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ABSTRACT: (249/250 words max) 

Purpose: To develop and assess a method for acquiring co-registered proton anatomical and 

hyperpolarized 129Xe ventilation MR images of the lungs with compressed sensing (CS) in a single 

breath-hold.  

Methods: Retrospective CS simulations were performed on fully sampled ventilation images 

acquired from one healthy smoker to optimize reconstruction parameters. Prospective same-breath 

anatomical and ventilation images were also acquired in five ex-smokers with an acceleration 

factor of 3 for hyperpolarized 129Xe images, and were compared to fully sampled images acquired 

during the same session. The following metrics were used to assess data fidelity: mean absolute 

error (MAE), root mean square error (RMSE) and linear regression of the signal intensity between 

fully sampled and under-sampled images. The effect of CS reconstruction on two quantitative 

imaging metrics routinely reported (percentage ventilated volume %VV and heterogeneity score) 

was also investigated. 

Results: Retrospective simulations showed good agreement between fully sampled and CS-

reconstructed (acceleration factor of 3) images with MAE (RMSE) of 3.9% (4.5%). The 

prospective same-breath images showed a good match in ventilation distribution with an average 

R-squared of 0.76 from signal intensity linear regression and a negligible systematic bias of +0.1% 

in %VV calculation. A bias of -1.8% in the heterogeneity score was obtained. 

Conclusion: With CS, high quality 3D images of hyperpolarized 129Xe ventilation (resolution 

4.2x4.2x7.5 mm3) can be acquired with co-registered 1H anatomical MRI in a 15 s breath-hold. 

The accelerated acquisition time dispenses with the need for registration between separate breath-

hold 129Xe and 1H MRI enabling more accurate %VV calculation.  

 

Key Words: hyperpolarized 129Xe gas, lung MRI, compressed sensing 
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INTRODUCTION 

Lung ventilation MRI with hyperpolarized (HP) noble gases (3He and 129Xe) provides high spatial 

resolution images of inhaled gas distribution within the lungs. The technique has been shown to 

be sensitive to different obstructive lung diseases, e.g. chronic obstructive pulmonary disease (1-

3), cystic fibrosis (4,5) and asthma (6-8). The acquisition of 1H MR images of the lung is usually 

performed in the same MRI session in order to observe lung anatomy and structure, but also to 

delineate the lung cavity for the calculation of the commonly reported percentage ventilated 

volume (%VV), which is the percentage of the thoracic cavity volume containing HP gas. Both 

structural and ventilation images are usually obtained in two separate breath-holds and therefore a 

registration step is required to align the two set of images (3). We have previously demonstrated 

that same-breath acquisition of both 1H structural and HP gas ventilation MRI (9) provides a more 

robust method to calculate %VV (10). This approach has been applied to HP 3He ventilation 

images with compressed sensing (CS) to further shorten the image acquisition time (11), which is 

important for patients with lung pathologies that make sustained breath-hold challenging. With the 

limited supply and rising cost of 3He gas, 129Xe provides a cost-effective alternative to 3He (6). 

But due to its lower gyromagnetic ratio, lower bandwidths are required to obtain reasonable SNR, 

which increases the acquisition time. As a result, same-breath whole lung coverage acquisition of 

HP 129Xe ventilation and 1H anatomical images has been challenging and only recently performed 

using non-Cartesian sampling strategies (12). The purpose of this work is to apply the CS technique 

(13) to accelerate the acquisition of 3D 129Xe ventilation images and enable same-breath 

acquisition of co-registered anatomical 1H images. Additionally, the effect of CS reconstruction 

on two quantitative imaging metrics routinely reported (%VV and heterogeneity score Hscore) is 

also investigated.  

METHODS 

A fully sampled (FS) 3D HP 129Xe ventilation dataset was acquired on a GE HDx 1.5T MR scanner 

using 1 L of 129Xe at ~13% polarization from one healthy smoker (male, 31 years, FEV1 z-score>-

1.64) in order to perform retrospective CS simulations and optimize the reconstruction parameters. 

A quadrature flexible transmit-receive 129Xe radiofrequency coil (CMRS, Brookfield, WI) was 

used and imaging parameters were as follows: 3D balanced steady-state free precession (bSSFP) 
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pulse sequence (14), 96x78x32 matrix, FOV = 40x32.5x24 cm3, TE/TR = 3.6/7.6 ms, bandwidth 

= ±8.06 kHz, scan time of 19 s. An anatomical 1H image was acquired in a separate breath with a 

fast spoiled gradient recalled sequence (SPGR) with the same resolution, FOV = 40x40x24 cm3, 

TE/TR = 0.6/1.9 ms, bandwidth = ±83.3 kHz, partial-Fourier encoding in the frequency direction 

and acquisition time of 6 s. The CS simulations were performed in MATLAB (MathWorks, Natick, 

MA) as described previously (15-17) by empirically testing different undersampling patterns for 

acceleration factors (AF) of 2, 3, 4 and 5 with different sets of weights that balance data fidelity, 

image total variation and image sparsity terms in the iterative reconstruction algorithm adapted 

from Lustig et al (13). The CS reconstruction fidelity was evaluated with different image metrics 

including mean absolute error (MAE), root mean square error (RMSE) and pixel by pixel linear 

regression of the signal intensity (images normalized between 0 and 1). The reconstructed and 

reference FS images at the original acquired size were used and a manually segmented ventilated 

volume served as the region of interest for the errors and linear regression calculation. The 

heterogeneity score Hscore (18) was also evaluated. Hscore is an imaging metric of the ventilation 

heterogeneity and was calculated as follows: for each pixel of the ventilated volume, a local 

coefficient of variation of the signal intensity in the surrounding pixels is computed Hi,j,k. Hscore is 

then defined as the mean value of the distribution of Hi,j,k. Finally, %VV was also calculated for 

each AF and for the fully sampled DICOM images using a semi-automated segmentation software 

(19). 

After CS optimization, additional separate breath FS and same-breath CS-accelerated prospective 

images of both 1H and HP 129Xe were acquired from five volunteers, all ex-smokers with a smoking 

history of at least 10 pack years. An AF of 3 (scan time of 6 s) was used for the prospective CS-

accelerated 129Xe ventilated images. The gas mixture consisted of 500 mL of HP 129Xe (with 

recently optimized polarization of ~ 30 % (20)) and 500 mL of N2 mixed into a 1 L Tedlar bag 

before being delivered to the volunteers in the MRI scanner for inhalation and imaging. All in vivo 

MRI experiments were performed under the approval of the UK national research ethics committee 

and the local NHS research office. %VV and Hscore from FS and CS datasets were calculated and 

compared. Bland-Altman analyses were performed to compare FS and CS global Hscore and slice 

by slice %VV for all subjects. SNR was calculated for the FS DICOM images selecting a region 

of interest with fairly homogeneous signal in a middle slice for both lungs. The noise was estimated 

in a region outside the lung and corrected for Rician distribution according to (21). Additionally, 
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CS and FS 129Xe ventilation images were registered to each other to evaluate pixel-by-pixel 

correlation of signal intensity in the ventilated volume. 

RESULTS 

CS simulations 

A good preservation of the ventilation distribution was obtained in retrospectively undersampled 

and CS-reconstructed images. A summary of estimated errors and quantitative imaging metrics is 

presented in Table 1. As expected, increasing the AF from 2 to 5 reduced commonalities with the 

FS reference image, with MAE and RSME increasing from 3.3 to 4.9 %, and 3.8 to 5.9 %, 

respectively. %VV remained consistent with the FS image value of 94.8 % with differences lying 

between 0.6 % (AF=2) and 1.5 % (AF=5). A representative coronal slice of a 129Xe ventilation 

image for each AF is shown in Figure 1 with the corresponding difference map and pixel by pixel 

comparison of signal intensity. Linear regression gave the lowest R2 value of 0.86 for AF=5 and 

highest R2 value of 0.95 for AF=2. Image features such as vessels (appearing black on ventilation 

images) and lung edges were well preserved at low AF but became blurred at higher AF (4 and 5) 

due to the increased low-pass filtering effect of the CS reconstruction and an increasing loss in 

high spatial frequencies of the k-space data. High AF also resulted in more homogeneous signal 

distributions and reduction of Hscore (Figure 2 and Table 1). 

Prospective acquisitions 

The sampling pattern used for the prospective acquisition (AF=3) in the 5 volunteers is shown in 

Figure 2.a. The required total breath-hold time was reduced to 15 s (6 s for anatomical 1H, 6 s for 

HP 129Xe ventilation plus an additional 3 s delay for the scanner hardware to switch between the 

two transmit-receive frequencies). Figure 3 shows an example of the improved alignment between 

129Xe (red) and 1H images (grayscale) due to the same breath acquisition that is facilitated by CS. 

Remaining misalignments of much smaller intensity between 1H and 129Xe scans were observed 

in 2 of the 5 subjects (see example of subject slightly relaxing diaphragm in the period between 

the back-to-back 129Xe and 1H acquisitions in Figure 3.d). However, these misalignments were of 

the order of the partial-voluming effect that is present in the anterior and posterior slices and could 

be improved with better breathing maneuver coaching. A comparison between FS and CS imaging 
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metrics derived for each subject is presented in Table 2. A mean (range) R2 value of 0.76 (0.42, 

0.90) was obtained for the signal intensity linear regression after registration of the ventilated 

volumes. The lowest value of 0.42 obtained for subject 3 can be explained by a higher noise level 

(see SNR in Table 2) and an observed difference in lung inflation level between experiments that 

could be attributed to a sub optimal breathing maneuver performed by the subject. A mean absolute 

difference of 1.3 % in global %VV was found between prospective FS and CS data sets. When 

comparing %VV on a slice by slice basis for all subjects, a Bland-Altman analysis gave a 

negligible bias of +0.1 % with a confidence interval of -6.7 - 6.8 %. However, a consistently lower 

Hscore value (Figure 3 and Table 2) was obtained from the CS reconstructed images as previously 

observed during the CS simulations. A Bland-Altman analysis of Hscore of the 5 subjects was 

performed showing a bias of ~ -1.8 % (-0.9 - 4.4 %). 

DISCUSSION 

We have demonstrated the feasibility of acquiring 3D HP 129Xe lung ventilation images and 

anatomical 1H images in the same breath using compressed sensing. Results showed minimal 

estimated errors in the 129Xe ventilation distribution during CS simulations and a good qualitative 

and quantitative agreement was found between FS and prospective CS datasets for an AF of 3.  

While improving the reproducibility and the calculation of %VV through the benefits of obtaining 

1H and 129Xe images inherently co-registered in the same breath-hold (10), CS also has a negligible 

influence on the derived %VV values. The mean absolute difference of 1.3 % in global %VV 

found between prospective FS and CS data sets is below the previously calculated mean inter-

observer error in %VV calculation (2.3%) when analyzing FS images with the same software (19). 

It is also within the same-day reproducibility confidence interval of %VV measurement (±1.52 %) 

previously reported in Ebner et al (22). Our results are in line with Qing et al. (11) who previously 

reported that CS was a good candidate to accelerate the acquisition of 3He ventilation and 1H 

images in the same breath without compromising image fidelity. The assessment of the 

heterogeneity score Hscore of the ventilation distribution however suggests that the resulting images 

tend to have less high spatial frequency detail than fully sampled images. This systematic 

difference was to be expected and has limited implications due to the fact that Hscore is already 

inherently dependent on MRI sequence parameters, such as image resolution or kernel matrix size 

for local Hi,j,k calculation. Hscore has recently been shown to be an alternative and meaningful 
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complementary marker to %VV for the description of the ventilation distribution in different 

population of patients with pulmonary diseases (23) and using CS for the data acquisition should 

not affect clinical results as long as the same sequence parameters are used between the patient 

groups being compared. The total acquisition time could be further reduced by applying CS to the 

proton images as well (e.g. as in (11)). An acceleration factor of 2 for 1H imaging for example 

(instead of current AF of 1.26 due to partial Fourier encoding) would decrease the total scan time 

from 15 to 13 s. 

With the methods presented here we demonstrate the feasibility of acquiring high resolution 

ventilation images with 500 mL of HP 129Xe which further establishes the suitability of 129Xe for 

clinical imaging and assessment of pulmonary diseases. Further work will focus on the clinical 

application of the technique in patients with lung pathologies. 
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Tables: 

Table 1 

Errors of the different reconstructions for the coronal image for  acceleration factors (AF) of 2 to 5 (MAE: 

mean absolute error) 

AF MAE RMSE Hscore %VV 

1 - - 15.5 % 94.8 % 

2 3.3 % 3.8 % 13.6 % 95.4 % 

3 3.9 % 4.5 % 12.6 % 95.5 % 

4 4.1 % 4.9 % 12.0 % 95.9 % 

5 4.9 % 5.9 % 11.6 % 96.3 % 

 

Table 2 

Summary of whole lung metrics and SNR for each subject imaged with FS and CS (AF=3) 129Xe 

ventilation MRI 

subject 1 2 3 4 5 

%VV (FS) 97.5 % 92.2 % 89.6 % 96.1 % 96.6 % 

%VV (CS) 98.3 % 93.5 % 90.6 % 93.5 % 95.6 % 

Hscore (FS) 14.4 % 20.1 % 21.9 % 17.1 % 17.3 % 

Hscore (CS) 13.4 % 18.2 % 18.0 % 16.7 % 15.6 % 

r2 0.81  0.90  0.42   0.86 0.82  

SNR (FS) 34.3 28.4 20.3 35.2 42.5 

 

Figure captions: 
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Figure 1: Representative slice of reconstructed dataset after retrospective undersampling (top 

row), difference images scaled by a factor 3 for reader’s clarity (middle row) and pixel by pixel 

comparison of whole ventilated lung (bottom row) for different acceleration factors. 
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Figure 2: (a) Undersampling pattern for prospective acquisition (AF=3). (b) & (c): Example slices 

of Hi,j,k maps from FS and retrospective CS with AF = 3 respectively. (d) & (e): Corresponding FS 

and CS Hi,j,k histograms. 

 

Figure 3: Example of unregistered separate breath FS 129Xe ventilation (a) and 1H images (b). The 

misalignment is highlighted in (b) by representing the 129Xe image (red) on top of the 1H image 

(grayscale). (c) & (d): corresponding same breath CS 129Xe and 1H images from the same subject. 

(e) & (f): 129Xe Hi,j,k histograms from FS and CS images. 


