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RESEARCH ARTICLE Open Access

Migraine day frequency in migraine
prevention: longitudinal modelling
approaches
Gian Luca Di Tanna1* , Joshua K. Porter1, Richard B. Lipton2, Alan Brennan3, Stephen Palmer4,

Anthony J. Hatswell5, Sandhya Sapra6 and Guillermo Villa1

Abstract

Background: Health economic models are critical tools to inform reimbursement agencies on health care

interventions. Many clinical trials report outcomes using the frequency of an event over a set period of time,

for example, the primary efficacy outcome in most clinical trials of migraine prevention is mean change in

the frequency of migraine days (MDs) per 28 days (monthly MDs [MMD]) relative to baseline for active

treatment versus placebo. Using these cohort-level endpoints in economic models, accounting for variation

among patients is challenging. In this analysis, parametric models of change in MMD for migraine preventives

were assessed using data from erenumab clinical studies.

Methods: MMD observations from the double-blind phases of two studies of erenumab were used: one in

episodic migraine (EM) (NCT02456740) and one in chronic migraine (CM) (NCT02066415). For each trial, two

longitudinal regression models were fitted: negative binomial and beta binomial. For a thorough comparison

we also present the fitting from the standard multilevel Poisson and the zero inflated negative binomial.

Results: Using the erenumab study data, both the negative binomial and beta-binomial models provided

unbiased estimates relative to observed trial data with well-fitting distribution at various time points.

Conclusions: This proposed methodology, which has not been previously applied in migraine, has shown that these

models may be suitable for estimating MMD frequency. Modelling MMD using negative binomial and beta-binomial

distributions can be advantageous because these models can capture intra- and inter-patient variability so that trial

observations can be modelled parametrically for the purposes of economic evaluation of migraine prevention. Such

models have implications for use in a wide range of disease areas when assessing repeated measured utility values.
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Background

Migraine is a common neurological disorder charac-

terised by debilitating, recurrent headaches, often di-

vided into episodic (EM) and chronic (CM) forms based

on month headache days (MHD) and monthly migraine

days (MMD) (EM, 4–14 MMD and < 15 MHD, or CM,

≥15 MHD and ≥ 8 MMD) [1–3]. Migraine pain is typic-

ally unilateral, pulsating in quality, of moderate or severe

intensity and aggravated by routine physical activity,

such as walking or climbing stairs. In addition, diagnosis

depends on the presence of associated symptoms of nau-

sea, vomiting, photophobia or phonophobia in various

combinations [1, 2, 4]. The burden of migraine is con-

siderable, both in terms of the physical and emotional

effects on the individual, and the economic impact of

lost productivity and healthcare resource use [5]. It is

ranked as the leading cause of neurological disability

worldwide and is one of the five leading causes of

long-term disability [6, 7].

Preventive treatment intended to reduce the frequency

and severity of headaches is an important aspect of man-

agement; all patients with CM would benefit from
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preventative treatment. Among patients with EM, ex-

periencing 4 or more headache days per month is a lead-

ing reason for considering preventative therapy [8].

MMD and MHD are counts that have values that in-

clude zero as well as positive integers; count data typic-

ally have skewed distributions [9]. Reductions in the

frequencies of migraine days (MDs) and headache days

are key measures of the efficacy of migraine prophylaxis.

Clinical studies typically examine the mean change in

MMD frequency; patient-level data are not widely pub-

lished. However, examining the mean change in MMD

frequency across a cohort of patients may not capture

the clinically meaningful effects of migraine prevention,

such as the improvement in an individual’s ability to per-

form daily activities or health-related quality of life. Fur-

thermore, examining the mean change in the MMD

frequency for a population in clinical studies may not be

applicable in the real-world, as treatments may shift the

frequency distribution.

A higher frequency of MMD per 28 days is associated

with lower health-related quality of life, increased use of

medical resources, acute medication use and increased

productivity losses, with the impact of each additional

MD increasing with overall frequency. As such, the aver-

age outcomes across a patient cohort may not be the

same as the outcomes of a patient with the average

MMD frequency. The frequency distribution of MHD

and MMD is important when it comes to modelling the

effectiveness and cost-effectiveness of prophylaxis [10].

Previous analyses examining cost-effectiveness models

for migraine have approached this issue by defining

health states as categorical event frequency (transition

from ≥15 MHD to < 15 MHD) or as response status

(≥50% reduction in MHD) [10–13] which may not ad-

equately account for inter-patient variability. These

models group together a heterogeneous set of patient

outcomes, rendering the models less precise; for ex-

ample Markov models tend to categorise patients into

broad categories, which can be challenging when asses-

sing benefits. In general, categorising count/continuous

variables can lead to several problems including loss of

information and may also increase the risk of false posi-

tives [14]. Furthermore, use of a data-derived ‘optimal’

cutpoint may lead to bias [15]. Migraine is a disease with

considerable variability in the frequency, duration and

severity of migraine attacks [16]. Therefore, there is a

need for an approach that estimates the change in mean

frequency of MMD but also the distribution of individ-

ual patients by MMD frequency within a cohort at sub-

sequent time points.

Selection of the most appropriate model is important

when fitting MHD or MMD data [17]. There are several

approaches to modelling these data. Reports on model-

ling MMD frequency in the literature are limited but

previous analyses have used Poisson and negative bino-

mial to model headache day frequency [17–21].

Zero-inflated variants of these distributions have also

been used to improve goodness-of-fit [17, 22]. The Pois-

son distribution belongs to the family of discrete prob-

ability distributions traditionally used to model count

data. In general, the model assumes that the mean and

variance of the count data are equal [23]. It is considered

appropriate for unrestricted count data [24], and because

MMD frequency is a count variable, Poisson distribution

may be considered an eligible model. However, its ability

to model the variation seen in the patient-level data has

proved limited [20, 25] due to insufficient accounting for

overdispersion (where a single parameter is insufficient to

characterise the mean and variance) [26]. More recently,

thanks to Shmueli et al. there has been a resurgence in

interest in Conway-Maxwell-Poisson distributions, origin-

ally proposed by Conway and Maxwell to handle queuing

systems [27, 28]. The main characteristic of these distribu-

tions, which are an extension of the Poisson distribution,

is the ability to handle both overdispersion and underdis-

persion. These distributions are limited, however, due to

the lack of a hierarchical model to assess repeated mea-

surements and parameterization that is not made directly

via the mean of counts, making these distributions not

easily comparable to other count regression models. By

contrast, the negative binomial distribution, which uses an

additional dispersion parameter to represent the add-

itional variation seen in the data, has provided superior fits

when modelling migraine populations [17, 20].

A preliminary analysis, based on cross-sections of the

data, has indicated that the beta-binomial is an alterna-

tive distribution that could be used to model MMD

frequency data and has been shown to provide compar-

able fits to the negative binomial models [25]. The

beta-binomial model is commonly used to account for

intraclass correlation coefficients (ICC) among dichot-

omous outcomes in cluster sampling [29]. The use of

the beta-binomial model may offer some advantages be-

cause the outcome can be restricted to a maximum

number of possible successes (i.e. a maximum of 28

MMD per 4-week period).

In order to assess the feasibility of fitting MMD data

using negative binomial or beta-binomial models, longi-

tudinal data from two erenumab studies were examined

[30, 31]. Erenumab is a fully human monoclonal anti-

body that specifically binds to and blocks the calcitonin

gene-related peptide (CGRP) receptor [32]. Erenumab

has been evaluated as a prophylactic treatment for mi-

graine in 2 pivotal clinical trials in patients with EM and

CM [30, 31, 33].

To the best of our knowledge, longitudinal negative bi-

nomial and beta-binomial regression models that accom-

modate over-dispersed data have not been used previously
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in the assessment of MMD frequency. Here, we describe

an assessment of these models of the change in MMD fre-

quency, using data from the placebo and erenumab 140

mg arms of two pivotal erenumab clinical trials.

Methods

Models specification

Three longitudinal regression models were evaluated for

their ability to estimate the frequency distribution of

MMD: multilevel/hierarchical negative binomial regres-

sion (with constant dispersion parameter over time),

multilevel beta-binomial regression (with constant ICC

over time) and the multilevel Poisson model. The distri-

butions in the erenumab cohorts of the studies were es-

timated and compared to the observed distribution

across the double-blind period. Zero-inflated negative bi-

nomial models with robust standard errors clustering at

patient level (presented in Additional file 1: Table S1 and

Additional file 2: Figure S1) were also fitted, but only the

non-zero-inflated were considered here because

zero-inflated models did not improve the model’s fit,

and there was no substantial inflation of zeros due to

the eligibility criteria for the study [20].

Negative binomial distribution

The negative binomial distribution is an extension of the

Poisson distribution and includes a dispersion parameter

(τ) to account for overdispersion in the data. The nega-

tive binomial does not have an upper bound (unlike the

beta binomial), so it is possible for high mean frequen-

cies to result in predictions above the maximum of 28

MDs per month. The dispersion parameter is estimated

based on the mean MD frequency.

The negative binomial probability function [34] is de-

fined as:

P Y ¼ kð Þ ¼
T k þ τð Þ

k!T τð Þ

τ

τþ λ

� �τ
λ

λþ τ

� �k

k ¼ 0; 1; 2;…

ð1Þ

Where:

� P(Y = k) is the probability of a patient experiencing k

MDs per 28 days

� λ is the mean MDs per 28 days

� τ is the dispersion parameter.

Note that the dispersion parameter estimated by Stata

is 1 divided by the dispersion parameter in eq. 1. To en-

sure that the function sums to unity, the model divides

each estimated frequency by the cumulative frequency of

the negative binomial at Y = 28 (28 MDs per 28 days).

This regression framework can accommodate differ-

ences in MMD frequency and the variation in frequency

between patients at different time points. Parameters

that accommodate overdispersion were estimated for the

negative binomial regression, referred to as the disper-

sion parameter.

Beta-binomial distribution

The beta-binomial data model is a combined model of

the beta and binomial distributions. It is used to model

the number of successes (counts) over a number of bi-

nomial trials, when the probability of success is a beta

distribution with two specific parameters (α and β)

[35]. In general, the beta-binomial distribution accounts

for the fact that the observed events are not equally dis-

tributed across patients and can be used to assess

non-linear associations [35]. In the beta-binomial distri-

bution, the count data at each observation timepoint

are regarded as a set of 28 binary outcomes (MD or

non-MD) grouped by patient. The α and β parameters

of the beta-binomial distribution can be calculated from

the mean and ICC, which represents the strength of the

correlation between days for the same patient, i.e. daily

outcomes are likely to be similar for the same patient.

The beta-binomial probability function is specified as

follows:

PðY ¼ kÞ ¼ ð
N

k

Þ
Bðαþ k; βþ N-kÞ

Bðα; βÞ

k ¼ 0; 1; 2;…

ð2Þ

Where:

� k is the number of MDs

� P (Y = k) is the probability of patients experiencing τ

MDs

� N is the number of days in the cycle (28 days)

� B () is the beta function

� α and β are the parameters of the underlying beta

distribution.

The ICC is assumed constant over time and equal to 1

/ (1 + α + β).

Erenumab clinical trial data

Table 1 summarises some of the key characteristics of the

patients from the two erenumab studies. The patient data

used in the modelling analysis were taken from two piv-

otal clinical trials of erenumab as migraine prophylaxis;

one in patients with EM (NCT02456740) [30], the other

in patients with CM (NCT02066415) [31]. Patients en-

rolled in the EM study had 4 to 14 MDs and fewer than

15 headache days per month (28 days) at baseline. Patients

in the CM study had 15 or more headache days per month

at baseline, of which at least 8 were MDs. Both of these

randomised, double-blind studies compared erenumab 70
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mg and 140mg, administered every 28 days by subcutane-

ous injection, with placebo [30, 31]. Patients received

double-blind treatment for 12 weeks (CM study) or 24

weeks (EM study), and efficacy was assessed as the change

in mean MMD from baseline. This analysis focuses on the

erenumab 140mg dose only. Patient-level data were ob-

tained for the patients in each study, with the following

variables extracted for use in the analysis: subject ID,

MMD frequency, visit, and treatment. This approach al-

lows the regression models to estimate both the change in

MMD frequency over time and the dispersion parameters

required to reproduce the distribution of patient-level

MMD frequency.

Goodness of fit of the regression models was assessed

by estimating the root mean squared errors (RMSE)

across the estimated values compared with trial observa-

tions, mean absolute errors (MAE) and visual inspection

of the predicted distributions. The models could not be

compared via Akaike’s information criteria (AIC) or

Bayesian information criterion (BIC) because the

beta-binomial model was performed on the augmented

dataset.

Predicted MMD values and 95% confidence intervals

were calculated with the Delta method. For economic

modelling purposes, the mean MMD frequencies were

extrapolated beyond the trial observation, up to a max-

imum of 2 years, after which no further change in MMD

frequency was assumed. The models tested were expo-

nential, logistic, log-logistic and Gompertz. Extrapolation

was performed using a logistic function, the best-fitting

function out of the models tested. Further information

on the extrapolations can be found in the supplementary

material (Additional file 3: Figure S2).

All analyses were performed using Stata Statistical

Software: Release 15.0 (StataCorp LLC, College Station,

TX, USA) [36], and the Stata codes to fit the regression

models proposed are located in the Additional file 4:

Technical appendix.

Results

Patient characteristics

Baseline patient characteristics were similar in the two

studies, despite differences in MMD frequency at base-

line (patients experienced an average of 8 vs 18 MDs per

28 days for EM and CM respectively) (Table 1). In the

EM study, mean age was 40.9 years, and the majority of

patients were white (89.1%) and female (85.2%). In the

CM study, these figures were similar with a mean age of

42.5 years, 94.2% were white and 82.8% were female.

MMD frequency modelling

Figure 1 shows the predicted distributions of patients in

the two cohorts compared with the study observations

at weeks 0, 4, 12 and 24 in the EM study. In the EM

study, the predicted distributions for both regression

models show a good fit with the actual data at 4, 12

and 24 weeks (Fig. 1). Figure 2 shows the predicted

distributions and actual data at weeks 0, 4, 8 and 12 in

the CM study. The predicted distributions show a

good fit to the actual observations in the EM and CM

study; the RMSE estimates were 0.075 and 0.082 for

negative binomial regression, 0.102 and 0.081 for

beta-binomial regression and 0.142 and 0.152 for Pois-

son regression for EM and CM studies respectively.

The MAE estimates were 0.246 and 0.330 for negative

binomial regression, 0.336 and 0.339 for beta-binomial

regression, and 0.466 and 0.654 for Poisson regression

for EM and CM studies respectively. For negative bi-

nomial regression, the dispersion parameter was

0.2397 for the EM study and 0.1323 for the CM study;

for the beta-binomial regression, the ICC values were

Table 1 Baseline characteristics of patients in the erenumab clinical trials [31, 43]

Characteristic Episodic migrainea (NCT02456740) Chronic migraineb (NCT02066415)

Group Placebo Erenumab 140mg Placebo Erenumab 140mg

Number of patients 319 319 286 190

Mean age (SD) 41.3 (11.2) 40.4 (11.1) 42.1 (11.3) 42.9 (11.1)

Sex, n (%)

Male 45 (14.1) 47 (14.7) 60 (21.0) 30 (15.8)

Female 274 (85.9) 272 (85.3) 226 (79.0) 160 (84.2)

Race, n (%)

White 277 (86.8) 293 (91.8) 268 (93.7) 184 (96.8)

Black 24 (7.5) 18 (5.6) 11 (3.8) 6 (3.2)

Other 18 (5.6) 8 (2.5) 7 (2.4) 0 (0.0)

Baseline MMD 8.2 (± 2.5) 8.3 (± 2.5) 18.2 (± 4.7) 17.8 (± 4.7)

n number, MMD monthly migraine days, SD standard deviation
aDefined as patients experiencing 4–14 headache days per 28 days, 4–14 migraine days per 28 days
bDefined as patients experiencing ≥15 headache days per 28 days, ≥8 migraine days per 28 days
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0.0297 and 0.1370 for the EM and CM studies (Ta-

bles 2 and 3).

For the EM study, the negative binomial mean MMD

for weeks 0, 4, 12 and 24 were 8.261, 7.199, 6.434 and

6.421, respectively. For beta-binomial regression, the

mean MMD for weeks 0, 4, 12 and 24 were 7.945, 7.080,

6.386 and 6.293, respectively (Table 2). For the CM

study, the negative binomial mean MMD for weeks 0, 4,

8 and 12 were 18.111, 15.418, 14.538 and 13.997, re-

spectively. For beta-binomial regression the mean MMD

for weeks 0, 4, 8 and 12 were 17.111, 15.843, 15.256 and

14.894, respectively (Table 3).

The predicted distributions observed in the CM

study appeared a less close fit than for the EM study,

which reflects the greater level of variability in the

data from the CM study. Figure 3 presents the mean

MMD frequencies for placebo predicted by the nega-

tive binomial and beta-binomial regression models

compared with the observed mean values from pa-

tients with EM over the 24-week study period. Fig-

ure 4 presents the equivalent data for patients from

the 12-week study in CM. In both studies, the mod-

elled data from the two regressions show a closer fit

with the observed values, compared with the Poisson

reference model.

Discussion

This analysis is an assessment of the ability of longi-

tudinal parametric models to capture intra- and

inter-patient variability in MMD frequency over

time, using data from two erenumab clinical trials as

examples. Patients with migraine experience consid-

erable day-to-day variability in the frequency, dur-

ation and severity of attacks [16]. This approach was

used to estimate patient distribution accurately by

the frequency of MMD using mean MMD values for

the overall patient population. Modelling MMD with

negative binomial and beta-binomial longitudinal re-

gression models can be advantageous because they

can accommodate overdispersed data (with a vari-

ance larger than the mean) and account for the vari-

ation in MMD both within and between individual

patients.

The approaches described here allows the distribu-

tion of individual patients by MMD to be modelled

using only the clinical endpoint of the studies - the

mean change from baseline in MMD compared with

placebo at a single time point. The beta-binomial re-

gression method allows restriction of the maximum

successes (i.e. maximum of 28 MDs), whereas the

negative binomial does not. Despite this, the negative

Fig. 1 Estimated and actual MMD distributions in the EM study at weeks 0, 4, 12 and 24

Di Tanna et al. BMC Medical Research Methodology           (2019) 19:20 Page 5 of 11



binomial showed a better goodness of fit to the MD

distributions than beta-binomial. The modelled data

from the negative and beta-binomial regressions

show a closer fit with the observed values, compared

with the Poisson reference model. The zero-inflated

negative binomial regressions did not substantially

improve the goodness of fit of the predicted distri-

butions. In contrast to clinical trial populations that

may have a lower bound of MDs per month, the

zero-inflation model may be more useful in a

real-world population where a greater proportion of

people have zero MDs in a month.

The choice of distributions is important when meas-

uring count data. The Poisson and negative binomial

distributions have been used in previous studies to

model count data [20, 23, 37] and have also been used

to approximate headache day frequency data in pub-

lished migraine studies [17, 38]. However, these distri-

butions may be inappropriate when event counts are

limited by a maximum possible frequency or measur-

ing multimodal distributions. The Poisson and nega-

tive binomial distribution have indefinite support for

positive integers and, therefore, have the potential to

generate inappropriate values, especially with migraine

cohorts of higher MD frequency.

Modelling data as continuous events rather than cate-

gorising data has many advantages, including the reduc-

tion of bias and more accurately estimating the extent of

variation in outcomes between groups [14].This analysis

takes the approach of modelling migraine frequency as a

continuous outcome and addresses a key limitation of

previous modelling approaches which define health

states by categorical event frequency or response status.

The proposed approach also provides a greater capabil-

ity to model indirect comparisons than previous

models, as the published endpoints of clinical studies

(i.e. mean change in MMD) can be used to estimate the

distributions of patients, assuming the patient-level

variation is similar across cohorts. Using a count-based

structure makes indirect comparisons straightforward

because data can be linked to study primary endpoints.

Estimating the distribution of patients by MMD also al-

lows outcomes linked to MD frequency (such as

health-related quality of life or pain medication use) to

be quantified directly as a function of frequency. Fur-

thermore, because clinical trials in migraine are

commonly placebo-controlled, this approach could be

used to parameterise indirect comparison in migraine

prevention where patient-level frequency data are not

available.

Fig. 2 Estimated and actual MMD distributions in the CM study at weeks 0, 4, 8 and 12
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Table 2 EM regression output for negative-binomial, beta-binomial and Poisson

Negative binomial (Dispersion parameter 0.2397) Beta-binomial (ICC 0.0297) Poisson

Covariate Predicted MD
Frequencya

95% CI FRR 95% CI P value Predicted MD
Frequencya

95% CI Coefficient 95% CI P value Predicted MD Frequencya 95% CI FRR 95% CI P value

Week 0 8.261 (7.622,
8.900)

– – – Week 0 7.944 (7.334,
8.555)

– – – Week 0 8.333 (7.790,
8.877)

– – –

Week 4 7.199 (6.714,
7.684)

0.746 (0.712,
0.782)

< 0.001 Week 4 7.081 (6.595,
7.567)

−0.292 (− 0.345,
-0.239)

< 0.001 Week 4 7.312 (6.824,
7.800)

0.768 (0.737,
0.800)

< 0.001

Week 8 6.731 (6.278,
7.185)

0.693 (0.661,
0.727)

< 0.001 Week 8 6.672 (6.215,
7.128)

−0.379 (−0.433,
-0.324)

< 0.001 Week 8 6.847 (6.385,
7.310)

0.718 (0.688,
0.749)

< 0.001

Week 12 6.4337 (6.005,
6.862)

0.651 (0.620,
0.683)

< 0.001 Week 12 6.386 (5.952,
6.820)

−0.447 (−0.503,
-0.391)

< 0.001 Week 12 6.555 (6.108,
7.002)

0.677 (0.649,
0.706)

< 0.001

Week 24 6.421 (6.002,
6.840)

0.634 (0.604,
0.666)

< 0.001 Week 24 6.293 (5.866,
6.720)

−0.486 (−0.542,
-0.429)

< 0.001 Week 24 6.552 (6.105,
6.998)

0.662 (0.634,
0.690)

< 0.001

Treatment (Erenumab vs Placebo) 0.761 (0.702,
0.825)

< 0.001 Treatment (Erenumab vs Placebo) −0.327 (−0.362,
-0.291)

< 0.001 Treatment (Erenumab vs Placebo) 0.764 (0.705,
0.827)

< 0.001

RMSE 0.075 RMSE 0.102 RMSE 0.142

MAE 0.246 MAE 0.336 MAE 0.466

Regression output analysis was based on the whole sample of patients (4438 observations)

CI confidence interval, FRR frequency rate ratio, ICC intraclass correlation coefficient, MAE mean absolute error, MMD monthly migraine day, RMSE root mean squared error
aIn the placebo arm
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Table 3 CM regression output for negative binomial, beta-binomial and Poisson

Negative binomial (Dispersion parameter 0.1323) Beta-binomial (ICC 0.1370) Poisson

Predicted MD
Frequencya

95% CI FRR 95% CI P value Predicted MD
Frequencya

95% CI Coefficient 95% CI P value Predicted MD
Frequencya

95% CI FRR 95% CI P value

Week 0 18.111 17.052,
19.171)

– – – Week 0 17.111 (16.156,
18.066)

– – – Week 0 18.298 (17.373,
19.223)

– – –

Week 4 15.418 (14.579,
16.257)

0.783 (0.754,
0.812)

< 0.001 Week 4 15.843 (15.028,
16.657)

−0.256 (− 0.321,
-0.192)

< 0.001 Week 4 15.577 (14.770,
16.385)

0.798 (0.773,
0.824)

< 0.001

Week 8 14.538 (13.759,
15.317)

0.721 (0.694,
0.749)

< 0.001 Week 8 15.256 (14.484,
16.027)

−0.359 (−0.426,
-0.293)

< 0.001 Week 8 14.688 13.919,
15.457)

0.739 (0.715,
0.764)

< 0.001

Week 12 13.997 (13.242,
14.753)

0.696 (0.670,
0.724)

< 0.001 Week 12 14.894 (14.146,
15.641)

−0.408 (−0.475,
-0.341)

< 0.001 Week 12 14.142 13.397,
14.887)

0.715 (0.692,
0.739)

< 0.001

Treatment (Erenumab vs Placebo) 0.828 (0.767,
0.894)

< 0.001 Treatment (Erenumab vs Placebo) −0.3600 (−0.430,
-0.290)

< 0.001 Treatment (Erenumab vs Placebo) 0.831 (0.770,
0.896)

< 0.001

RSME 0.082 RMSE 0.081 RMSE 0.152

MAE 0.330 MAE 0.339 MAE 0.654

Regression output analysis was based on the whole sample of patients (1872 observations)

CI confidence interval, FRR frequency rate ratio, ICC intraclass correlation coefficients, MAE mean absolute error, MMD monthly migraine day, RMSE root mean squared errors
a In the placebo arm
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While this approach addresses key limitations of

previous approaches, such as defining health states by

categorical event frequency or response status, some

potential improvements could be made to it. The im-

plementation of a negative binomial regression with

upper bound (28 MDs) could be considered and

treatment-visit interactions could be included. Add-

itionally, the data are required to fit to the smooth

distributions of the model; however, this is not always

the case. The predicted distributions observed in the

CM study did not fit as well as the EM study owing

to the greater spread in distribution in the CM study

and may also be due to the differences in the patient

populations between the EM and CM cohorts. There-

fore, alternative approaches may be required to better

model these cohorts.

The method described here has applications in eco-

nomic evaluations of preventative medication and pol-

icy decisions in migraine. The parametric approach

proposed can be used to perform extrapolations of

treatment effects beyond trial observations. Extrapola-

tion of data is particularly relevant when considering

economic evaluations [39] as patient-level data col-

lected within the duration of clinical studies are often

too short to assess the long-term relationship between

migraine frequency and health status. Further research

may consider how such data should be extrapolated

into the future, as whilst survival-modelled extrapola-

tion has become well-established and standardised,

the parametric approach is relatively novel, and the

way in which the data can be best extrapolated is yet

to be defined [40]. Furthermore, there is an inherent

risk to extrapolation, as the clinical trajectory can be

uncertain.

Modelling outcomes as continuous variables rather

than health states has advantages when data are lim-

ited. Therefore, this approach has implications for use

in various disease analyses which have simplified con-

tinuous outcomes associated with health states, which

may result in loss of information or bias. This ap-

proach could be used to evaluate the disease progres-

sion of patients with HIV/AIDS, where multistate

Markov models based on CD4 cell counts have previ-

ously been used [41] or modelling health assessment

questionnaire (HAQ) scores in patients with psoriatic

arthritis [42].

Conclusions

Modelling MMD with regression models that can ac-

commodate overdispersion in a longitudinal framework

is a statistically valid method to estimate the variation in

MMD, both within and between individual patients. This

approach, which estimates the distribution of patients by

MMD, allows outcomes (such as health-related quality

of life or pain medication use) to be directly quantified

and linked to MD frequency. This has important appli-

cations in the evaluation of preventive medications for

migraine and beyond.

Additional files

Additional file 1: Table S1. EM and CM regression output for zero-

inflated negative binomial. Contains the data for the EM and CM regression

output for the zero-inflated negative binomial model. (DOCX 17 kb)

Additional file 2: Figure S1. Placebo modelling data: MMDs of the EM

study (a) and the CM study (b) negative binomial regression, beta binomial

regression and zero-inflated negative binomial regression. Contains placebo

modelling data of MMDs of the EM and CM study for the regression models.

(EPS 2448 kb)

Additional file 3: Figure S2. Mean MD extrapolations based on

regression model predicted means. a) and b) EM regression models

c) and d) CM regression models. Parametric extrapolations of mean

MMD are based on the predicted means produced by the beta-

binomial and negative binomial regression models of both EM and

CM. The mean MMD frequency plateaued after approximately 6

months (24 weeks). Fitted values refer to the logistic, exponential and

Gompertz functions. (EPS 2384 kb)

Additional file 4: Implementation of regression models in Stata. The

technical appendix contains the Stata codes which were used to fit the

regression models. (DOCX 13 kb)

Fig. 3 MMDs over 24weeks of the EM study: negative binomial and

beta-binomial longitudinal regression estimates and observed data.

neg, negative. 95% confidence intervals for the negative and beta-

binomials indicated by the shaded grey (placebo) and red (erenumab)

Fig. 4 MMDs over 12weeks of the CM study: negative binomial and

beta-binomial longitudinal regression estimates and observed data.

neg, negative. 95% confidence intervals for the negative and beta-

binomials indicated by the shaded grey (placebo) and red (erenumab)
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