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Abstract: An improved spectral reflectance estimation method is developed to transform raw 
camera RGB responses to spectral reflectance. The novelty of our method is to apply a local 
weighted linear regression model for spectral reflectance estimation and construct the 
weighting matrix using a Gaussian function in CIELAB uniform color space. The proposed 
method was tested using both a standard color chart and a set of textile samples, with a digital 
RGB camera and by ten times ten-fold cross-validation. The results demonstrate that our 
method gives the best accuracy in estimating both the spectral reflectance and the 
colorimetric values in comparison with existing methods. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Digital cameras can be used to provide spectral data for many applications and thus the 
development of algorithms to calculate these spectral data from image RGB data is of prime 
importance. Different digital camera-based spectral imaging systems have been developed for 
practical applications, such as a camera with bandpass filters [1–3], a camera utilizing 
multiple illuminants [1,4,5], and a camera with three-channel responses (but a single RGB 
image) under a specific illuminant [6–13]. The latter system, which can be used to estimate 
the spectral reflectance from a single RGB image, has received considerably more interest 
because of the low cost of the devices with high resolution and their convenience in practical 
applications. The inherent problem of image registration which exists in optical bandpass 
filter-based spectral imaging systems [1–3,14] can be overcome by just one exposure using a 
conventional digital RGB camera. Accurate spectral and colorimetric estimation are both 
critical for practical applications and, since the digital RGB values are readily available from 
an image, an algorithm that accurately estimates the spectral reflectance from these RGB 
camera responses can be very useful. 

Methods to derive spectral data from camera responses can be divided into two types: 
model-based and training-based [15]. Since it is complex and expensive to characterize the 
camera sensitivity functions for the model-based method, the more easily implemented 
training-based method is both more convenient and more practical. Many training-based 
spectral estimation methods have been proposed in recent years [5–13,16]. Connah [6], 
Heikkinen [5], and Shen [8] proposed the use of a nonlinear regression method based on a 
polynomial model for spectral estimation, with consideration being given to the potential 
over-fitting problem in the polynomial-based regression model. Xiao et al. [10] illustrated 
that it is effective to combine the polynomial model with the eigenvector space of principal 
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component analysis (PCA) for skin reflectance estimation from camera responses. These 
methods all use global training-based techniques. 

For the training-based spectral estimation method, the selection and processing of the 
training samples is crucial to the performance in terms of estimation accuracy. In general: 1) 
the performance is better if the training and testing samples are as similar as possible in that 
they come from the same volume of color space [10,15]; 2) the local training-based approach 
is perhaps more practical for spectral estimation since too many training samples may 
increase the calculation time but without an accompanying increase in the estimation 
accuracy [17,18]; and 3) the performance is usually improved if the training samples are 
assigned appropriate weights, according to their distance from the test sample, when 
calculating the transformation matrix [12,13,16]. 

Li [9] and Cao [19] proposed estimation methods based on local linear approximation. In 
their studies however, the estimation accuracy is limited by the hypothesis of mapping the 
linearity of tristimulus color space to spectral reflectance space. Similar to the Xiao method 
[10], Zhang et al. [11] proposed a spectral estimation method based on CIE XYZ tristimulus 
values under multiple illuminants by selecting local training samples. Heikkinen et al. [7] also 
proposed a regularized kernel-based learning framework in local training form for spectral 
estimation. While these methods are local training-based methods, the weighting of the 
training samples was not considered. 

Shen and Xin [16] proposed a spectral estimation method from scanner responses by 
weighting the pre-selected local training samples. And in our previous study [12], we 
proposed a local-weighted nonlinear regression method for spectral estimation from camera 
responses. The weighted nonlinear regression model has also been recently tested by Amiri 
and Fairchild [13] in a global weighting form. These methods can yield reasonable spectral 
estimation accuracy, but they are not adaptive enough in selecting of the local training 
samples for each of the testing samples in predicting their spectral reflectance. 

The estimation of spectral reflectance from camera responses is actually to deal with a 
linear inverse problem [15]. However, most of the existing methods are based on the 
nonlinear regression model. Although spectral estimation based on raw linear camera 
responses has been proposed in some methods [11,13], spectral estimation from raw camera 
responses based on the linear regression model has not been well studied [20]. In addition, for 
the current weight-based spectral estimation methods, the weighting matrix is constructed 
based on the distance between the testing and the training samples in the camera RGB color 
space. The camera RGB color space is device-dependent and non-uniform [21]. The distance 
calculated in the camera RGB color space does not represent the true perceptual color 
difference. It makes more sense to calculate the distance in the device-independent and 
perceptually uniform color space. Furthermore, different existing methods yield different 
performance because they are based on different concepts. It is however, difficult to 
simultaneously minimize spectral and colorimetric errors as illustrated by Amiri and Fairchild 
[13]. Sometimes, the accuracy of the estimated spectral reflectance is satisfactory while the 
colorimetric accuracy is not considered good enough, and sometimes the situation is the 
opposite. Thus, an estimation method that can simultaneously obtain the best spectral and the 
best colorimetric accuracy is required. 

With the above in mind, this study intends to develop a more accurate spectral estimation 
method from raw camera responses. The novelty of this research for spectral estimation is to 
use Gaussian weighted linear regression model for spectral estimation, making sure that both 
the input data and the estimation algorithm are in line with the linear imaging model. At the 
same time, the adaptive selection of the optimal local training samples is integrated into the 
estimation method by using Gaussian weighting. The weighting matrix is calculated in 
CIELAB uniform color space. The superior performance of this proposed method is evaluated 
and compared with existing methods by using a standard color chart and a set of textile 
samples, with a digital RGB camera. Overall performance is evaluated in terms of both 
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spectral and colorimetric accuracy by using ten times ten-fold cross-validation [22]. Statistical 
analysis is performed by using one-way ANOVA and Tukey’s post hoc tests (α = 0.05). The 
comparison of computational times between the different methods is also reported. 

2. Imaging model 

Based on the color imaging principle of digital still RGB cameras [23–25], the raw responses 
are first acquired through a linear combination of the camera system sensitivity functions, the 
spectral power distribution of the light source, the surface spectral reflectance of the object 
and the system noise. Assuming a linear opto-electronic transfer function in the camera, the 
imaging model for raw responses can be formulated by Eq. (1) 

 
max

min

( ) ( ) ( ) .i i id l s r d n
λ

λ

λ λ λ λ= +  (1) 

where the camera responses di are related to the channel i (i = 1, 2, 3) of a pixel; λ is the 
wavelength, ranging from λmin to λmax in the visible wavelength range; l(λ) is the spectral 
power distribution of the light source; si(λ) is the spectral sensitivity of the ith channel of the 
system; r(λ) is the spectral reflectance of a pixel; ni is the system noise of the digital camera. 

After the raw image is acquired, it is usually post-processed to obtain a more colorful 
output image and, in general, the linearity of the original response will be modified during 
this post-processing. Figure 1 shows the linear difference between the raw responses 
extracted from a .NEF format image (Nikon Electronic Format - a raw image format used 
solely on Nikon cameras) and the post-processed responses extracted from a corresponding 
.tiff format image. The grayscale responses of the Gretag Macbeth ColorChecker classic chart 
that were captured by a Nikon D7000 digital camera were used to illustrate these linear 
differences. The response values are plotted versus the luminance factor in Fig. 1. It is 
apparent that the linearity of the camera responses is significantly reduced by the in-camera 
post-processing, where the R-square values of linear fitting for each channel are reduced from 
0.9994, 0.9986, 0.9976 to 0.8268, 0.8177, 0.8172, for the R-, G- and B-channel respectively. 

 

Fig. 1. Linearity comparison between raw and post-processed camera responses as a function 
luminance factor: (a) R-channel, (b) G-channel, and (c) B-channel. 

It is clear from Fig. 1 that after the raw image is processed, the responses of each channel 
are no longer linear but better represented by a nonlinear law which is more complex than a 
simple power law. In addition, the post-processing methods of different camera 
manufacturers are usually different and are difficult to accurately simulate or characterize 
[11,23–25], thus the post-processing step is hard to accurately model. Therefore, the better 
choice for spectral estimation from camera response is to use the linear raw responses and 
hence the linear imaging model formulated by Eq. (1) forms the basis for the proposed 
method in this study. Ignoring the system noise, Eq. (1) can be written in matrix notation as 
expressed by Eq. (2) 

 .d = Mr  (2) 
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where d is the response vector; M is the overall spectral sensitivity matrix including the 
product of the matrix form of l(λ), and si(λ); r denotes the spectral reflectance vector. Note 
that the system noise is ignored on the assumption that it is small in comparison with the 
signal: it is recognized that this is an assumption that is difficult to prove because the actual 
noise is itself difficult to measure. For spectral reconstruction, the goal is to reconstruct the 
high-dimensional reflectance r from the low-dimensional camera responses vector d indicated 
by Eq. (3) 

 .r = Qd  (3) 

where Q denotes the transformation matrix. The accuracy of reflectance reconstruction is 
determined by the method of solving for the transformation matrix Q [15,19,26]. The widely 
used pseudo-inverse (PI) algorithm is used in the method proposed in this study [19]. 

3. Proposed method 

3.1 Raw responses extraction 

Raw camera responses without post-processing play a very important role in many research 
fields including photography, image processing, machine vision, etc [27–29]. and several 
methods for obtaining the raw data from images have been developed [24], including 
RawDigger which is bespoke software available via the internet. A detailed comparison test 
of several methods showed that they all output the same Bayer image. In our study, we used 
RawDigger to extract the coordinates of samples and used the ‘DNG (Digital Negative) 
approach’ that is described by Sumner [24] to read and process a Bayer image in MATLAB. 

In order to obtain a three-channel raw image from the Bayer image, a demosaicing step is 
necessary to interpolate between the pixels [30,31]. The influence of different demosaicing 
methods on the accuracy of spectral estimation was tested by using the spectral estimation 
methods described by Shen et al. [8]. We found that the demosaicing step does not affect the 
accuracy of the spectral estimation. Therefore, the demosaicing method built into MATLAB 
R2016a [30] was selected for the Bayer image demosaicing process. It should be noted that 
the demosaicing test in this study was based on uniform color samples. If the estimated 
spectral image is to be used for high-fidelity color reproduction, a demosaicing method that 
can effectively avoid Moiré patterns should be selected. 
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3.2 Proposed method 

 

Fig. 2. Framework of the proposed spectral reflectance estimation method from raw camera 
responses based on Gaussian weighted linear regression model. 

Figure 2 presents the framework of the proposed method. At first, the training and testing 
samples are both captured under the same imaging conditions, and the raw responses of the 
samples are extracted from the captured images as described in section 3.1. The spectral 
reflectance of each of the training samples is measured with a spectrophotometer. 

Secondly, the training samples are used to derive a matrix to convert from device-
dependent camera RGB color space to CIE XYZ color space based on the least squares 
method. With the established conversion matrix, both the raw camera responses of the 
training and testing samples are converted from from device-dependent camera RGB color 
space to CIE XYZ color space. Then the CIELAB coordinates of both the training and testing 
samples can be calculated from the corresponding CIE XYZ tristimulus values [32]. 

Thirdly, based on the general assumptions for the training-based spectral estimation 
method, an optimization strategy is proposed by use of a local-weighted method. The 
Gaussian weighting function that is widely used in machine learning [33] is selected for this 
study as it can help to adaptively determine the optimal local training samples during the 
weighting process. The weighting matrix is calculated as follows. Firstly, the Euclidean 
distance between each of the testing samples and the training samples is calculated in 
CIELAB color space, as shown in Eq. (4) 

 * * 2 * * 2 * * 2
test train, test train, test train,( ) ( ) ( ) ( 1, 2, , ).j j j js L L a a b b j N= − + − + −    =   (4) 

where *
testL , *

testa , and *
testb  denotes the colorimetric values of a testing sample in CIELAB 

color space [32]; *
train, jL , *

train, ja , and *
train, jb  denotes the colorimetric values of the jth training 

sample; N denotes the number of training samples; sj denotes the Euclidean distance (the 
CIELAB color difference) between the jth training sample and the testing sample. Secondly, 
the weighting coefficient is calculated for each of the training samples, as shown by Eq. (5) 

 
2

exp( ) ( 1, 2, , ).
2

j
j

s
w j N

k
=    =

−
  (5) 

where wj is the weighting coefficient of the jth training sample; k is the parameter used to 
determine the effective training samples and their weighting coefficient [33]. For each testing 
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sample, the corresponding weighting coefficients for the training samples will be normalized 
between 0 and 1 based on the maximum value. If a suitable value of k is set in Eq. (5), the 
optimal local training samples will be adaptively determined when calculating the weights of 
the training samples. Thirdly, the weighting matrix W is established according to Eq. (6) 
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 (6) 

Fourth, after the weighting matrix has been constructed, the raw responses are expanded 
based on the linear model as indicated by Eq. (7) 

 [ ]exp 1 '.r g  b=         d  (7) 

where dexp is the 4 × 1 vector of the expanded raw responses; r, g and b denote the raw 
responses for R-, G- and B-channel of a pixel. With the expanded raw responses, the 
transformation matrix Q is calculated by Eq. (8) 

 train train,exp( ) .+=Q R W D W  (8) 

where W is the N × N weighting matrix for the training samples; Rtrain denotes the 31 × N 
spectral reflectance matrix of the training samples; Dtrain,exp denotes the expanded 4 × N raw 
responses matrix of the training samples; and the superscript ‘ + ’ indicates the pseudo-
inverse matrix operator. Therefore, the spectral reflectance of the testing sample is estimated 
by using the 31 × 4 transformation matrix Q, as shown in Eq. (9) 

 test test,exp .r = Qd  (9) 

where testr  denotes the estimated spectral reflectance of the testing sample; dtest,exp denotes the 

expanded raw responses vector of the testing sample. 

4. Experiment 

The experiment was carried out using a Verivide DigiEye imaging system software and a 
VeriVide light cabinet, in a dark room (with all the lights in the laboratory turned off during 
the experiment). The inner walls of the light cabinet were painted neutral and provided a 
approximately diffuse illumination. The D65 simulator tubes were fitted with translucent 
diffuse reflectors and provided continuing illumination for approximately uniform over the 
chart area. 

The Xrite ColorChecker semi-gloss chart (CCSG, 140 color patches that gave an 
approximately uniform sampling of CIELAB color space), and a set of textile samples 
(Textile, 172 textile samples that were approximately uniformly distributed in the color 
space) were used for the experiment. The color distribution of the samples of the CCSG chart 
and the textile samples are plotted in an a*-b* plane of CIELAB color space in Fig. 3. The 
spectral reflectances of the CCSG chart and textile samples were measured using a Konica 
Minolta CM-2600d and a CM-3600A spectrophotometer respectively, and a Nikon D7000 
digital RGB camera controlled by the DigiEye imaging system software was used to capture 
the images. The imaging plane of the digital camera was set to be approximately parallel to 
the sample placement plane. The exposure time and aperture size were carefully set to acquire 
the maximum unclipped digital signals for the white patches, with a minimum ISO value of 
100. The average digital values of a fixed area (50 × 50 pixels for CCSG and 120 × 120 pixels 
for Textile, approximating to the spectrophotometer measurement aperture area) from the 
centre of each sample patch were used. 
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Fig. 3. Color distribution of the samples in an a*-b* plane of CIELAB color space: (a) color 
distribution of the CCSG chart, and (b) color distribution of the textile samples. 

To test the model more robustly and more fairly, a ten times ten-fold cross-validation 
approach [22] was used to evaluate the proposed method. For both color chart and textile 
samples, the full sample set is randomly partitioned into approximately ten equal sized 
subsets. Of the ten subsets, a single subset is retained as the validation data for testing the 
model, and the remaining nine subsets are used as training data for each fold test. The average 
CIELAB color difference (ΔEab) under several commonly used CIE illuminants for color 
evaluation including D65, D50 and A, were used as suitable colorimetric evaluation metrics, 
and the color matching functions (CMF) of the CIE1931 standard observer were used for the 
colorimetric calculations. The root-mean-square error (RMSE) and goodness-of-fit coefficient 
(GFC) were used as spectral evaluation metrics. The calculation of the RMSE and the GFC 
are defined by Eq. (10) and Eq. (11) respectively 

 
1

RMSE ( ) ( ),
n

= − −r r r r T  (10) 

 GFC .=
⋅

r r

r r r r


 

T

T T
 (11) 

where r denotes the reconstructed spectral reflectance; r denotes the measured reference 
spectral reflectance; subscript ‘T’ denotes the matrix transpose; n denotes the wavelength 
sampling number of the spectral reflectance in the visible spectrum: for a wavelength range 
from 400 nm to 700 nm at 10 nm intervals, n = 31. 

5. Results and analysis 

In this section, the proposed method is implemented and compared with the currently existing 
methods in 5.1. Meanwhile, the factors that will influence the estimation accuracy of the 
proposed method is also investigated and discussed in 5.2 and 5.3. 

5.1 Methods implementation and comparison 

The proposed adaptive local-weighted linear regression method (ALWLR) and the currently 
existing methods were first implemented and compared under the defined experimental 
environment by using the raw camera responses. The compared existing methods included the 
ordinary least squares (OLS) method [6], the regularized least squares (RLS) method [5,6], 
the partial least squares (PLS) method [8], the principal component analysis (PCA) method 
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[10], the locally linear approximation (SR-LLA) method [9], the optimized adaptive 
estimation (o-AE) method [16], the regularized kernel (Kernel) method [7], the global 
weighted nonlinear regression method proposed by Amiri and Fairchild (the Amiri method) 
[13], the local nonlinear regression method proposed by Zhang and Wang et al. (the Zhang 
method) [11], and the local-weighted nonlinear regression method proposed by Liang and 
Wan (the Liang method) [12]. 

As noted in section 3.2, the value of k in Eq. (5) is crucial for the weighting process. By 
adjusting the value of k, optimal local training samples (a different number of effective 
training samples for each of the testing samples) will be automatically determined as part of 
the weighting step. Therefore, the influence of the value of k on the estimation accuracy of the 
proposed method was first explored. 

 

Fig. 4. (a) the relationship between spectral estimation accuracy and k for the CCSG chart, and 
(b) the relationship between spectral estimation accuracy and k for the textile samples. 

Figure 4 shows the relationship between the mean spectral reflectance RMSE, the mean 
CIELAB color difference of the CCSG chart and textile samples and the value of k within the 
usual range of values. It is found that for both the CCSG chart and the textile samples, the 
evaluation metrics initially decreased with an increase in k, and then they increase after they 
reach an optimal value of 0.18 and 0.22 respectively. Thus, we consider these values to be 
optimum for the CCSG charts and the textile samples respectively. Furthermore, it is clear 
from Fig. 4 that the evaluation metrics of both RMSE and CIELAB color difference show 
exactly the same trend with the changes in the value of k. Therefore, the proposed method in 
this study can simultaneously minimize the spectral and colorimetric errors. 

With the selected optimal values of k for CCSG chart and textile samples, the proposed 
method was compared with the existing methods as listed above. All the existing methods 
were implemented in their optimal conditions, while six principal components were used for 
the PCA based method. The mean spectral estimation results of these methods using ten times 
ten-fold cross-validation are calculated and summarized in Table 1. The RMSE and GFC 
were used for spectral accuracy evaluation, and the CIELAB color difference under three 
illuminations was used for colorimetric accuracy evaluation. The first five methods in Table 1 
are global training-based methods and the later five methods are local training-based 
methods, and the last one is the proposed local training-based method. 
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Table 1. Estimation accuracy of the methods for CCSG and textile samples in terms of 
RMSE, GFC and CIELAB color difference using ten times ten-fold cross validation 

Method Results 
 CCSG  Textile 

 RMSE% GFC% ΔEab  RMSE% GFC% ΔEab 

OLS 
Mean  3.03 99.52 2.64  3.26 98.22 2.56 

Maximu  6.87 99.99 6.09  8.48 99.91 9.55 

RLS 
Mean  3.04 99.53 2.65  3.26 98.22 2.56 

Maximu  6.86 99.99 6.10  8.53 99.91 9.51 

PLS 
Mean  2.98 99.53 2.64  3.21 98.23 2.48 

Maximu  6.67 99.99 6.39  8.15 99.91 8.31 

PCA 
Mean  3.10 99.48 2.78  3.47 98.00 3.17 

Maximu  6.74 99.99 6.51  9.03 99.87 8.34 

Amiri 
Mean  3.17 99.37 2.74  3.20 98.21 2.54 

Maximu  7.77 99.99 6.60  7.50 99.91 9.36 

SR-LLA 
Mean  4.33 98.63 5.01  3.39 97.68 2.31 

Maximu  12.13 100.00 33.94  10.38 99.96 6.75 

Kernel 
Mean  2.89 99.45 2.54  3.09 98.31 2.49 

Maximu  6.77 100.00 5.64  7.20 99.94 7.35 

Zhang 
Mean  3.27 99.45 2.86  3.05 98.64 2.37 

Maximu  8.60 100.00 7.48  8.51 99.93 10.28 

o-AE 
Mean  3.18 99.44 2.74  3.53 98.39 2.21 

Maximu  7.02 99.99 7.47  8.64 99.89 5.43 

Liang 
Mean  2.76 99.51 2.46  3.01 98.54 2.22 

Maximu  10.35 100.00 9.08  10.19 99.97 10.17 

ALWLR 
Mean  2.38 99.71 2.21  2.68 98.73 1.85 

Maximu  6.62 100.00 6.85  7.53 99.97 5.21 

As can be seen from Table 1, the proposed method has the smallest value in RMSE and 
CIELAB color difference and the largest value in GFC compared to the existing methods, 
which clearly indicates that it outperforms in both spectral and colorimetric estimation. For 
the CCSG chart, the mean RMSE and CIELAB color difference for the proposed method are 
approximately 2.38 and 2.21, whereas the best performance for all existing methods is 2.76 
and 2.46 (Liang). The proposed method reduces the predictive error by approximately 0.4 for 
both RMSE and CIELAB color difference. The maximum error for the proposed method 
(6.62 and 6.85 for RMSE and CIELAB color difference respectively) is much smaller than 
Liang’s method (10.35 and 9.08 for RMSE and CIELAB color difference respectively). For 
the textile chart, the mean RMSE and CIELAB color difference for the proposed method is 
approximately 2.68 and 1.85 respectively. The best performance for all existing methods is 
3.01 (Liang) and 2.21 (o-AE). The proposed method enhances the accuracy by approximately 
0.3 for both RMSE and CIELAB color difference. And the maximum error for the proposed 
method (7.53 and 5.21 for RMSE and CIELAB color difference respectively) is still much 
smaller than most of the existing methods. 

To illustrate both overall predictive accuracy and their error distribution of all methods, 
Fig. 5 is plotted using boxplots to represent all data tested in the ten times ten-fold validation. 
Figures 5(a) and 5(b) represent distributions of RMSE and CIELAB color difference for the 
CCSG chart, while Figs. 5(c) and 5(d) represent results of RMSE and CIELAB color 
difference for the textile set. The top of the blue rectangle indicates the upper quartile, a 
horizontal red line near the middle of the rectangle indicates the median, and the bottom of 
the blue rectangle indicates the lower quartile. The topmost outlier or a vertical line extends 
from the top of the rectangle to indicate the maximum value, and the bottom end outlier or the 
vertical line extends from the bottom of the rectangle to indicate the minimum value. The 
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outliers (blue and red circles in Fig. 5) that are above or below the box body indicate that their 
values are greater than the upper quartile plus 1.5 times the interquartile range or less than 
lower quartile minus 1.5 times the interquartile range. 

 

Fig. 5. Boxplot distributions of spectral error and colorimetric error of the proposed method 
and the existing methods: (a) boxplot distribution of the RMSE of CCSG chart, (b) boxplot 
distribution of the CIELAB color difference of CCSG chart, (c) boxplot distribution of the 
RMSE of textile samples, and (d) boxplot distribution of the CIELAB color difference of 
textile samples. 

As illustrated in Fig. 5, for both the CCSG and the textile samples, the median error of the 
proposed method is smaller than the existing methods, and the boxplot distribution of 
estimation results of the proposed method is more compact than the existing methods. In 
addition, the maximum error of the proposed method is also smaller than that for most of the 
existing methods. And furthermore, there are more outliers with bigger error values in most of 
the existing methods for CIELAB color difference as indicated in Figs. 5(b) and 5(d). The 
boxplot of the overall error distribution for the ten times ten-fold validation in Fig. 5 shows 
that there are more small error samples estimated by the proposed method, which is more 
intuitive to prove the superiority of the proposed method. Moreover, the one-way ANOVA 
and Tukey’s post-hoc tests were performed to test the difference between the mean values of 
the error distributions in Fig. 5 with an acceptable confidence level of α = 0.05. The statistical 
analysis of all methods showed that the proposed method was significantly different from the 
mean values of the analyzed metrics of the compared methods in Table 1. 

For a more comprehensive comparison of the proposed method with the existing methods, 
the computational times of the proposed method and existing methods for the CCSG chart 
and the textile samples with the ten times ten-fold cross-validation are recorded under the 
same calculation conditions (ASUS X550V laptop, 4G memory, Intel(R) Core(TM) i5-
3230M CPU, 2.60GHz, 64-bit system, MATLAB 2016a software) and are summarized in 
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Table 2. The computational efficiency is in seconds. It can be seen from Table 2 that except 
for the PCA, Kernel and Zhang methods, all the methods show very similar computational 
efficiency, and the computational efficiency of the proposed method is even slightly better 
than some of the existing methods. 

Table 2. The comparison of computational times (in seconds) between the different 
methods for CCSG chart and textile samples using ten times ten-fold cross-validation 

Method CCSG Textile 

OLS 5.20 5.39 

RLS 5.33 5.35 

PLS 5.74 5.89 

PCA 8.21 8.27 

Amiri 5.73 5.96 

SR-LLA 5.23 5.31 

Kernel 9.82 15.43 

Zhang 7.60 7.90 

o-AE 5.59 5.65 

Liang 5.67 5.82 

ALWLR 5.52 5.70 

5.2 The influence of regression model on the proposed method 

In the introduction section, we have illustrated that the estimation of spectral reflectance from 
camera responses is actually to deal with a linear inverse problem [15]. However, a common 
problem with existing methods is that most carry out the spectral estimation based on 
nonlinear regression models, even if the raw linear camera responses are used in [11,13]. 
Therefore, the influence of regression model on the spectral estimation accuracy of the 
proposed method was explored. 

Except for the linear regression models that are based on first-order polynomial expansion 
in the proposed method, the non-linear regression models that are based on second-, third-, 
and fourth-order (with 10, 20 and 35 items respectively in their standard forms) polynomial 
expansion were also tested. It should be known that when the non-linear regression models 
were used in the proposed method, and with the changing of the tested parameter k, the 
metrics of RMSE and CIELAB color difference do not always show the same changing trend. 
The optimal parameter value of k was selected based on the minimum of RMSE for this case. 
Therefore, 0.25, 0.35 and 0.37 were selected for second-, third-, and fourth-order polynomial 
regression model of CCSG chart, and 0.31, 0.37 and 0.53 for textile samples, respectively. 
Spectral estimation results of the proposed method solved by first-, second-, third-, and 
fourth-order polynomial regression model are summarized in Table 3, where the ‘ALWLR-
1st’, ‘ALWLR-2nd’, ‘ALWLR-3rd’, and ‘ALWLR-4th’ represent the proposed method 
solved by first-, second-, third-, and fourth-order polynomial regression model, respectively. 
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Table 3. Spectral estimation results of the proposed method solved by first-, second-, 
third-, and fourth-order polynomial regression model 

Method Results 
 CCSG  Textile 

 RMSE% GFC% ΔEab  RMSE% GFC% ΔEab 

ALWLR
-1st 

Mean  2.38 99.71 2.21  2.68 98.73 1.85 

Maximum  6.62 100.00 6.85  7.53 99.97 5.21 

ALWLR
-2nd 

Mean  2.58 99.69 2.51  2.68 98.75 1.91 

Maximum  7.17 100.00 7.01  6.98 99.96 5.72 

ALWLR
-3rd 

Mean  2.84 99.64 2.76  2.83 98.75 2.13 

Maximum  9.03 100.00 8.58  7.97 99.96 8.60 

ALWLR
-4th 

Mean  3.55 99.48 4.76  3.28 98.61 2.28 

Maximum  15.08 100.00 31.22  12.12 99.95 9.51 

For a more intuitive comparison of the results of this regression models, the mean RMSE 
and mean CIELAB color difference of each regression model are plotted in Fig. 6. 

 

Fig. 6. (a) Mean RMSE of the proposed method solved by first-, second-, third-, and fourth-
order polynomial regression model, and (b) Mean CIELAB color difference of the proposed 
method solved by first-, second-, third-, and fourth-order polynomial regression model. 

As can be seen from Table 3 and Fig. 6, the linear regression model gave the best 
performance in general for the evaluation metrics overall. From the linear regression model to 
nonlinear regression models, as the degree of polynomial increases, the overall spectral 
estimation accuracy becomes worse for the evaluation metrics. Moreover, the maximum error 
for both RMSE and CIELAB color difference are also increases generally with the degree of 
polynomial increases. Results of one-way ANOVA and Tukey’s post-hoc test (with an 
acceptable confidence level of α = 0.05) showed a general statistically significant difference 
between the linear and non-linear regression models of the result in Table 3. Further more, the 
calculation efficiency actually decreases as the degree of polynomial increases, and the 
overfitting problem should also be considered for the higher degree polynomial models. 
Therefore, the linear regression model is more practical for spectral estimation from the raw 
camera responses. 

5.3 The influence of color space on the proposed method 

Another common problem that has been raised in the introduction section concerns the color 
space for distance calculation in constructing the weighting matrix. For all the existing 
methods, the distance is calculated in the device-dependent and perceptually non-uniform 
camera RGB color space, rather than in a device-independent and perceptually uniform color 
space. As the estimated spectral data are for both spectral and color applications, it should be 
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more meaningful to calculate the weighting matrix in a device-independent and perceptually 
uniform color space, such as the CIELAB color space used in the proposed method. To test 
whether the color space for weighting matrix calculation will affect the spectral estimation 
accuracy as expected, the influence of the device-dependent camera RGB color space and 
CIELAB color space on the spectral estimation accuracy was tested. 

Table 4. Spectral estimation results of the proposed method with weighting matrix 
calculated in CIELAB color space and device-dependent camera RGB color space 

Metho
d 

Results 
 CCSG  Textile 

 RMSE% GFC
%

ΔEab  RMSE
%

GFC
%

ΔEab 

ALWL
R-LAB 

Mean  2.38 99.71 2.21  2.68 98.73 1.85 
Maximu  6.62 100.0

0
6.85  7.53 99.97 5.21 

ALWL
R-RGB 

Mean  2.54 99.45 2.21  2.79 98.60 2.05 
Maximu  6.92 100.0

0
5.87  7.42 99.97 5.83 

 

Fig. 7. (a) the relationship between spectral estimation accuracy and k for the CCSG chart in 
device-dependent camera RGB color space, and (b) the relationship between spectral 
estimation accuracy and k for the textile samples in device-dependent camera RGB color 
space. 

The optimal values of k for CCSG color chart and textiles samples were also found in the 
device-dependent camera RGB color space as shown in Fig. 7. The optimal values of k for the 
CCSG color chart and the textiles samples are 0.12 and 0.09, respectively. The spectral 
estimation results of the proposed method with the weighting matrix calculated in CIELAB 
color space and device-dependent camera RGB color space are summarized in Table 4. 
‘ALWLR-LAB’ and ‘ALWLR-RGB’ represent the proposed method with the weighting 
matrix calculated in CIELAB color space and device-dependent camera RGB color space, 
respectively. It is clear from Table 4 that ALWLR-LAB performs than ALWLR-RGB as 
expected. Therefore, it makes sense to calculate the distance in the device-independent and 
uniform color space for weighting matrix construction in the proposed method. The one-way 
ANOVA and Tukey’s post-hoc tests were also performed to test the difference between the 
mean values of the experiment results in Table 4 with an acceptable confidence level of α = 
0.05. The statistical analysis showed that there was a general significant difference between 
the experiment results for the weighting matrix calculated in CIELAB and that in device-
dependent camera RGB color space. 

6. Discussion 

The purpose of this study was to investigate a new method to improve the accuracy of the 
estimation of spectral data from the raw camera responses in terms of spectral and 
colorimetric accuracy. Experiments illustrated that the proposed method improves the 
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estimation accuracy in comparison with the existing methods. The factors that have 
contributed to the improvement on estimation accuracy (1), and the factor that influences the 
parameter selection of the proposed method (2) and some concerns of the proposed method 
for practical application (3) are discussed below, respectively. 

(1) The outperformance of the proposed method is mostly due to simultaneously 
integration of the linear regression model (see Section 5.2) based on linear raw 
camera responses, the superior Gaussian weighting approach and the device-
independent and perceptually uniform color space for weighting matrix calculation 
(see Section 5.3). 

With Gaussian weighting, the selection of local training samples and the weighting 
of training samples are merged as one step. The local training samples are adaptively 
selected for each of the testing samples in the weighting process. This is different 
from the current local-weighted methods [12,16] with two separate weighting steps, 
where the local training samples are first selected and then the weighting coefficient 
is calculated. The introduce of Gaussian weighing function may be one of the 
reasons to ensure that the spectral and colorimetric error always exhibits the same 
trend with a change in the value of the parameter value k (cf. Figure 4 and Fig. 7). 
Thus, the spectral error and the colorimetric error can always be simultaneously 
minimized with the Gaussian weighing approach in the proposed method. 

(2) The main factor that influences the selection of the optimal value of k in the proposed 
method is the difference of the data set, or more specifically, the color or spectral 
distribution characteristics of the data set in color or spectral space. It is easy to see 
from Fig. 3 that there is a significant distribution difference between the CCSG chart 
and the textile samples in the a*-b* plane of CIELAB color space. And the only 
factor that has led to the difference between the optimal value selection of the 
proposed method for the CCSG chart and textile samples (cf. Figure 4 and Fig. 7), is 
the difference of their color/spectral distribution characteristics. However, there are 
currently no metrics that can accurately describe the color or spectral distribution 
characteristics of a data set in color or spectral space, although principal component 
analysis (PCA) could possibly be used. The development of such metrics could form 
the aim of future research. 

(3) In practical applications, a color chart or a sample database in different fields, such as 
printing, textile, cosmetics and so on, is easily acquired. Thus the optimal value of 
parameter k in the proposed method is easy to confirm for a specific application by 
using the multiple k-fold cross-validation training approaches. Figure 8 shows the 
stability of the estimation accuracy of the proposed method for CCSG chart and 
textile samples with ten times ten-fold cross-validation. The optimal values of k are 
0.18 and 0.22 for CCSG chart and textile samples respectively as confirmed in Fig. 
4. As is clear from Fig. 8, for a fixed value of k, the estimation accuracy shows a 
very small deviation between the results of the ten times ten-fold cross-validation, 
which means good stability is obtained between the ten times ten-fold cross-
validation. Based on this stability analysis of the proposed method, we conclude that 
if the appropriate value of k is confirmed in a specific application, it will be 
appropriate for that specific application. 
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Fig. 8. (a) the stability of the proposed method for CCSG chart with ten times ten-fold cross-
validation, and (b) the stability of the proposed method for textile samples with ten times ten-
fold cross-validation. 

7. Conclusion 

In conclusion, this study proposes a superior spectral estimation method to calculate spectral 
data from raw camera responses by use of the Gaussian weighted linear regression model. 
The performance of this method was comprehensively compared to the existing methods. 
Results showed that our method exhibited the best accuracy in terms of both the spectral and 
colorimetric estimation. The factors that contributed to the proposed method are discussed in 
detail. This method can be applied for spectral reflectance measurement in many fields 
including printing, textile, food, medical, cultural heritage, and so on. 
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