter region removed (Figure 3).  The 

reporter gene showed a similar expression profile as the endogenous RRTF1 gene with an 

activation phase that peaked around 6h after salt application, followed by an adaptation phase. 

A similar salt response profile was retained in transformants that contained deletion construct 

F, while activation was inhibited in transformants with construct A, and was significantly 

reduced in transformants carrying constructs B and C. A, B and C don’t share a common 

deletion region, which suggests that more than one promoter region contributes to promoter 

activation. Plants with deletion constructs D and E showed a moderate activation level 

providing further support for the assumption that activation levels result from cooperative 

effects of different promoter regions. The adaptation response was retained among all 

transformants, as all lines with an activation peak at 6h post salt application showed a 
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reduction in transcript levels at 24h. This also applied to plants expressing deletion construct 

D but these had slightly increased pre-stress levels, which suggests that the region between 

position -2047 and -1822, which is present in all deletion constructs except construct D, 

contains elements that contribute to the repression of the promoter in the absence of salt 

stress. 

 

Figure 3: Analysis of deletion constructs of the RRTF1 promoter. 

A. Schematic diagram of the RRTF1 promoter and its deletion derivatives. Dashed lines 

indicate deleted fragments. Numbers indicate positions relative to the translation  start site. 

B. Salt-activation of RRTF1 promoter wildtype and deletion constructs in roots. RT-qPCR 
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data are shown for two single copy transformants for each deletion construct. RNA was 

analysed 0, 3, 6, 24 hours after application of salt stress.  Expression levels are shown relative 

to EF1a  expression levels. 

The expression characteristics of the RTTF1 promoter suggested that activation and 

adaptation were independent of potential siRNAs generated via antisense transcription from 

At4g34412. To test if siRNA-based mechanisms influenced RRTF1 expression, we tested the 

induction profile of a RRTF1-luc transgene and of the endogenous RRTF1 gene in a mutant 

for RNA DEPENDENT RNA POLYMERASE6 (RDR6), which contributes to several si-RNA 

pathways [10] [4] [11]. Interestingly, induction levels were reduced in rdr6 lines while adaption 

was not altered (Figure 4). A similar reduction in activation levels was observed in a mutant 

for DNA METHYLTRANSFERASE 1 (MET1), which suggests that epigenetic mechanisms are 

at least indirectly involved in the promoter activation of RRTF1, possibly by altering the 

availability or concentration of transcription factors or activators for the RRTF1 promoter. 

Interestingly, the deletion of the RRTF1 gene also resulted in reduced activation rates (Figure 

4), which suggest an involvement of RRTF1 in the regulation of its own promoter.  While 

activation levels were reduced in all three mutants, there was no indication that any of the 

mutation affected the reversion to pre-stress expression levels after prolonged salt stress.   
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Figure 4: Comparing RRTF1 promoter activity in mutant lines. 

Transcript levels were compared for the luciferase transgene (A) and for the endogenous 

RRTF1 gene (B) in single copy RRTF1prom:luc transformants in wildtype background (wt) 

and in mutant backgrounds for RNA-DEPENDENT RNA POLYMERASE 6 (rdr6), DNA 

METHYLTRANSFERASE 1 (met1) or RRTF1 (rrtf1).  RT-qPCR data are shown for two single 

copy transformants for each mutant line. RNA was analysed 0, 3, 6, 24 hours after application 

of salt stress. Expression levels are shown relative to EF1a expression. 
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Discussion 

The RRTF1 gene shows a complex tissue- and stress-specific induction profile. In roots, its 

response to salt stress can be divided into an activation phase over about 6 hours followed by 

an adaptation phase with transcript levels reaching pre-induction values within 12-24 hours 

post induction. Activation and adaptation phases are conserved for a marker transgene linked 

to the RRTF1 promoter, which suggest that both phases are controlled by the promoter.  

Deletion analysis of the promoter identifies several regions that contribute to the efficiency of 

activation, as deletion of different regions result in loss or reduction of activation levels. In 

contrast, adaptation was unchanged in all deletion constructs, which makes it unlikely that 

activation and adaptation mechanisms are mediated by the same promoter elements. This 

assumption is also supported by the analysis of the three mutant lines rdr6, met1 and rrtf1, 

which all show a reduction in activation levels but don’t alter the adaptation characteristics.         

Our data do not allow us to define the mechanisms responsible for the adaptation response 

but they argue against post-transcriptional effects mediated by antisense expression as they 

have been described for other overlapping gene pairs [4], [12]. It is more likely that adaptation 

involves changes in the availability of regulatory factors that control transcr iption, or that the 

RRTF1 promoter undergoes structural changes that alter its accessibility to regulatory factors. 

An example for a repressive mechanism based on the change of a regulatory factor is the 

WRKY transcription factor whose synthesis is induced in roots under salts stress. WRKY8 

interaction with the VQ protein, which is also produced in response to salt stress, reduces its 
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binding efficiency to DNA , and it has been suggested that VQ acts as a repressive factor to 

balance WRKY8 activity [13]. 

 An alternative to the expression of inhibitor proteins is the establishment of epigenetic 

changes that render a promoter inactive or less active. There are several examples for stress-

induced epigenetic changes that influence gene expression levels or the expression 

competence of genes. In rice, salts stress is accompanied by variation in body methylation, 

and it has been suggested that this plays a role in regulating gene expression in a organ and 

genotype specific manner under salinity stress [14]. Histone deacetylases HDA6 and HDA19 

are induced by jasmonic acid (JA) and ethylene, and have been proposed to contribute to 

stress-responsive repressive states at certain target genes [15]. As body methylation requires 

MET1 [16] and as RRTF1 adaptation is not altered in a met1 mutant, it is unlikely that body 

methylation is involved  in adaptation but other epigenetic marks cannot be ruled out. A ChIP 

analysis of histone marks associated with the RRTF1 promoter at the beginning and end of 

the adaptation phase should help to narrow down the mechanistic models behind RRTF1 

adaptation, if the technical challenges can be overcome to isolate chromatin from Arabidopsis 

roots.   
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Experimental procedures 

Mutant lines 

All mutants used in this study are homozygous mutants in a Columbia (Col) background. 

Genotyping was performed to confirm the homozygous state of mutations as described for 

rdr6-11 [17] ,  met1-1  [18] and rrtf1  (Salk_150614) [6]. 

Design of the RRTF1promo:luc vector and its deletion derivatives. 

A 4218 bp fragment upstream of the RRTF1 translation start site was amplified using forward 

and reverse primers 1 and 2 (Table 1), the later containing a NcoI restriction site. The amplified 

4218 bp fragment was cut with EcoRV, producing a 3917bp NcoI-EcoRV promotor  fragment 

that was inserted into a pGreen 0179 vector in front of a luciferase gene [19]. For deletion 

construct A, a 250 bp region of the proximal end of the RRTF1 promoter was amplified using 

primer 3 containing an AgeI restriction site and a reverse primer 2 containing a NcoI restriction 

site. The amplified fragment was digested with AgeI and NcoI and was ligated to the 

corresponding sites of RRTF1promo:luc previously digested with both enzymes. For deletion 

construct B, RRTF1promo:luc was digested with BamHI and AflII and religated after Klenow 

(Invitrogen) treatment. For deletion construct C, RRTF1promo:luc  was digested with HindIII 

and religated. For deletion construct D-F, RRTF1promo:luc was digested with AflII at position 

-2717, followed by digestion with 2-3 units/µg BAL 31 for 0.5 or 1h, respectively. Deletion 

endpoints for constructs D-F were determined by sequencing.   
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Design of plasmids HSprom:RRTF1 and 35S:RRTF1 

The HSprom:RRTF1 construct was prepared by replacing the GUS gene in pGreenII 0029 

(http://www.pgreen.ac.uk/a_pls_fr.htm)  with a RRTF1-FLAG fragment. The FLAG tag 

sequence was prepared by annealing F-flag and R-flag oligonucleotides (table 1) followed by 

Klenow (Invitrogen) extension, which produced a 47 bp FLAG fragment with BamHI, XbaI, 

AatII restriction sites at the 5’ end and a SacI restriction site at the 3’ end. The FLAG tag 

fragment was digested with BamHI and SacI and was ligated to a BamHI/SacI digested 

pGreenII 0029 vector with a hsp18.2 heat shock promoter [20] that had been inserted as a  

BstXI-BamHI fragment. The coding sequence of the RRTF1 gene was amplified using primer 

4 that contained a BamHI restriction site and primer 5 that contained an AatII restriction site. 

The amplified 820bp fragment was digested with BamHI and AatII and was cloned into the 

corresponding sites of the HSpromo:Flag vector digested with both enzymes.   

The 35S:RRTF1 construct was prepared by isolating the RRTF1-FLAG:nos terminator 

cassette from HSprom:RRTF1 as a 1126 bp BamHI–EcoRV fragment. This cassette was 

ligated into the complementary ends of the pGreen0179:35S cassette vector 

(http://www.pgreen.ac.uk/a_pls_fr.htm) in front of the 35S promoter.  

Agrobacterium-mediated transformation 

Recombinant constructs were transformed into Agrobacterium tumefaciens GV3101 by 

electroporation using a BioRAD Gene pulser cell-porator with C= 25µF; R= 400ȍ; 8-9ms delay 

and pulsed at V=1.8KV. Arabidopsis thaliana (Col-0) was transformed using the floral dip 

method [21]. The transformed seeds were collected and surface sterilized and grown on MS 

http://www.pgreen.ac.uk/a_pls_fr.htm
http://www.pgreen.ac.uk/a_pls_fr.htm
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media supplemented with 25µg/ml hygromycin except for the selection of the 

HSpromo:RRTF1 transformants, which were selected on 50µg/ml kanamycin.  

Stress treatment 

Salt stress experiments were carried out according to Kilian et al. 2007 [22]. Seedlings were 

grown in a phytochamber under a long day regime (16h light and 8h darkness) under sterile 

conditions. Sterilized seeds were grown for 13 days on the surface of rafts in growth boxes 

that contained MS medium with 2% sucrose and 5.5% agar. The boxes were closed with a 

membrane-vented lid. The rafts were moved to boxes containing 100ml liquid MS medium 

without sucrose. Root samples were collected 0, 3, 6 and 24h after 18 days old seedlings were 

transferred into boxes with150mM NaCl. 

Expression analysis  

Total RNA was extracted from Arabidopsis roots using the PureLink® RNA Mini Isolation Kit 

(cat.# 12183018A, Life technologies-Invitrogen). DNA was removed from isolated RNA 

samples using the PureLink® DNase Kit (cat.# 12185010, Life technologies-Invitrogen). 2µg 

DNAse-treated RNA was used for cDNA synthesis with SuperScriptTM II reverse transcriptase 

and oligo (dt)18 primers (cat.# 18064-014, Life technologies-Invitrogen) following the 

manufacturer’s instructions. For semi-quantitative RT-PCR analysis we used MytaqTM red mix 

DNA polymerase (cat.# BIO-25043, Bioline) according to the manufacturer’s protocol. Primer 

sequences are listed in table 1. For quantitative PCR analysis we used the brilliant III ultrafast 

SYBR green qPCR master mix (cat.# 600882, Agilent Technologies-Stratagene) and a Bio-

Rad CFX96 cycler (Bio-Rad) according to the manufacturer’s protocol.  Transcript levels were 

calculated relative to EF1Į expression using the ǻCT method [23]. 
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Table 1: Primer names and sequences 

Primer ID Sequence 5’ to 3’ Description 

1 
AGGTATACTGGTTTCCACGGAATCTCC 

 

Full RRTF1 promoter forward primer 

2 AGGATAATCCATGGCCGACTCTCGATTCC 

Full RRTF1 promoter reverse primer with 

NcoI restriction site (undelined) 

3 GGGGACCGGTGTGTTTCCAAAAACACAGAT 
RRTF1 promoter forward primer with AgeI 

restriction site (underlined). 

4 

CCCGGATCCTCGGGTATGCATTATCCTAACA

ACAG 

RRTF1 forward primer with BamHI 

restriction site (underlined). 

5 

 

CCCGACGTCCTGGAACATATCAGCAATTGT 

RRTF1 reverse primer with AatII 

restriction site (underlined). 

6 
CGTGTCAGGGTTTTTCCAGT 

 

Forward RRTF1 gene specific primer 

7 CCTCCTCCTCCGTTCCATTGC Reverse RRTF1 gene specific primer 

8 GCGTGTCATTGAGAGGTTCG Forward EFĮ1 gene specific primer 

9 GTCAAGAGCCTCAAGGAGAG Reverse EFĮ1 gene specific primer 

10 CGTCTTCAGTTTCATCTCCTGTTGC q-RRTF1 forward primer 

11 GAAGAGATACGCCCTGGTTCCTG q-luciferase forward primer 

12 ACTGCATACGACGATTCTGTGATTTG q-luciferase reverse primer 

13 CTCTCCTTGAGGCTCTTGACCAG q- EFĮ1 forward primer 

14 CCAATACCACCAATCTTGTAGACATCC q- EFĮ1 reverse primer 
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F-FLAG 

GGGGGATCCTCTAGACGTCGATTACAAGGA

TGACGAC 

 

Forward FLAG oligonucleotides. It 

contains the restriction site for BamHI 

(underlined), XbaI (italic) and AatII (bold) 

respectively. 

R-FLAG 
CTAATGTTCCTACTGCTGCTATTCACTCGAG

GGG 

Reverse FLAG oligonucleotides with SacI 

restriction site (underlined) 
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