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Multipartite Entanglement Swapping and Mechanical Cluster States
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We present a protocol for generating multipartite quantum correlations across a quantum network
with a continuous-variable architecture. An arbitrary number of users possess two-mode entangled
states, keeping one mode while sending the other to a central relay. Here a suitable multipartite
Bell detection is performed which conditionally generates a cluster state on the retained modes.
This cluster state can be suitably manipulated by the parties and used for tasks of quantum com-
munication in a fully optical scenario. More interestingly, the protocol can be used to create a
purely-mechanical cluster state starting from a supply of optomechanical systems. We show that
detecting the optical parts of optomechanical cavities may efficiently swap entanglement into their
mechanical modes, creating cluster states up to 5 modes under suitable cryogenic conditions.

Introduction.– Quantum teleportation [1–3] is one of
the most important protocols in quantum information.
Once two remote parties, say Alice and Bob, have dis-
tilled maximum entanglement, they can teleport quan-
tum information with perfect fidelity from one location
to another. In this kind of “disembodied” transport, the
Bell detection [4, 5] is one of the key operations. Con-
nected with quantum teleportation is the teleportation of
entanglement, also known as entanglement swapping [6–
9]. Here, Alice and Bob start with two pairs of entangled
states; they then send one part of each pair to a relay
that performs Bell detection. This is a key mechanism
for quantum repeaters [10–13], measurement-device in-
dependent quantum cryptography [14–19], as well as one
of tools of a future quantum internet [20, 21].

In this Letter we introduce a multipartite entangle-
ment swapping protocol for continuous-variable (CV)
systems, such as optical and/or mechanical oscilla-
tors [22–26]. We consider an arbitrary number N of
users, or “Bobs”, each having the same identical two-
mode Gaussian state ρAB. The B-modes are kept, while
the A-modes are sent to a central relay performing mul-
tipartite Bell detection. The latter consists of an N -port
interferometer, composed of N − 1 cascaded beam split-
ters with suitable transmissivities, followed by N homo-
dyne detections. The outcomes of homodyne detection
are then publicly broadcast to all the users, which may
locally apply conditional displacement operations.

The multipartite Bell detection is designed in such
a way that the output multipartite state is a symmet-
ric Gaussian state, i.e., invariant under the permutation
of any two Bobs. In this way, we generate a type of
Greenberger–Horne–Zeilinger (GHZ) cluster state that
the Bobs may exploit for network tasks. In the litera-
ture, bosonic cluster states (also dubbed graph states)
have been created with different procedures [22, 27–31],
typically via unitary processes, e.g., by applying an in-
terferometer to squeezed states [32, 33]. Contrary to
these schemes, our strategy fully extends the approach

of Ref. [6] to a hybrid network [34, 35], where a large
supply of bipartite states with opto-mechanical entangle-
ment are measured in the optical modes so that multipar-
tite entanglement is swapped in the mechanical modes.
Following this idea, we present an application of the

proposed protocol to the platform provided by cavity op-
tomechanics [36], which has emerged in recent years as a
promising route for the engineering of non-classical fea-
tures in mesoscopic systems. Various interesting schemes
have been suggested and, in some cases, implemented
with the scope of engineering quantum states of cou-
pled optical and mechanical subsystems [37–42]. How-
ever, we lack a matching effort aimed at the preparation
of non-classical states of massive mechanical degrees of
freedom [43–46]. In this respect, the protocol put forward
here provides an interesting avenue towards the achieve-
ment of such a tantalising goal.
Multipartite entanglement swapping.– Consider an en-

semble of 2N bosonic modes which are arranged into N
pairs. We use the index k = 1, . . . , N for the pairs, and
A,B for the modes within each pair (see Fig. 1). The
whole system is described by a vector of quadratures

~ξ = (XA
1 , PA

1 , XB
1 , PB

1 , . . . , XA
N , PA

N , XB
N , PB

N )T , (1)

such that [ξl, ξm] = 2iΩlm, where l,m = 1, . . . , 2N and
Ω is the symplectic form [22]. Within each pair k, modes
A and B are prepared in an entangled state ρAB. The A
modes are sent to the interferometer depicted in Fig. 1,
which is defined byN−1 beam splitters with transmissiv-
ities Tk = 1 − k−1 for k = 2, . . . , N . This interferometer
transforms the input quadratures into the output ones

Xk =
√

1− k−1

(

XA
k − 1

k − 1

k−1
∑

i=1

XA
i

)

, (2)

P =
1√
N

N
∑

k=1

PA
k , (3)

which are then measured as in Fig. 1.
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FIG. 1: Multipartite entanglement swapping. We start from
N independent copies of the state ρAB. The A-systems are
sent to a relay for a multipartite CV Bell detection. The
latter is an interferometer with a suitable cascade of beam
splitters, followed by homodyne detections (N − 1 in the X
quadratures, and a final one in the P quadrature). The out-
comes γ are broadcast to the users, so that their multipartite
state collapses into a conditional cluster state ρB1···BN |γ . The
transmissivities Tk of the beam splitters are chosen so that the
cluster state is invariant under permutation of the users.

As a first example, consider N copies of an ideal EPR
state, for which we may write [23]

PA
k + PB

k = 0 , XA
k −XB

k = 0 , (4)

It is easy to show that the conditional state of the B
modes is a multipartite CV version of the GHZ state [47],
which satisfies the relations [23]

N
∑

k=1

PB
k = 0, (5)

XB
k −XB

k′ = 0, ∀k, k′ = 1, . . . , N. (6)

In fact, by projecting P in Eq. (3), we realize Eq. (5) up
to a constant, which can be put to zero by a local dis-
placement. In the same way, by projecting Xk in Eq. (2),
we realize Eq. (6) up to constants [48].

Multiswapping of Gaussian states.– Let us compute
the cluster state generated by an input ensemble ρ⊗N

AB ,
where ρAB is a zero-mean Gaussian state with covariance
matrix (CM) V in the normal form

V =

(

xI zZ
zZ yI

)

,
I = diag(1, 1),
Z = diag(1,−1),

(7)

with x, y, z satisfying bona-fide conditions [49]. After the
multipartite Bell detection of modes A and the broadcast
of the outcome γ, the conditional cluster state ρB1···BN |γ

of the B modes is a symmetric Gaussian state. After

some algebra we compute its CM (see also Ref. [50])

VB1···BN |γ =













V
′
C

′ · · · C
′

C
′
V

′
...

...
. . . C

′

C
′ · · · C

′
V

′













, (8)

where the blocks are given by

V
′ =

(

y − N−1
N

z2

x
0

0 y − z2

Nx

)

, C
′ =

z2

Nx
Z. (9)

Using Eq. (8), we may connect the log-negativity [24]

E
(N)
N between any two Bobs, Bi and Bj , with the log-

negativity Ein
N of the input state ρAB. For N = 2 we may

show a quasi-monotonic relation as in Fig. 2(a), where
the gray region is generated by randomly sampling the
input CM of Eq. (7) with a known parametrization [51].
The upper bound is achieved by two-mode squeezed vac-
uum (TMSV) states, while the lower bound corresponds
to states with large asymmetry parameter d := (x−y)/2.
The detrimental role of the asymmetries can also be ap-

preciated in Fig. 2(b), where E
(2)
N is plotted versus d.

Cluster states in optical networks.– In applications of
quantum communication, the users may be located re-
motely so as to access the Bell detection via lossy optical
links. Because of the fundamental limitations affecting
these links [52], the cluster state is also degraded by loss
and noise. Assume that each Bob has a TMSV state
with variance µ ≥ 1 [22]. After propagating the A mode
through a thermal-loss channel with transmissivity η and
thermal noise ω, the input state ρAB has CM as in Eq. (7)

with x = ηµ+ (1− η)ω, y = µ, and z =
√
η
√

µ2 − 1.
From Eq. (8) we can compute the corresponding N -

user symmetric cluster state that is generated by the mul-
tipartite Bell detection. We find that the log-negativity

E
(N)
N between any pair of Bobs reads

E
(N)
N = E

(2)
N − 1

2
ln

(

1 + α
N − 2

N

)

, (10)

where α := η(µ2 − 1)[η + (1− η)µω]−1 and

E
(2)
N = ln

[

ηµ+ (1− η)ω

η + (1− η)µω

]

(11)

is the log-negativity for standard swapping (N = 2). The
presence of α in Eq. (10) shows that loss η and noise ω
destroy entanglement more rapidly as N increases [53].
Once the cluster state has been generated, the users

may also cooperate in such a way to concentrate the mul-
tipartite entanglement into more robust bipartite forms.
For instance, they may localize the entanglement into a
pair of users by means of quantum operations performed
by all the others [54]. If these operations are Gaus-
sian, this is called Gaussian localizable entanglement
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FIG. 2: Study of the output entanglement. (a) For N = 2 we plot the output log-negativity E
(2)
N as a function of the log-

negativity Ein
N of the input Gaussian state which is generated by random sampling. Upper and lower bounds (solid lines)

are achieved by the classes of states discussed in the main text. (b) We show the distribution of E
(2)
N as a function of the

asymmetry parameter d by randomly sampling the input state. The solid line shows the maximum achievable value. (c) We

plot the output log-negativity E
(2)
N of two mechanical modes as a function of the input log-negativity Ein

N between the optical
and the mechanical modes of two identical optomechanical systems with parameters: γm/2π = 100Hz, ωm/2π = 10MHz,
κ = 31.4MHz, and T = 0.4mK. Each mechanical mode has mass m = 5ng. The green dashed line (1), the dashed purple (2)
and solid magenta (3), correspond to effective optomechanical coupling rates of 2π × 4MHz, 2π × 8MHz, and 2π × 8.5MHz,

respectively. The curvilinear abscissa of each line is the detuning ∆ ∈ [0, 1.5ωm]. (d) We show the output log-negativity E
(N)
N

between any two modes in a cluster of N mechanical modes, for N = 2 to 5. Parameters as in panel (c) with an effective
optomechanical coupling strength of 2π × 8MHz.

(GLE) [55, 56]. We find that the GLE log-negativity
between any pair of Bobs in the N -user cluster state is

E
(N,GLE)
N = E

(2)
N − 1

2
ln

(

1 +
N − 2

α−1N + 2

)

. (12)

Suppose instead that the Bobs split into two groups of
N ′ users, so that 2N ′ ≤ N . Passive unitary operations
within the two groups may map the state into a tensor
product of 2N − 2 uncorrelated single-mode states and
one correlated two-mode state [57]. The log-negativity
of the block entanglement associated with the symmetric
splitting (N ′, N ′) of the Bobs is given by

E
(N,N ′)
N = E

(2)
N − 1

2
ln

(

1 + α
N − 2N ′

N

)

. (13)

Note that this is just equal to E
(2)
N for the “full-house”

splitting N ′ = N/2. This is a robust concentration of
entanglement because it does no longer depend on N .

Generation of mechanical cluster states.– We now con-
sider the generation of a mechanical cluster state by ap-
plying the multipartite Bell detection to the optical parts
ofN optomechanical systems. More precisely, considerN
systems embodied by single-sided Fabry-Perot optome-
chanical cavities, driven by external laser fields of suit-
able intensity. The mechanical systems embody modes
Bk, while the corresponding cavity fields are the Ak’s.
In a reference frame rotating at the frequency of the in-
put driving field, each Ak − Bk interaction is modeled
through the standard radiation-pressure Hamiltonian

Ĥk = ~∆â†kâk+
~ωm

2
(q̂2k+ p̂2k)−~G0â

†
kâkq̂+iE~(â†k−âk).

(14)
Here, q̂k and p̂k are the dimensionless quadrature oper-
ators of the kth mechanical system, âk and â†k are the
ladder operators of the corresponding cavity field, ωm is
the frequency of the mechanical mode (assumed to be
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the same for all the mechanical systems), G0 is the op-
tomechanical coupling rate, and E is the amplitude of the
laser drive. Finally, ∆ is the laser drive-cavity detuning.
The dynamics resulting from the Hamiltonian Ĥk is

affected by the cavity energy decay (at a rate κ) and the
Brownian motion of the mechanical oscillator (induced by
the contact of each mechanical system with a background
of phonons in thermal equilibrium at temperature T ),
characterized by the coupling strength γm. The mechan-
ical system is thus assumed to be prepared, prior to the
optomechanical interaction, in a thermal state at temper-
ature T . The cavity is instead in a coherent state with
amplitude determined by the choice of E and κ [58, 59].
Under such conditions, the open dynamics at hand is

well described by a set of Langevin equations obtained
considering the fluctuations around the mean values of
the operators in the problem and neglecting any non-
linearity. This is a well-established technique allowing
for the gathering of information on the quantum statis-
tical properties of the system, as far as the fluctuations
of the operators are small compared to the mean values.
Refs. [58, 59] provide the details of the formal approach
and steps to take to derive the explicit form of the CM of
the kth optomechanical system. From this point on, our
proposed protocol for multipartite entanglement swap-
ping can be applied as per the previous sections.
The results are shown in Fig. 2(c) for the case of N = 2

and three different choices of parameters in the optome-
chanical building block. The first consideration to make
is that, in line with the analysis of random Gaussian
states previously reported, the symmetry between modes
Ak and Bk facilitates the success of the protocol: our nu-
merical study shows that only for T ≪ 1, which makes
the variances associated with the fluctuation operators
of the mechanical mode close to those of the cavity field,
all-mechanical entanglement might arise from the appli-
cation of the protocol. Second, such entanglement ben-
efits of a suitably strong optomechanical coupling rate,
resulting in values that can approach the upper boundary
to the distribution in Fig. 2(a).
Our results demonstrate the effectiveness of the pro-

posed scheme as a method for the achievement of all-
mechanical entanglement through optical measurements
only. However, the significance of the scheme goes be-
yond such a fundamental result and extends to the po-
tential preparation of multipartite entangled mechanical
states. Indeed, we have verified that the protocol re-
mains successful when applied to systems of up to N = 5
optomechanical building blocks, as shown in Fig. 2(d),
where we report the value of the maximum entanglement
achieved as N grows from 2 to 5, for the most realistic
choice of the effective optomechanical coupling strength.
Conclusions.– We have introduced a protocol of multi-

partite entanglement swapping for CV systems, which is
based on a multipartite version of the standard CV Bell
detection. We have studied how this protocol is able to

generate an entangled cluster state in an optical lossy net-
work, whose entanglement can be suitably manipulated
and localized by the users. Such multipartite CV entan-
gled states are useful for tasks of quantum communica-
tion, cluster-state quantum computation [22], multi-user
quantum cryptography, and distributed quantum sens-
ing. They could also be exploited to experimentally test
gravity at the quantum level.

We have then proposed a powerful implementation of
our protocol that exploits an optomechanical interface
designed to efficiently transfer entanglement onto the me-
chanical modes ofN optomechanical cavities. Our results
pave the way towards applications for quantum technolo-
gies and networking with hybrid architecture providing
a potentially fruitful alternative to recent experimental
demonstration of all-mechanical entanglement [60, 61].
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