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

Abstract—A novel algorithm which combined the merits of the
Clustering strategy and the Compressive Sensing-based
(CS-based) scheme was proposed in this paper. The lemmas for
the relationship between any two adjacent layers, the optimal size
of clusters, the optimal distribution of the Cluster Head (CH) and
the corresponding proofs were presented firstly. In addition, to
alleviate the “Hot Spot Problem” and reduce the energy
consumption resulted from the rotation of the role of CHs, a third
role of Backup Cluster Head (BCH) as well as the corresponding
mechanism to rotate the roles between the CH and BCH were
proposed. Subsequently, the Energy-Efficient Compressive
Sensing-based clustering Routing (EECSR) protocol was
presented in detail. Finally, extensive simulation experiments
were conducted to evaluate its energy performance. Comparisons
with the existing clustering algorithms and the CS-based
algorithm verified the effect of EECSR on improving the energy
efficiency and extending the lifespan of WSNs.

Index Terms—Wireless sensor networks; compressive sensing; the
“hot spot problem”; energy efficiency

I. INTRODUCTION

HE WIRELESS SENSOR NETWORKS (WSNS) is a kind
of networks which consist of a large number of tiny sensor
nodes[1][2]. Owing to the low deploying cost, WSNs have

gained extensive applications, such as the target tracking,
enemy detecting, air pollution monitoring, medical caring, and
so on[3][4][5]. In general, most of the sensor nodes are powered by
the battery, which means their energy supply is limited. Besides,
most of WSNs are usually deployed in the area which is out of
human’s reach. So it is high-cost or unpractical for them to be
replenished. In addition, the “Hot Spot Problem” which refers
to the fact that the nodes close to the Sink deplete energy faster
than the nodes lying in edge area makes matters worse. The
lifespan of WSNs terminates when one or some of the key
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nodes exhaust their energy due to the finite energy budget as
well as the “Hot Spot Problem”. Therefore how to prolong the
lifetime is one of the main challenges facing the wireless sensor
networks without being equipped with any energy harvesting
technology. In recent years, the schemes aiming at extending
the lifespan of WSNs has attracted extensive attentions. Since
the energy supply is limited, improving the energy efficiency is
one kind of effective ways to prolong the lifetime.

Generally speaking, two aspects are included concerning
improving the energy efficiency, which are the reduction and
balance of energy consumption. Usually, there exists numerous
redundancy in the source data. For example, most of the data
acquired by the sensor node exhibit high Spatial-temporal
correlation. The Spatial-temporal correlation includes two
aspects: spatial correlation and temporal correlation. The sensor
nodes are usually densely deployed in most of the applications
of WSNs, which results in the similarity of the data. Namely,
the data acquired by the adjacent nodes appear to be highly
similar in part or whole. This phenomenon is called as the
spatial correlation, which leads to the data redundancy and the
waste of energy. In addition, the temporal correlation which
means the data sensed in the adjacent time slots appear to be
similar also exists in the process of data acquisition. In general,
the temporal correlation is resulted from the high frequency of
data acquisition. For instance, in some scenarios, such as the
disaster detection, endangered species rescue, etc., the data
need to be collected in a high frequency in order to achieve a
high accuracy. Similar to the spatial correlation, the temporal
correlation also leads to the data redundancy. Therefore the
energy efficiency can be improved if the redundancy is reduced
via aggregation before the data are intactly transmitted to the
Sink. In general, the intranet data aggregation can be utilized to
reduce the data redundancy resulted from the Spatial-temporal
correlation. The traditional intranet data aggregation schemes
included the distributed source model, distributed transform
coding, and the distributed source coding[6]. However, most of
them featured that the operation is complicated for the encoder
but simple for the decoder. Obviously it is not very suitable for
the resource-limited WSNs. On the other hand, the
“convergecast” traffic pattern and the “hop-by-hop” routing
mode in WSNs result in the uneven distribution of energy
consumption, which is the root cause of the “Hot Spot
Problem”. Recent years have witnessed a lot of researches
which aim at improving the energy efficiency via cutting down
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and balancing the energy consumption[7][8][9], such as the
clustering-based routing protocol[10], the topology controlling
scheme[11][12], the strategy adopting the mobile Sink or mobile
Relay[13][14], and the data aggregation scheme[15]. However, all
of them followed the Nyquist sampling theorem, which
demands the sample frequency should be at least twice as much
as the largest frequency of the source signal to recover it
precisely. It means that the redundant data resulted from the
Spatial-temporal correlation are still collected, which leads to a
waste of energy to some extent. Besides, even though there are
some schemes aiming at reducing energy via in-network
aggregation, they still followed the
acquisition-first-compress-latter pattern. The energy is wasted
for the process of raw data acquisition, therefore the energy
efficiency still needs to be improved.

Compressive Sensing (CS)[16] theory provides a new kind of
data acquisition paradigm for WSNs. Via the CS theory, the
signal can be acquired and recovered at the sampling rate which
is much lower than the Nyquist sampling rate. The energy
consumption decreases with the sampling frequency, therefore
the CS-based scheme can be applied to extend the network
lifetime. As for CS-based schemes, if a signal is sparse in nature
or sparse under a given sparse basis matrix, it can be
reconstructed from a small number of linear measurements.
Usually the source signal can be recovered by solving an
l1-norm convex optimization problem. CS theory makes it
possible that the sampling frequency depends on the
characteristics of the signal itself rather than the signal
bandwidth[17]. Moreover, unlike the conventional data
compression techniques, such as CAG (Clustered
AGgregation)[6] and DSC (Distributed Source Coding)[18][19],
CS synchronizes sampling and compression, and only need
several simple multiplication and addition operations during
the process of compression sampling. While the complicated
data recovery operations are conducted by the Sink. Obviously,
this feature makes it exactly suitable for the wireless sensor
networks where sensor nodes possess limited energy and
processing capacity but the energy supply and the processing
capacity of Sink nodes are relatively unlimited. Through
applying the CS to the WSNs, the data can be compressed when
they are being sensed. So the energy for sensing and
transmitting is cut down remarkably due to the decline of the
amount of data sensed and transmitted.

The contributions of the paper were listed as follow. The
lemmas for the relationship between two adjacent layers, the
optimal number of CH at each layer and the optimal
distribution of CH were presented firstly. In addition, in order
to alleviate the “Hot Spot Problem” as well as reduce the energy
consumption resulted from the flooding during the process of
rotation the roles of CHs, a third role of the Backup Cluster
Head (BCH) and the mechanism to rotate the roles between CH
and BCH were proposed. Subsequently, the Energy-Efficient
Compressive Sensing-based clustering Routing (EECSR)
protocol which was a combination of the merits of the
Clustering strategy and the CS-based scheme was presented.
Finally, extensive simulation experiments were conducted to
evaluate its energy performance. Comparisons with the existing

Clustering algorithms and the CS-based algorithms verified the
EECSR’s effect on improving the energy efficiency and
extending the lifespan of WSNs.

The reminders of the paper were organized as follow.
Section II introduced the related works. The preliminaries was
presented in Section III, which was followed by the theoretical
basis of the proposal in Section IV. Subsequently the
Energy-Efficient Compressive Sensing-based clustering
Routing (EECSR) protocol was proposed in Section V and it
was evaluated by simulation in Section VI. Finally the
conclusion was drawn and some future directions was pointed
out.

II. RELATED WORKS

Recent years have witnessed numerous strategies in order to
improve the energy efficiency and prolong the lifespan of
WSNs. Most of them adopted the Clustering strategies which
divided the whole network into logical hierarchical topology.
Through clustering, simple aggregation operations can be
conducted by CH, which helps to cut down the energy
consumption resulted from intra-cluster communication. In
addition, the rotation of the roles of the sensor nodes were
utilized to balance the energy consumption among the whole
network. For example, LEACH (Low-Energy Adaptive
Clustering Hierarchy)[20] proposed the Clustering schemes for
the first time to improve the energy efficiency. It selected the
Cluster Head randomly. In PEGASIS (Power-Efficient
Gathering in Sensor Information Systems)[21], the nodes took
turns to act as CHs according to a certain network logical
topology. In some scenarios, the CHs selection process was
controlled according to some predefined thresholds. For
example, the similarity among nodes and the node degree are
often regarded as parameters for CH election according to the
specific application scenarios. There were several related
examples. For instance, a double-threshold mechanism, namely,
the Hard Threshold (HT) and the Soft Threshold (ST), were
used in TEEN (Threshold sensitive Energy Efficient sensor
Network protocol)[22] which was applied in the hard real-time
scenario. Similar classic Clustering strategies included the
DHAC (Distributed Hierarchy Aggregation Clustering) which
generated the CHs according to the similarity matrix generated
by the node input, LEACH-ERE[23] which considered the
expected residual energy through the fuzzy-logic to further
improve the energy efficiency, etc. Although the energy
efficiency has been improved by the above schemes, the
Nyquist sampling theorem pattern has prevented the further
improvement of energy efficiency. The redundancy resulted
from the data acquisition leads to a waste of energy.

The Compressive Sensing theory provided a new paradigm
for the data collection of WSNs. A large number of
energy-efficient strategies which were based on Compressive
Sensing theory have emerged in recent years. With the help of
Compressive Sensing theory, the data redundancy resulted
from the Spatial-temporal correlation can be reduced
remarkable, which brings in a huge improvement of energy
efficiency of WSNs.
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Recent years have witnessed extensive attentions paid to the
CS-based strategies which aimed to improve the energy
efficiency. Zheng et, al. provided the mathematical foundation
to acquire the measurement in a random-walk-based manner[24].
It was obtained that a K-sparse signal can be reconstructed via
the l1-norm minimization decoding algorithm when it took

))/log(( knkOm  independent random walks whose length
was )/( knOt  steps in a random geometric network with n
nodes. The simulation results demonstrated its effectiveness.
Similar strategy included another proposal which adopted a
random walk-based algorithm and a kernel-based strategy[25].
These schemes were finally proved to be able to not only
significantly reduce the communication cost but also combat
the unreliable wireless link under various packet losses. Quan
et, al. proposed a Neighbor-Aided Compressive Sensing
(NACS) scheme for the Spatial-temporal correlated WSNs[26].
The measurements were sent to a randomly and uniquely
selected neighbor to distribute the energy consumption equally.
Besides, the NACS integrated the Structured Random Matrix
(SRM) with the Kronecker Compressive Sensing (KCS) to
improve the recovery performance. Xiang, et al. presented a
data aggregation scheme which exploited the Compressive
Sensing to achieve both the energy efficiency and the recovery
fidelity in a arbitrary WSNs[27]. The diffusion wavelet was used
for getting a suitable sparse basis which characterized the
Spatial-temporal correlation well. The strategy was finally
converted into a mixed integer programming formulation
solved by a greedy heuristic algorithm. The corresponding
performance was evaluated via extensive simulations on both
the real data set and the synthetic data set. Yang, et, al.
proposed a Compressed Networking Coding based Distributed
data Storage (CNCDS) scheme which aimed at achieving high
energy efficiency via reducing the total amount of
transmissions totNt and that of receptions totNr during
communication[28]. According to the Random Geometric
Graphs (RGG) theory, the expressions of totNt and totNr were
obtained to theoretically verify the energy efficiency of
CNCDS. The simulation results shown that the values of totNt ,

totNr , and the CS recovery Mean Squared Error (MSE) were
reduced by 55%, 74%, and 76% respectively. Besides, an
adaptive CNCDS was further presented according to the
expressions and the values of totNt , and totNr were reduced by
63% and 32% respectively compared with CNCDS.

Although the CS-based schemes above can improve the
energy efficiency, it was not suitable for the large scale WSNs
very well. To strengthen the scalablity, the CS-based scheme
was integrated with the Clustering algorithm. Luo et, al.
proposed a Compressive Data Gathering (CDG) framework for
the large-scale wireless sensor network for the first time[29]. In
their proposal, the scenario where lots of sensor nodes were
densely deployed was taken into consideration. The total
communication cost was reduced without introducing much
computation or complicated transmission control overhead.
Shen et, al. proposed a nonuniform compressive sensing
scheme which was applied to the real WSNs data set to improve

the energy efficiency via exploiting both data compressibility
and heterogeneity[30]. Although the CS-based Clustering
strategy improved the energy efficiency, the overhead of
Cluster Member increased. To overcome the shortage, Xie et, al.
proposed an energy-efficient clustering method which was
integrated with the hybrid CS theory[31]. In their scheme, the
data acquisition of intra-cluster adopted the Raw Data
Gathering (RDG) and that of inter-cluster applied the
Compressive Data Gathering (CDG). Zhao et, al. presented a
Treelet-based Clustered Compressive Aggregation (T-CCDA)
in which the treelet transform was adopted as a sparsification
tool [32]. Besides, a novel Clustering routing was proposed to
improve the energy efficiency further by taking advantage of
the correlation structures which was based on the T-CCDA
scheme. To provide a high energy efficiency for the large scale
WSNs, the Hierarchical Compressive Data Gathering (HCDG)
strategy was proposed. Lan, et, al. proposed a
Compressibility-Based Clustering Algorithm (CBCA) [33]

where the network topology was converted into a logical chain
which was similar to PEGASIS[21]. Li et, al. proposed a novel
energy-efficient Compressive-Sensing-based Data Gathering
(CS-DG) algorithm to cut down energy consumption in the
clustered wireless sensor network and exploit a better
reconstruction accuracy[34]. The random sampling and random
walks were utilized to get each measurement by summing a few
sensory data up. They proved that a constructed NM  sparse
binary matrix was equivalent to the adjacency matrix of an
unbalanced expander graph when some conditions were met.
Yan et, al. presented an optimal Compressed Data Gathering
(CDG) framework [35] which adopted a Diffusion Wavelet
Transform Matrix (DWTM) as the sparse representation of the
compressed data. Besides, they proposed a novel Measurement
Matrix Optimization Algorithm (MMOA) for the process of
acquiring the compressed data. Except for the strategies above,
other energy-efficient Compressive Sensing-based Clustering
schemes have emerged recently, such as the ST-HDACS[36], the
chain-based data gathering protocol[37], and the adaptive
adjustment of compressed measurements[38].

The above CS-based Clustering strategies have improved the
energy efficiency to some extent. However, all of them
improved the energy efficiency by reducing the energy
consumption resulted from data redundancy. In fact, the energy
balance should also be taken into consideration to improve the
energy efficiency further. Therefore, in this paper both the
energy balance and the energy overhead of cluster formation
were considered. Besides, the merits of both the Compressive
Sensing and Clustering were utilized to improve the energy
efficiency.

III. PRELIMINARIES

In this section, the concept of Compressive Sensing and its
components which consist of the K-sparse signal, the Restricted
Isometry Property (RIP), and the reconstruction algorithm were
presented in detail. Subsequently, the system model and some
assumptions were presented.
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A. Concept of Compressive Sensing
Compressive Sensing is a kind of new paradigm which

applies the signal sparsity, the mathematical statistics theory,
and the optimization theory to the process of signal acquisition.
It was firstly proposed by D. Doboho, E. Candes and R.
Baraniuk who presented the framework for CS as the
foundational achievement[16]. According to the Nyquist
sampling theorem, the sampling frequency should be at least
twice as much as the maximum frequency of the source signal.
On the contrary, the CS theory makes it possible for the sparse
signal or the signal which is sparse in a certain transform
domain to be precisely recovered with much lower sampling
frequency, which brings in a remarkable reduction of energy
consumption. Thus the CS theory makes the sampling
frequency escape from the dependence on the signal bandwidth.
Besides, different from the traditional data aggregation
technology, the signal can be sampled and compressed at the
same time. Finally, the CS-based data aggregation only need
some add and multiply operations and the complex data
recovery operation is performed by the Sink whose processing
capacity is relatively limitless. All the features above make the
CS-based sampling suitable for the wireless sensor networks.

B. Components of the Compressive Sensing Theory
(1) K-sparse Signal

Suppose a wireless sensor network consisting of N nodes, the
data acquired by node i are denoted as )1( Nix i  . Then the
source data set collected by the wireless sensor network can be
denoted as 1 2( , ... )nX x x x x . The signal is called to be a
K-sparse signal, if for a sparse transform basis Ȳ, there exists a
coefficient matrix  which meets the following condition

  Xs.t.K|||| 0 ˈ (1),
where  represents the sparse coefficient matrix and 0||||
denotes the number of non-zero elements in the matrix  .
(2) Restricted Isometry Property (RIP)

To obtain the valid information from the K-sparse signal, a
M N measurements matrix  is needed. Then the
measurements can be represented as Xy  , where X .
The foundation of Compressive Sensing lies in the fact that the

1M measurement vector is finally obtained through a
properly-designed measurement matrix. Since NM  is
always established, the rate of compressive sensing is far less
than that of the Nyquist sampling theory.

To precisely recover the source data from the measurements,
the measurement matrix  is needed to satisfy the Restricted
Isometry Property (RIP). Namely, for any signal x , if there
exists a parameter )10(  kk  which satisfies the following
inequality

2 2 2
2 2 2(1 ) || || || || (1 ) || ||k k

M Mx x x
N N

      (2),

then the measurements matrix  satisfies the RIP. As for the
measurement matrix, the row stands for the number of
measurements and the column denotes the number of sensor
nodes respectively. Generally speaking, the relationship

between M and K needs to meet the following condition,
NKM log (3).

It dedicates that the CS theory brings in a remarkable reduction
of data acquired and transmitted.
(3) Reconstruction Algorithm

For the measurements collected by the WSNs, RIP is a
sufficient condition for them to be accurately recovered. Via
the measurement matrix  , the measurement y can be
obtained as the following expression,

Xy  (4).
The source data X can be precisely recovered by solving the
following l0-norm optimization problem,




yts ..|||| 0min (5).

Therefore the source signal can be denoted as following
expression

'' X (6).
where ' stands for the solution of the l0-norm problem.

However, it has been proven that the solution of l0-norm is a
NP-Hard problem owing to the demand for listing all the
possible combinations of vector ߠ . When the dimension
becomes larger, it is harder to obtain the optimal solution.
Fortunately Donobo pointed out that the optimal solution of
l1-norm can approximately replace that of the l0-norm problem
if the measurement matrix  meets RIP[16]. Therefore the
recovery of the source data can be turned into the following
l1-norm convex optimization problem,

  yts ..||||minarg 1
* (7).

Then the following Expression (8) is the approximate value of
the source data,

** x (8).

C. System Model and Some Assumptions
(1) Energy Consumption Model

The sensor node depletes the energy when it senses, receives,
and transmits data. There are different operation modes which
have large influence on the energy consumption for the sensor
node. Generally speaking, there are four modes for the sensor
node, namely, the IDLE, TRANSMIT, RECEIVE, and SLEEP
modes. However, most of the energy is consumed for
transmitting and receiving data. Shih et al. pointed out at the
Mobicom meeting in 2002 that most of the sensor’s energy was
consumed in the communicating module, and the energy
consumption in the SLEEP mode was usually negligible[39]. So
the energy efficiency can be largely improved if the
communication cost is cut down.

In this paper, the first-order radio model[10][11][31] was adopted
to describe the energy consumption for a node’s transmission.
Namely, the energy for a sensor node to transmit a k-bits packet
to another node over distance d equals

)(  dEke ampelectx  (9),

where elecE is the energy consumed in the transmitter circuit,

amp is the transmitter amplifier and (2 4)   denotes the
propagation loss exponent. In detail,  is 2 for free space and
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increases to 4 when encountering obstacles. On the other hand,
to receive a k-bits packet, the corresponding energy dissipation
was shown as Expression (10)

elecrx kEe  (10).
(2) Network Topology

Fig.1 Network topology utilized in this paper
In this paper, assume a sector-shaped network was divided

into k layers. The central angle of the sector was denoted as  .
This topology was similar to what was adopted in References
[11][37]. The Sink was deployed at the center and each
ring-shaped area was d in width, just as shown in Fig.1.
Without loss of generality, the sector region can be either an
absolute monitor area or just a part of a larger general region.
Therefore, the conclusion on the optimal cluster size in section
IV can be also applied to the region of any shapes, such as,
rectangle, square, triangle, and so on.
(3) Assumptions and Symbols

For the sake of simplicity, some assumptions and symbols
were introduced as follow.

All the nodes transmit the data at the fixed power, therefore
the transmission radius is also constant. In this paper, the
transmission radius was assumed to be a. None of the nodes can
be replenished once deployed. On the contrary, the Sink has
infinite energy supply and process capacity.

The nodes were independently and evenly distributed in the
network topology, generally speaking, the distribution follows
the Poisson Point Process[40][41][42][43].

Each sensor node kept stationary once deployed and was
accurately aware of its own location and the coordinate with the
help of GPS or any other location technologies[44][45]. The
location can be used for selecting and announcing the
information on the Cluster Head.

The data were generated at the same rate by all the nodes,
thereby the amount of data which the network generated was
proportional to the area of the network topology.

IV. THEORETICAL BASIS

In this section, the theory of the optimal cluster size was
proposed. Some lemmas and the corresponding proofs were
presented firstly. Subsequently, the role of the Backup Cluster
Head (BCH) and the rotation mechanism between the Cluster
Head and the Backup Cluster Head were proposed.

A. Lemmas
Lemma 1 Assume the number of clusters at the kth layer is
kN and that of the clusters at the (k-1)th layer is denoted as

1kN , they need to meet the condition

kk NMdkN  )1(2
1  in order to keep the energy

consumption of the two adjacent layers approximately equal.
Proof: In order to keep the energy consumption of all the

layers at an equilibrium state, the following expression should
be met,

11
22 )32(21)12(21   kkkk MNNdkMNNdk 

(11).
Therefore the following relationship between kN and 1kN

can be obtained,
kk NMdkN  )1(2

1  (12).
In Expression (12), the energy consumption for both the

transmitter and receiver between the two adjacent layers was
taken into consideration. Therefore, the energy used for
transmitting data from the Cluster Members to their
corresponding Cluster Heads also needs to be taken into
account in order to maximize the network lifetime. According
to Lemma.1, the values of energy consumption of all the layers
appear to be equivalent, so the energy consumption of the
whole topology is minimized if that of the outermost layer is
minimum.

Lemma.2 On the kth layer of the network topology, the
mean hop count for each Cluster Member is kNa 2 , where a
denotes the constant transmission radius for each sensor node.

Proof: The number of the clusters at the outermost layer is
denoted as kN , then the optimal size of the cluster is
established as follow,

kNdk ))12(21( 2 (13).
According to the assumptions, the transmission radius of each
sensor node was fixed to be a. Therefore the average number of
the transmission range is

22 ))12(21( adk  (14).
The mean hop count for each sensor node is obtained as
Expression (15)

22

2

))12(21(
))12(21(

adk
Ndk k







(15).

After simplification, Lemma.2 is proved.
Lemma.3 The number of clusters at the kth layer to

minimize the energy consumption is

MkdaN k  )12(
2
1*  , where d, a, and M are the width of

the kth layer, the transmission radius of each sensor node, and
the amount of measurements that each cluster head needs to
transmit in each round respectively.

Proof: For the sake of simplicity, the energy consumption of
the kth layer is denoted as kC which consists of the
intra-cluster and the inter-cluster energy consumption.
According to the energy consumption model in Section III, the
energy consumption for per unit packet is proportional to the
square or even fourth power of the transmission distance.
Besides, according to the assumption, the node transmits data
with the constant transmission radius which makes ߙ equal to 2
in this paper. Therefore the hop count is adopted to replace the
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square of transmission distance to make the analysis briefer.
Subsequently the value of kC can be established as follow,

kkkk MNNaNdkC  )())12(21( 22  (16).
The derivative of kC can be obtained as follow

MNadkC kk  )1()12(21 222'  (17),

therefore when Expression MkdaN k  )12(
2
1*  is met,

the energy consumption of the kth layer is minimum.
Lemma.4 Let Sinkkd  denote the distance from the node lying

in the kth layer to the Sink, the energy consumption of each

cluster is minimized if condition  dkd Sinkk 2
sin)12(  is

met, which makes the Cluster Head distribution optimal.

Fig.2 The optimal location of CH
Proof: As shown in Fig.2, assume the area of the kth layer

equals to the size of a cluster for the sake of convenience. The
Cluster Head lies in the location which is x far away from the
Sink. Besides, assume another node which is randomly
distributed at the point which is a far away from the Cluster
Head. It acts as a Cluster Member. Obviously the location of the
CH makes the energy consumption minimal when meeting the
condition that the whole distance of all the CMs to the
corresponding CHs should be kept minimal to cut down the
energy consumption as much as possible. The square of the
distance from an arbitrary Cluster Member to the
corresponding Cluster Head is denoted as below,

cos2222 xrrxa  (18).
Hence, the sum of the square of the distance from all the

CMs to the corresponding CH in one cluster can be obtained as
follow,

drdxrrxa kd
dk 

 )cos2( 22
)1(

2
2

2    (19).

Finally, the following Expression can be obtained,
32222 )133(3

2
sin)12(2 dkkxdkdxa   (20).

The conclusion that  2a is minimal when

 dkx
2

sin)12(  is met can be drawn. According to the

energy consumption model, the energy consumption can be
minimized when Expression (20) is established.

B. Ratio of Energy to Distance
As for the traditional clustering algorithm, the Cluster Head

bears a heavier traffic burden than the Cluster Member.

Therefore a CH dissipates energy faster than its corresponding
CMs. In order to achieve the energy consumption balance, the
mechanism of rotating the role of the sensor node was adopted
in the paper. The roles of the sensor node were rotated
periodically to alleviate the “Hot Spot Problem”. In the phase of
rotation, the candidate exchanges message to become CH via
broadcast. Apparently, the large amount of the broadcast packet
leads to the quick dissipation of energy and the termination of
network lifespan.

In order to reduce the energy consumption resulted from the
Cluster Heads selection, the concept of a ratio of the residual
energy to the distance was proposed in this paper. It represented
the ratio of a node’s residual energy to the distance from itself
to the corresponding Cluster Head. For the sake of briefness, it
was denoted as dEr  . In this paper, its mathematical definition
was presented as follow.

CHsresdE dEr   (21),
where resE and CHsd  represented the residual energy of the
sensor node and the distance from itself to the corresponding
Cluster Head respectively.

C. Backup Cluster Head
In order to avoid exhausting the energy of the Cluster Head

ahead of time owing to its heavier energy consumption burden,
the mechanism of rotating the role of the Cluster Head was
adopted to make the energy consumption more evenly.
Compared with the traditional clustering algorithm, a third role
which is called the Backup Cluster Head (BCH) was presented
in this paper in addition to the roles of the Cluster Head and the
Cluster Member. Specifically, the node with the second largest
value of E dr  was selected as the Backup Cluster Head by the
present Cluster Head. The value and ID of the Backup Cluster
Head were kept in the present Cluster Head’s memory. Besides,
the Backup Cluster Head was informed its role by the present
Cluster Head via unicast.

V. ENERGY-EFFICIENT COMPRESSIVE SENSING-BASED
CLUSTERING ROUTING (EECSR) PROTOCOL

A. Introduction of the EECSR Algorithm
The whole network topology was modeled as an undirected

graph  EVG , , where the vertex set V consisted of all the
sensor nodes as well as the Sink and the edge set E was
composed of the active wireless link which connects any two
nodes in set V . For any two nodes iv and jv in the set V , the
wireless link was active if the following condition was
established,

avv ji  || (22),

where || ji vv  denoted the Euclidean distance between nodes

iv and jv .
Once the Sink obtains the number of clusters at each layer, it

will determine the optimal Cluster Head distribution.
Subsequently, the Sink broadcasts the Cluster Head
information to all the Cluster Members. Generally speaking,
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the broadcast contains the optimal location of the Cluster Heads
and the corresponding layer ID.

The algorithm in this paper adopted the Compressive
Sensing theory and there were two kinds of data collecting
modes. Specifically, the intra-cluster data collection and
inter-cluster data collection coexisted in the whole network
topology. The intra-cluster data were collected via
Compressive Data Gathering (CDG) mode and the
compressed data were transmitted to the upstream CHs via
“hop-by-hop” mode. Therefore, each cluster acquired the
source data via CDG mode independently. And the
compressed data were transmitted among the CHs without
any further process to the Sink. As for the cluster consisted
of isolated node, it collected the data via RDG mode. Since
the whole large scale topology was divided into small
topology, it provided a higher Scalability. When the Sink
received the data from each cluster, it conducted
reconstruction algorithm.

B. Details of the EECSR Protocol
In this section, the Energy-Efficient Compressive

Sensing-based clustering Routing (EECSR) protocol was
detailed. On the whole, it included three main phases, namely,
the cluster formation phase, the spanning tree construction
phase and the data acquisition phase. The generation and the
announcement of the Cluster Head, and the process of the
Cluster Member’s choosing the optimal Cluster Head happened
in the clustering phase. The spanning tree construction phase
generated a shortest path from the Cluster Heads to the Sink. As
for the data transmission phase, the data collected by the sensor
nodes were transmitted to the Sink through "hop-by-hop”
mode.
(1) Cluster Formation Phase

Once the Sink got the values of the parameters, namely, d, a,
k, and M, it calculated the optimal number of clusters at each
layer basing on Expression (17). Subsequently, the Cluster
Heads of each layer were selected according to the optimal
number of Cluster Head at the ( 1,2, ... , )ith i k layer and the
number of Cluster Head was determined to be

),...,2,1( kiN i  . Specifically, the Sink announced all the
information about the optimal number of CH and the optimal
Cluster Head distribution to all the sensor nodes in the form of
broadcast. Once obtaining the broadcast from the Sink, the
sensor node calculated the ratio of the residual energy to the
distance and kept it in its memory. Subsequently, each node
flooded a type of packet (HELLO) which contained the Cluster
Head ID and the value of dEr  to select the optimal Cluster
Head. The node compared the ratio with its own when receiving
the HELLO packets. If its own ratio was smaller, the node
chose the node identified by the packet to be CH and forwarded
the packet to its upstream neighbor. Otherwise, it discarded the
packet and generated a new cluster head selection packet.

Repeated the above steps until all the sensor nodes joined the
clusters. For the node who has not received any HELLO
packets, it selected itself to be the Cluster Head to form an

isolated cluster which only contains itself.
At the end of each round, the Cluster Head compared its

own ratio E dr  with that of the Backup Cluster Head, it
would hand over the role of the Cluster Head to the Backup
Cluster Head if its own ratio was smaller than that of the
Backup Cluster Head. In this manner, the rotation happened
between the Cluster Head and the Backup Cluster Head to
reduce the rotation overhead. After the Backup Cluster Head
received the hand-over message from the Cluster Head, it
broadcasted to inform all the Cluster Members. Therefore it
turned to the next cluster formation phase. At the same time,
the new Cluster Head generated the new Backup Cluster
Head basing on the ratio of the Cluster Members.
(2) Spanning Tree Construction Phase

Once all the Cluster Heads have been selected, the backbone
routing tree needed to be constructed. The vertexes of the
backbone routing tree consisted of all the Cluster Heads and the
Sink. For the sake of simplicity, the concept of sub-graph was
presented in this section. Suppose all the Cluster Heads
constituted the vertex set CHV , then the sub-graph introduced

by CHV and the Sink was denoted as ),(][ ''' EVVG  . In the

sub-graph ][ 'VG , the set 'V was the union of CHV and }{Sink ,

namely, }{' SinkVV CH  , and edge set 'E consisted of the
logical paths from the Cluster Heads to the Sink. It was obvious
that the sub-graph ][ 'VG was a kind of complete graphs. The
Shortest Path Tree (SPT) can be introduced by the sub-graph

][ 'VG and then the backbone routing tree was established.
(3) Data Acquisition Phase

The CH generated the pseudo-random seed which was used
for generating the sub-measurements matrix and sent it to its
CMs. Subsequently, the CMs generated the sub-measurement
and each cluster acquired the data via the CDG mode according
to the sub-measurement. As for the isolated cluster, it collected
the data via RDG mode. After intra-cluster data acquisition, all
the data were sent to the Sink through the backbone routing tree.
Besides, the pseudo-random seed was also sent together with
the compressed data to the Sink.

Once the backbone routing tree was constructed, each
Cluster Head had the whole information about the backbone
routing tree. The intra-cluster data acquisition via CDG mode,
each CM processed the data via add or multiply operations and
then sent them to its corresponding CH. Subsequently the CHs
forwarded the compressed data to their upstream Cluster Head
towards the Sink. Once received the measurements from the
Cluster Head, the Sink generated the corresponding
sub-measurements according to the pseudo-random seed and
recovered the compressed data through the data recovery
algorithm. For the data transmitted by the isolated cluster, the
Sink can simply decapsulate the packet and obtained the source
data.

VI. SIMULATION AND RESULTS ANALYSIS

In this section, the performance of EECSR was evaluated via
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the simulator NS2. EECSR was a kind of algorithm which
adopted both of the merits of CS-based algorithm and the
Clustering scheme, therefore it needed to be compared with the
CS-based algorithm and the Clustering algorithm in terms of
energy efficiency and the throughput. As for the traditional
Clustering algorithm, there exists much data redundancy
compared with the Compressive Sensing technology. The data
redundancy leads to a waste of energy. Besides, it also makes
the traffic burden of the Cluster Heads much heavier than that
of the Cluster Member, which results in the “Hot Spot
Problem”. Both of the data redundancy and the “Hot Spot
Problem” shorten the lifetime of WSNs to some extent.
However, the EECSR integrated the merits of Compressive
Sensing theory with that of the Clustering algorithm. The
energy consumption resulted from the data redundancy can be
alleviated effectively since the CS theory was adopted. Besides,
the rotation of roles contributed to the energy balance. In this
section, the algorithm EECSR was compared with the LEACH,
TEEN, PEGASIS, and LEACH-ERE which belongs to the
Clustering algorithm in terms of network lifetime and the
throughput.

On the other hand, for the CS-based schemes without
considering the energy overhead of leaf nodes which referred to
CDG in this paper, the waste of energy is resulted from the data
redundancy of the leaf node. In addition, the energy overhead
exists in the process of cluster formation for those schemes
which integrated CS theory with the Clustering strategy and
was denoted as HCDG in some literatures. Although there are
some existing CS-based strategies which were combined with
the Clustering scheme, they did not take the energy overhead
resulted from cluster formation into consideration. Compared
with the existing CS-based algorithm, EECSR was integrated
with the Clustering algorithm. Besides, it not only considered
the energy cost for cluster formation, but also presented the
ratio of the residual energy to the distance and the role of the
Backup Cluster Head and the corresponding rotation
mechanism between CH and BCH. In addition, the optimal
cluster size and the optimal Cluster Head distribution were
obtained to balance the energy consumption. So it can reduce
the traffic burden of the Cluster Heads and balance the energy
consumption of WSNs at the same time. Therefore, EECSR
also needed to be compared with Clustering strategies as well
as the existing CS-based algorithms, such as CDG and HCDG,
to evaluate its effect on reducing the data redundancy.
Therefore this section also shown the comparisons with
PEGASIS, the CDG strategy and the HCDG strategy in terms
of the reduction ratio of transmission[31].

In this section, all the sensor nodes were randomly
distributed in a 100100 square area and the Sink was
deployed at the center of the area with the coordinate )0,0( .
The value of d was set to be 20, therefore the value of k equaled
3. Since the Sink located at the center of the network topology,
the value of  was 2 . In order to comprehensively evaluate
the energy efficiency of EECSR, two kinds of experiment
scenarios were adopted, namely the scenario with changeable
number of the sensor nodes and that with constant number of

the sensor nodes. For the sake of convenience, they were
denoted as scenario 1 and scenario 2 respectively. In scenario 1,
the number of the sensor nodes varied from 100 to 400 with the
step 100 and the results of it were compared with CDG and
HCDG. In scenario 2, the number of the sensor node were fixed
to be 200 and the results were compared with the traditional
clustering algorithm, such as LEACH, PEGASIS, TEEN, and
LEACH-ERE. To make the comparison more conspicuous, the
compression ratio MN was proposed in this section. In
the experiment, the value of ratio was set to be 5 or 10 and it
met the demand of the precision for data recovery[25][43].

Fig.3 The reduction ratio of transmission when 5

Fig.4 The reduction ratio of transmission when 10
Figs.3-4 shown how the reduction ratio of transmission

varied with the number of the sensor nodes when 5 and
10 respectively. Compared with the Clustering strategy

without compressive sensing technology which was PEGASIS
in this paper, the amount of data transmission was reduced by
69% and 58.3% when the transmission ratio were 5 and 10
respectively. When compared with the CDG scheme, the
proposal in the paper can achieve the reduction ratio to be
19.5% and 15.4% when ߩ equaled to 5 and 10 respectively. In
addition, the amount of data transmission was reduced by
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17.4% and 14.2% compared with the HCDG scheme when ߩ
equaled to 5 and 10 respectively. Therefore the conclusion that
EECSR algorithm can effectively reduce the energy
consumption caused by the cluster formation phase can be
drawn. Besides, the comparisons of Figs.3-4 shown that the
reduction ratio of data transmission of EECSR can keep steady
and be free from the influence of the increase of the
compressive ratio. Therefore the EECSR algorithm is steady
and has good performance in improving the energy efficiency.

Fig.5 The number of nodes alive when 5

Fig.6 The number of nodes alive when 10
Figs.5-6 shown the comparisons of the number of nodes

alive when 5 and 10 respectively. The simulations
were conducted with the constant number of sensor node being
100. EECSR was compared with the traditional clustering
protocol, such as the LEACH, the PEGASIS, and the TEEN.
Besides, to verify the advantage of the proposal of the paper,
EEREG was also compared with the LEACH-ERE which was
one of the state-of-the-art energy-efficient strategies. AS was
shown in Figs.5-6, the curves of LEACH, PEGASIS, TEEN,
and LEACH-ERE kept the same with different compressive
ratios because the CS was not adopted. On the contrary, the
compressive ratio played an important role in the network

lifetime for EECSR because the CS theory was utilized to
reduce the data redundancy. Besides, it can be easily obtained
that the amount of traffic was reduced with the increase of the
compressive ratio. Therefore the network lifespan extended
with the increase of the compressive ratio. Besides, it was also
easily obtained that the network lifetime did not linearly vary
with the compressive ratio strictly. Since the hybrid
compressive sensing theory was adopted in EECSR, the data
transmission among the intra-cluster did not decrease linearly
with the compressive ratio.

Fig.7 The throughput comparison when 5

Fig.8 The throughput comparison when 10
Figs.7-8 shown the throughput comparisons when 5 and

10 respectively. It was clear that EECSR can largely
reduce the amount of the traffic flow compared with the
Clustering protocol, such as LEACH, PEGASIS, TEEN, and
LEACH-ERE. It is obvious that the compressive sensing mode
contributed to cutting down the data redundancy. Besides, Fig.8
further confirmed that the energy consumption burden
decreased with the increase of the compressive ratio. The
amount of data transmission decreased, therefore the energy
consumption for transmission was reduced and the network
lifetime was extended.
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VII. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

A. Conclusions
The energy constraint has been one of main challenges

facing the traditional WSNs for a long time. The “Hot Spot
Problem” leads to the early termination of the network lifetime.
The broadcast used for rotation of CHs also leads to a waste of
energy. On the other hand, the Spatial-temporal correlation
during the process of data acquisition makes matters worse. In
this paper, the Clustering strategy was integrated with the CS
theory to reduce the energy consumption resulted from the
Spatial-temporal correlation. Besides, the Backup Cluster Head
and the rotation mechanism was proposed to cut down the
energy depletion caused by the broadcast during Cluster Head
rotation. In addition, the optimal cluster size, the optimal
Cluster Head distribution were proposed to further improve the
energy efficiency. Subsequently, the Energy-Efficient
Compressive Sensing-based clustering Routing (EECSR)
protocol was presented. Finally, the EECSR was evaluated via
the network simulator NS2 in terms of reduction ratio of
transmission, network lifetime, and the throughput. The
simulation results shown that the EECSR algorithm can
effectively save energy and extend the network lifetime.

B. Future Research Directions
Since the temporal correlation exists in the data collected by

the Sink, the data acquired in the adjacent time slots presents
some similarity. Therefore, the predictive coding theory can be
combined to reduce the energy consumption further. Via
adopting predictive coding, the data acquired previous can be
utilized to predict the later data, thus reduce the amount of data
acquired and achieve high energy efficiency. As far as we know,
there have not been any papers aiming at improving energy
efficiency of WSNs via integrating with the predictive coding
theory. Furthermore, the predictive coding can also be
integrated with the CS theory to reduce the energy consumption
resulted from the Spatial-temporal correlation.
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