
This is a repository copy of Suboptimal Nocturnal Glucose Control Is Associated With 
Large for Gestational Age in Treated Gestational Diabetes Mellitus.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/142293/

Version: Accepted Version

Article:

Law, GR, Alnaji, A, Alrefaii, L et al. (6 more authors) (2019) Suboptimal Nocturnal Glucose 
Control Is Associated With Large for Gestational Age in Treated Gestational Diabetes 
Mellitus. Diabetes Care, 42 (5). pp. 810-815. ISSN 0149-5992 

https://doi.org/10.2337/dc18-2212

© 2019 by the American Diabetes Association. This is an author produced version of a 
paper published in Diabetes Care. Uploaded in accordance with the publisher's 
self-archiving policy

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 

Suboptimal nocturnal glucose control is associated with large for 

gestational age in treated gestational diabetes 

Authors: Graham R Law1, Alia Alnaji2, Lina Alrefaii2, Del Endersby3, Sarah J 

Cartland2,3, Stephen G Gilbey3, Paul E Jennings4 Helen R Murphy5, Eleanor M Scott2,3 

(1) School of Health and Social Care, University of Lincoln, UK. 

(2) Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and 

Metabolic Medicine , University of Leeds, UK 

(3) Leeds Teaching Hospitals NHS Trust, Leeds, UK 

(4) York NHS Foundation Trust, York, UK 

(5) Division of Maternal Health, St Thomas’s Hospital, Kings College London, UK 

Corresponding author: Professor Eleanor M Scott, LIGHT Laboratories, Level 7, 

Clarendon Way, University of Leeds, Leeds, LS2 9JT; Tel: +44 (0)113 3437762; E-mail: 

e.m.scott@leeds.ac.uk 

Word Count: Abstract: 248; Text: 2,758; Figures: 1; Tables: 2. 

The authors’ academic degrees are as follow: Graham R Law PhD, Alia Alnaji PhD, Lina 

Alrefaii MSc, Sarah J Cartland MB BS, Stephen G Gilbey MD, Paul E Jennings MD, Helen 

R Murphy MD, Eleanor M Scott MD. 

  

Running title: Nocturnal glucose associated with large for gestational age

mailto:e.m.scott@leeds.ac.uk


2 

Abstract  

Objective: Continuous glucose monitoring (CGM) provides far greater detail about fetal 

exposure to maternal glucose across the 24 hour day. Our aim was to examine the role of 

temporal glucose variation on the development of large for gestational age infants (LGA) in 

women with treated gestational diabetes (GDM). 

Research Design and Methods: A prospective observational study of 162 pregnant women 

with GDM in specialist multidisciplinary antenatal diabetes clinics. Participants undertook a 

7-day masked CGM at 30-32 weeks gestation. Standard summary indices and glycemic 

variability measures of CGM were calculated. Functional data analysis was applied to 

determine differences in temporal glucose profiles. LGA was defined as birth weight ≥90th 

percentile adjusted for infant sex, gestational age, maternal BMI, ethnicity and parity. 

Results - Mean glucose was significantly higher in women who delivered an LGA infant (6.2 

vs 5.8 mmol/l P=0.025 or 111.6 mg/dl vs 104.4 mg/dl respectively). There were no 

significant differences in percentage time in, above or below the target glucose range, or in 

glucose variability measures (all P>0.05). Functional data analysis revealed that the higher 

mean glucose was driven by a significantly higher glucose for 6 hours overnight (00h30-

06h30) in mothers of LGA infants (6.0 ± 1.0 mmol/l vs 5.5 ± 0.8 mmol/l p=0.005; 108.0 ± 

18.0 mg/dl vs 99.0 ± 14.4 mg/dl respectively). 

Conclusions: Mothers of LGA infants run significantly higher glucose overnight compared 

to mothers without LGA. Detecting and addressing nocturnal glucose control may help to 

further reduce rates of LGA in women with GDM.                 
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Introduction 

Gestational diabetes mellitus (GDM) is the commonest medical disorder of pregnancy 

affecting 5-18% of all pregnancies (1-3). Periods of maternal hyperglycaemia stimulate fetal 

insulin secretion leading to fetal growth acceleration, fetal fat accumulation and large for 

gestational age (LGA) birthweights (4). LGA substantially increases the risk of preterm and 

instrumental delivery, caesarean section and stillbirth, and difficulties in delivery can lead to 

hypoxic brain damage, shoulder dystocia and permanent disability (5,6). Furthermore, infants 

born LGA are predisposed to developing obesity and type 2 diabetes perpetuating an 

intergenerational cycle of cardiometabolic disease (7,8). Optimising glucose control for the 

prevention of LGA is therefore considered important both for a successful pregnancy 

outcome may potentially benefit longer-term offspring health.  

Current recommendations are that women with GDM should perform self-monitored blood 

glucose (SMBG) testing four times a day, with treatment adjusted to achieve fasting glucose 

targets of ≤ 5.3 mmol/l (≤ 95.4 mg/dl) and one-hour post meal glucose ≤7.8 mmol/l (≤ 140.4 

mg/dl) (9,10). However, even women apparently achieving glycemic targets continue to 

deliver LGA infants (11,12). There are recognised limitations of the current approach to 

intermittently assessing capillary glucose levels. Firstly, the optimal time to post-prandial 

glucose peak varies according to the size and composition of the meal, and so SMBG at 1 or 

2 hours can miss highest peak values (13,14). Secondly, between meal snacks which account 

for 20-25% of total daily energy intake are often not captured. Thirdly, overnight glucose 
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control overnight is not typically assessed. Thus, SMBG is unlikely to fully capture the 

complexity of day-to-day glucose excursions in pregnancy.  

Continuous glucose monitoring (CGM) is increasingly accessible and accurate, providing far 

greater detail about fetal exposure to maternal glucose across the 24 hour day (15,16). We 

previously demonstrated that small differences in CGM glucose levels are associated with 

LGA in pregnant women with Type 1 and Type 2, pre-gestational diabetes (16,17). We have 

developed the application of functional data analysis (FDA) statistical techniques necessary 

to analyse time-series CGM data at a population level to maximise the temporal information 

obtained. In doing so we have been able to illustrate the time points across the 24 hour day 

where variations in glucose control differ in relation to LGA in Type 1 and 2 diabetes 

(16,18). The aim of the present study was therefore to examine whether CGM could be used 

to elucidate the role that temporal variation in glucose levels might play in the development 

of LGA in treated GDM pregnancies. 

 
Research design and methods 

Study design  

This was a prospective observational cohort study of 162 pregnant women with GDM. After 

providing written informed consent, participants undertook a 7 day period of masked CGM at 

30-32 weeks gestation. Maternal demographic and biomedical data was collected (age, 

ethnicity, parity, diabetes treatment, height, weight and BMI) at the start of pregnancy. At the 

end of the pregnancy the following obstetric and neonatal outcomes were recorded; 

gestational age at delivery, infant sex and birthweight. Customised birthweight centiles were 

calculated using the open source gestation network program GROW (GROW@perinatal.org) 

mailto:GROW@perinatal.org
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(19) which adjusts for maternal height, weight, ethnicity, and parity; and for neonatal sex and 

gestational age. LGA was defined as infant birth weight on or above the 90th centile.  

Study participants  

Participants were aged between 18-45 years and had a singleton pregnancy. GDM was 

diagnosed using the UK NICE guideline criteria of fasting glucose ≥5.6 mmol/l (≥100.8 

mg/dl) and/or 2 hour glucose ≥7.8 mmol/l (≥140.4 mg/dl) following a 75g oral glucose 

tolerance test at ~26 weeks gestation (11). All women were managed as per clinical 

guidelines (11,12) to achieve recommended SMBG targets (fasting  ≤ 5.3 mmol/l (≤95.4 

mg/dl); and one-hour post meal ≤ 7.8 mmol/l (≤140.4 mg/dl) prior to inclusion. Women were 

treated stepwise with diet and lifestyle as first-line therapy; with metformin and/or insulin as 

second-line therapy. Exclusion criteria included a physical or psychological disease likely to 

interfere with the conduct of the study, multiple pregnancy, non-English speaking.  

Study oversight 

The study was approved by the Yorkshire and Humber Regional Ethics Committee 

(13/YH/0268). 

Continuous glucose monitoring (CGM) 

The CGM device used was iPro2 (Medtronic) with Enlite sensor (Mean ARD 13.6%; Median 

ARD 10.1% (20). The CGM data obtained by the iPro2 was calibrated by simultaneous 

SMBG using approved and standardised blood glucose meters and test strips (Contour XL, 

Bayer), as per manufacturer’s instructions. Data was downloaded via Medtronic CareLink, 

and exported for analysis. To make full use of the temporal information provided by the 

multiple measures of glucose recorded by CGM, data collected from each participant over the 
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length of time that each sensor was worn (mean 6.3 days) constituted a measurement episode. 

Morning fasting SMBG levels taken over the duration of the measurement episode were also 

collected. 

Summary Statistical Analysis 

We calculated the standard range of summary statistical indices (15-17, 21) including: mean 

CGM glucose levels; Area Under the Curve (AUC); the percentage of time spent within the 

pregnancy glucose target range (3.9-7.8 mmol/L; 70.2-140.4 mg/dl); time spent above 

(>7.8mmol/l; >140.4 mg/dl) and below (<3.9 mmol/l; <70.2 mg/dl) target range; low and 

high blood glucose index (LBGI; HBGI).  Measures of glycemic variability; standard 

deviation (SD) and coefficient of variation (CV) of mean CGM glucose levels were 

calculated. The mean of the fasting SMBG levels were calculated. The difference in means 

was compared using a t-test.  

 

 

Functional Data Analysis   

Each of the glucose values recorded during each of the measurement episodes was assumed 

to be dependent upon (rather than independent of) the preceding glucose levels.  Changes in 

glucose over time were therefore assumed to be progressive, occurring in a trend or sequence 

that could be considered ‘smooth’ (in a mathematical sense) without step changes from one 

measurement to the next. For this reason, sequential glucose measurements from each 

measurement episode were modeled as trajectories by calculating continuous mathematical 
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functions of CGM-derived glucose measurements collected every five minutes throughout 

that measurement episode. These trajectories were modeled using the technique of fitting B-

splines to the repeated measures (16,22). This technique generates a polynomial function that 

describes the curve (or ‘spline’) used to model changes in glucose levels over time for each 

participant, with splines required to pass though measured glucose values at discrete time 

points (called ‘knots’) during each 24 hour period. At each of these knots the spline function 

was required to be continuous (i.e. with no breaks or step changes) so that the function 

remained mathematically smooth.  Knots were placed at 30 minute intervals over each 24-

hour measurement period, with data from measurements recorded during the 4 hours either 

side of midnight (i.e., from 20h00-04h00) repeated at the beginning and end to eliminate 

artefactual edge effects. In this way the splines provided a smooth mathematical function 

describing glucose levels recorded across each measurement episode – hence its name 

‘functional data analysis’. 

Multivariable Statistical Analysis 

Multivariable regression analysis was used to establish the relationship between maternal 

glucose levels and LGA for the functional data analysis generated glucose function. We used 

a directed acyclic graph (www.dagitty.net) to determine the minimally sufficient dataset for 

estimating the direct effect of glucose on LGA. The model adjusted for maternal age, 

ethnicity, parity, maternal BMI, sex and gestational age of the infant as potential confounders 

in the relationship between glucose and birthweight centile. All statistical analyses were 

conducted in Stata (23) and R (24) 

Results 
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CGM data were available for 162 women. Of these, 9 (5%) were excluded because of 

missing data or their CGM monitors had generated insufficient measurements (less than 72 

hours). After excluding these participants, data from 153 singleton pregnancies, comprising 

277,811 individual glucose measurements, conducted over 153 measurement episodes (mean 

of 151 hours/episode), were available for analyses. The participant characteristics of these 

women are shown in Table 1. There were no congenital anomalies, stillbirths or neonatal 

deaths in any of the participants. 14 (9%) participants delivered an infant with LGA, which is 

comparable to the expected background maternity population rate of 10%. The mean (SD) 

gestation at which CGM data was obtained was 31 ±1 weeks. 

Summary Statistical Analysis 

The summary statistical indices of CGM data, calculated separately for women who delivered 

LGA vs. non LGA infants are presented in Table 2. Mean CGM glucose was significantly 

higher in those women who subsequently delivered an LGA infant (6.2 ± 0.6 mmol/l vs 5.8 ± 

0.6 mmol/l p=0.025; 111.6 ± 10.8 mg/dl vs 104.4± 10.8 mg/dl respectively). The mean 

nocturnal CGM glucose (00.00-06.00) was significantly higher in mothers of LGA infants 

(6.0 ± 1.0 mmol/l vs 5.5 ± 0.8 mmol/l p=0.005), with a peak glucose concentration reached at 

02.00-03.00h.  Mean daytime CGM glucose between 06.00 and 24.00 was slightly higher in 

mothers of LGA infants, but the between-group differences did not reach statistical 

significance (6.3 ± 0.6 mmol/l vs 6.0 ± 0.6 mmol/l p=0.058; 113.4 ± 10.8 mg/dl vs 108.0 ± 

10.8 mg/dl respectively). There were no significant differences in any of the other standard 

summary CGM measures, including: time in, time above or time below target range, or 

glucose variability measures between women with and without LGA infants.  
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Mean fasting SMBG was not associated with LGA (5.3 ±1.0 mmol/l in LGA group, vs 5.2 

±0.8 mmol/l in non-LGA group p=0.219; 95.4 ± 18.0 mg/dl vs 93.6 ±14.4 mg/dl respectively)  

Functional Data Analysis 

Figure 1 summarises the temporal differences in glucose profile observed throughout the 24-

hour day in women with LGA infants (as compared to women who did not have LGA 

infants) after applying functional data analysis to CGM data. Mothers who delivered LGA 

infants displayed significantly higher glucose levels during the night from 00h30-06h30 to 

those displayed by mothers who did not deliver LGA infants. There were no statistically 

significant differences observed in daytime glucose levels.  

 
Conclusions 

This is the first study to demonstrate, by analysis of CGM data, that women being treated for 

GDM who give birth to LGA infants, run significantly higher glucose concentrations for 

greater than six hours overnight compared to mothers who don’t have LGA. As this period 

accounts for more than 25% of the 24 hour day this is a considerable period of time in which 

the fetus is, unintentionally, being exposed to higher maternal glucose concentrations, with 

the associated risk of LGA. 

Current SMBG targets are focused on achieving fasting and postprandial glucose control 

during the day whilst awake (11,12). However, by only using these daytime targets, an 

opportunity to optimize glucose control overnight whilst asleep is being missed.  

Although several studies have now explored CGM in GDM very few have examined the 

relationship to LGA. A study of 340 women with GDM , allocating 150 women to CGM and 

the rest to routine clinical care, found that those using CGM had significantly lower infant 
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birthweight (25) . Of the summary statistics calculated from a 24-hour snapshot of CGM data, 

only mean glucose concentration was associated with infant birthweight. A smaller study of 

47 women with GDM with 85 hours of CGM performed at 28-32 weeks gestation found no 

relationship between glucose variability and birthweight, or pregnancy outcomes, but mean 

glucose was not reported (26). Together, these two studies support our findings suggesting 

that mean glucose concentration is more important in understanding increased fetal growth in 

GDM than standard glucose variability measures. Our study extends these findings by using 

functional data analysis, demonstrating that a higher mean glucose is predominantly being 

driven by suboptimal nocturnal glucose control with no significant difference in glucose 

during the day. 

Having established that CGM is able to detect differences in glucose associated with LGA, it 

raises two questions pertinent to how this may be overcome: 1) What is causing the relative 

hyperglycemia overnight; and 2) Is there any evidence that using CGM helps to improve 

glucose control and reduce LGA? 

A variety of factors are likely to be implicated in overnight hyperglycemia. These include the 

quantity and quality of carbohydrate and fat in the evening meal, eating later at night, and/or 

snacking before bedtime or during the night. It may also reflect more sedentary behaviour, 

less physical activity and/or difficulty sleeping. Another potential explanation is increased 

hepatic glucose output whist fasting overnight, which may be particularly relevant for women 

who are overweight and/or obese. One of the limitations of this study is that the women were 

not asked to keep dietary logs or record the exact times at which they ate. Knowing the 

timing of meals and their composition could have allowed postprandial effects to be better 

isolated from the daytime exposure and might have offered a potential explanation for the 

higher nocturnal glucoses observed in the women giving birth to LGA infants.  
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Addressing whether CGM could be used as a potential intervention to improve nocturnal 

glycemia, the CONCEPTT study, a randomized controlled trial of real-time continuous CGM 

vs SMBG has firmly established the place of CGM in management of T1DM pregnancy, with 

small but significant changes in maternal glucose being associated with substantially reduced 

rates of LGA (17). However, there is less data on the benefit of CGM in GDM. There have 

been three interventional studies to-date. A study of 340 women with GDM, allocating 150 

women to retrospective intermittent CGM (every 2-4 weeks) and the rest to routine SMBG 

showed lower risk of pre-eclampsia, caesarian section and lower infant birthweight in the 

CGM group (25). The GlucoMoms trial compared use of intermittent retrospective CGM  

(every 6 weeks) to SMBG in a mixed cohort of pregnant women with Type1 DM ,Type 2 

DM and insulin-treated GDM (27). It did not show any between-group differences in LGA, 

although this was a heterogenous group, and was underpowered to detect whether women 

with GDM (with low rates of LGA) might benefit. A smaller randomized trial comparing 

intermittent retrospective CGM (at 28, 32 and 36 weeks gestation)  to SMBG in 50 women 

with insulin-treated GDM, found that using CGM was associated with improved HbA1c at 37 

weeks gestation but the study was also underpowered to detect differences in maternal-fetal 

outcomes (28). Whether CGM used throughout pregnancy is beneficial for reducing LGA in 

GDM still remains to be established. Given the low rates of LGA in treated GDM (generally 

<10%), a very large RCT would be required. 

Another option, is to consider performing a period of CGM in women with well controlled 

GDM by SMBG targets, to help to identify those women who are at greatest risk of LGA. 

Based on our current data a mean glucose of  ≥6 mmol/l (>108.0 mg/dl) overnight is 

associated with LGA and could indicate a need for further management/investigation. It is 

notable that CGM data from non-diabetic pregnancies suggests that mean overnight glucose 

in healthy pregnant women is ~ 4.6 mmol/l (82.8 mg/dl) (29).  It is not currently known if 
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targeting nocturnal glucose control will improve LGA in GDM and this will require further 

investigation. However, it is known that small differences in glucose in pregnancy are 

reflected in clinical outcomes so this seems biologically plausible (17). 

The strengths of this study are that it is a large, prospective study in an ethnically diverse 

population. It is thus highly representative of the women diagnosed with GDM in routine 

clinical care. By using customized growth centiles we adjusted for many of the factors 

influencing fetal growth. This is an improvement on studies that only adjust for infant sex and 

gestational age at birth, particularly when examining birthweight in an ethnically diverse 

population (19). CGM provides far more frequent glucose measurements than SMBG, and far 

more information on short-to-medium term trends in glucose levels than either SMBG or 

HbA1c. CGM is also capable of recording glucose levels throughout both day and night 

without disrupting the normal activities of daily living (particularly periods of activity, rest 

and sleep).  A further strength is that one week of CGM data was collected, contrary to most 

previous studies of CGM in GDM pregnancy, that have only used data obtained over 24-72 

hours, making our data more representative. We acknowledge that recently published 

consensus guidelines, suggest that 2 weeks of CGM data are preferred although this 

recommendation is based on data outside of pregnancy (15).  

The limitations of our study are that the women were diagnosed GDM based on the UK 

NICE criteria (11), which may represent a slightly different GDM population to that seen in 

international centers using different criteria (12). However, the women were well treated 

before undertaking CGM and had rates of LGA comparable to background population, so are 

likely to be reflective of treated GDM elsewhere (11,12). CGM data was only obtained at 30-

32 weeks gestation, which may not be representative of glucose control at other times in 

pregnancy. However, the purpose of detecting maternal hyperglycemia is to allow time to 
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treat it effectively to reduce LGA prior to delivery. Thus, 32 weeks was a pragmatic time 

point to assess glucose control by CGM, as it was mid-way between diagnosis and delivery. 

This allowed time for treatment targets to be achieved and stable, yet with sufficient time left 

to further optimize treatment if necessary. We recognise that in common with many 

monitoring systems CGM has limitations, particularly with regard to the quality of glucose 

readings during rapid blood glucose changes and in situations of hypoglycaemia. The 

measurement of interstitial glucose may also not reflect precisely the levels of blood glucose.  

In summary, nocturnal glucose control is currently overlooked in the management of 

gestational diabetes. Detecting and addressing nocturnal hyperglycemia may help to further 

reduce rates of large for gestational age infants in women with gestational diabetes. 
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Table 1: Participant characteristics 
 
 Total participants LGA Non-LGA 

(N=153) (N=14) (N=139) 
Mean ± SD Mean ± SD Mean ± SD 

Age (years) 32.6 ± 5.4 31.4 ± 6.1 32.7 ± 5.4 
BMI (Kg/m2) 30.5 ± 6.0 32.1 ± 6.1 30.3 ± 6.0 
Primiparous 56 (36%) 4 (29%) 51 (38%) 
Multiparous 97 (64%) 10 (71%) 84 (62%) 
White European  57%  36% 59%  
South Asian 22% 43% 20% 
Afro-Caribbean 10% 14% 9% 
Other 11% 7% 12% 
Gestation at birth 
(weeks) 

38.4 ± 1.1 38.1 ± 0.9 38.8 ± 1.0 

Birthweight (g) 3207 ± 487.8 3839 ±365.0 3144.1 ± 452.8 
GROW birthweight 
centile (%) 

42.2 ± 29.5 95.7 ± 2.5 36.8 ± 25.3 

Diet alone 70 (46%) 6 (43%) 64 (46%) 
Diet + Metformin 62 (40%) 7 (50%) 55 (40%) 
Diet + Metformin + 
Insulin 

21 (14%) 1 (7%) 20 (14%) 
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Table 2: Comparison of standard summary measures of CGM data and fasting SMBG 

amongst women who delivered LGA infants and those who did not. AUC= Area Under 

the Curve; LBGI= Low Blood Glucose Index; HBGI = High Blood Glucose Index; SD = 

standard deviation; CV = Coefficient of Variation. 

 LGA (N=14) Non-LGA (N=139) P-value 
Mean (SD) Mean (SD) 

Mean glucose(mmol/l) 6.2 (0.6) 5.8 (0.6) 0.025 
Mean daytime glucose 06.00-24.00 
(mmol/l) 

6.3 (0.6) 6.0 (0.6) 0.058 

Mean nocturnal glucose 00.00-
06.00 (mmol/l) 

6.0 (1.0) 5.5 (0.8) 0.005 

AUC 448.0 (91.3) 442.9 (83.5) 0.828 
Time in target range 3.9-7.8 
mmol/l (%) 

85 (9) 88 (11) 0.867 

Time below 3.9 mmol/l (%) 2 (3) 4 (5) 0.804 
Time above 7.8 mmol/l (%) 12 (9) 8 (1) 0.059 
LBGI 1.1 (1.0) 1.6 (1.2) 0.909 
HBGI 0.7 (0.5) 0.4 (0.6) 0.091 
SD glucose (mmol/l) 1.2 (0.3) 1.1 (0.4) 0.118 
CV glucose 19.6 (5.2) 18.7 (5.2) 0.278 
Mean fasting SMBG (mmol/l) 5.3 (1.0) 5.2 (0.8) 0.219 

Comparing the difference in means using a t test reporting the p value (bold for p<0.05).  
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Figure 1. Difference in mean temporal glucose levels across the 24 hour day, assessed by 

functional data analysis, between those mothers that go on to have an LGA infant (dark 

wavy line        ) and those mothers that do not (represented by horizontal zero dottedline 

- - - - ) with 95% pointwise confidence intervals (grey section         ). Significant 

differences using 95% CI’s are highlighted by *. Dashed vertical lines represent 07.00 

and 23.00. 
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