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Abstract—Adoption of hybrid precoding is the key element of
reducing the hardware cost of radio-frequency compared with
the conventional full-digital precoding approach in millimeter
wave (mmWave) MIMO systems. For hybrid precoding, channel
state information (CSI) is needed. However, the use of analog
precoding in hybrid architecture and the large antenna array
make channel estimation difficult for mmWave system. It has
been shown that mmWave channels exhibit sparsity, thus com-
pressive sensing (CS) techniques can be leveraged to conduct
channel estimation. Conventional CS based channel estimation
methods for mmWave MIMO are based on quantized angle grid.
However, the performance would be severely affected by off grid
angles which can not be improved by increasing the resolution
because this will increase the coherence between the grid points.
In this paper, we propose an Interior Point (IP) aided orthogonal
matching pursuit (OMP) algorithm. It significantly improves the
channel estimation accuracy by reducing the estimation error
of angle-of-departure (AoD) and angle-of-arrival (AoA). The
simulation results demonstrate the advantage of the proposed
IP-OMP over the existing methods such as least squares and the
conventional OMP.

I. INTRODUCTION

Millimeter wave (mmWave) communication is considered

a potential approach for the future wireless systems because

of the huge amount of available spectrum [1]. Thanks to the

short wave length, large antenna arrays can be packed into

small areas so that mmWave systems can achieve desirable

beamforming gains to overcome the huge propagation loss

compared with existing micro wave systems. However, cost

and power consumption of device operating at mmWave make

it unfeasible to apply full-digital MIMO architecture as in

micro wave communication [2]. To overcome the radio fre-

quency (RF) power consumption, a hybrid MIMO architecture

consisting of an analog beamformer in radio frequency domain

cascaded with a digital MIMO processor in baseband has been

proposed for mmWave communication [3].

As in conventional microwave systems, channel state infor-

mation (CSI) is needed to design precoding and combining

procedures at transmitters and receivers in mmWave systems.

Channel estimation for mmWave hybrid MIMO systems is

challenging, because the number of antennas in mmWave at

both transmitter and receiver can be much larger than that

in conventional microwave massive MIMO due to the much

smaller wavelength of mmWave. The different “virtual array”

channel models widely used for mmWave massive MIMO [5]

and the new constraints on the hardware of hybrid architecture

also make channel estimation different in millimeter wave fre-

quencies with that at lower frequencies [6]. Hence new channel

estimation methods are required. Due to the sparse nature of

mmWave channel [7], compressive sensing (CS) theory [8] can

be leveraged to effectively estimate mmWave channels [10].

Instead of estimating all the entries in the channel matrix,

only the angle-of-departure (AoD), angle-of-arrival (AoA) of

dominant paths and the corresponding path gains are estimated

[9]. Recently, a closed-loop beam training-based method were

proposed in [10]. This method is a multistage process that

can avoid exhaustive search. In [10], they first estimate the

AoDs/AoAs by closed-loop beam training and then estimate

the path gain associated with each pair of AoD and AoA.

At each stage the transmitter emits the pilot beams, and the

receiver selects the best beam and feeds back its decision. This

process starts with wide beams that cover all of the angles of

interest and improves the angle resolution only around the

angles where AoDs/AoAs are present. The performance of

close-loop method tends to be limited by the beamforming

dictionary (codebook) designed for beam training. For exam-

ple, an improved codebook employing continuous basis pursuit

(CBP) method instead of conventional grid-based approach

was proposed in [11]. Compared with [10], [11] significantly

improves the estimation accuracy. However, the application of

close-loop methods would be difficult for outdoor environment

channel. Outdoor environment needs larger beamforming gain

which prevents from using wide beam for first step beam

training due to limited transmitted power.

An alternative approach is to use open-loop estimator ex-

ploiting sparse nature of mmWave channels. An open-loop

channel estimator was developed using fixed width training

beam without feedback from receiver in [12]. To reduce

computation, orthogonal matching pursuit (OMP) algorithm

was used to solve the sparse signal recovery problem [13].

Conventional OMP is a grid based algorithm. Despite the con-

tinuous nature of AoDs/AoAs, only G values are considered

in estimation referred to as grid points (circles in Fig. 1).

All AoDs/AoAs are approximated as the nearest grid points.

The black dots indicate off grid angles. The approximation

results in off grid errors. The estimation accuracy of grid based



Fig. 1. An illustration of angle grid and the off grid angles.

CS algorithm is deteriorated by off grid angles severely. The

impact of off grid angle errors is shown in the simulation

results Fig. 3. A multi-grid OMP (MG-OMP) method was

proposed to achieve better precision [12]. The MG-OMP starts

with a coarse grid and refines the grid only around the regions

where AoDs and AoAs are present. A finely quantized angle

grid is proposed for OMP method in [14] to reduce the

coherence of the redundant dictionary and improve estimation

performance. While even with finely quantized angle grid [14]

or multi-grid [12], off grid errors still exist and adversely affect

the estimation performance.

In this paper, we propose an enhanced approach employ-

ing OMP algorithm for mmWave MIMO channel estimation,

and IP algorithm to improve angle estimation accuracy. The

proposed approach can be also employed with MG-OMP and

other grid-based CS algorithms. It is shown that the IP-OMP

can significantly improve the channel estimation accuracy by

reducing the estimation error of AoDs/AoAs.

The organization of the paper is as follows. Section II

presents the system model. The Least Square (LS) based

channel estimation and CS based channel estimation problem

are formulated and solved in Section III. The improved algo-

rithm for the hybrid MIMO channel estimation are designed

in Section IV. Simulation results illustrating the performance

of the proposed algorithm are given in Section V. Finally, the

conclusion is presented in Section VI.

II. SYSTEM MODEL

We consider a single user hybrid MIMO system shown in

Fig. 2 [12], where the transmitter equipped with NT antennas

and NRF RF chains communicating with a receiver with NR

antennas and NRF RF chains (NRF ≤ (minNT , NR)).
In the channel estimation stage, transmitter uses NBeam

T

(NBeam
T ≤ NT ) pilot beam training patterns denoted as

{fm ∈ C
NT×1 : m = 1, . . . , NBeam

T } and receiver uses

NBeam
R (NBeam

R ≤ NR) beam patterns denoted as {wn ∈
C

NR×1 : n = 1, . . . , NBeam
R }. At training period, transmitter

sends training beams fm to receiver successively. We consider

the transmitter beam fm one by one and each fm is received

through receiver beam patterns wn. Because the receiver has

NRF RF chains. The receiver can generate NRF receiver

beams simultaneously and receive signal yq ∈ C
NRF×1 for

q ∈ {1, . . . , NBlock
R } in one time slot. Here q denotes the

received block index and NBlock
R =

NBeam

R

NRF
is the number of

received blocks. We assume NBeam
R and NBeam

T are multiples

of NRF . Collecting all q received block signals can represent

the received signal ym ∈ C
NBeam

R
×1 for one transmitter beam

fm in q time slots. The received vector for the q-th block and

the m-th transmit beam is given by

yq,m = WH
q Hfmxp +WH

q nq,m, (1)

where Wq = [w(q−1)NRF+1, . . . ,wqNRF
] ∈ C

NR×NRF is the

beam pattern matrix for RF receive beam patterns at one time

slot for fm. xp is the transmitted pilot symbol. Each w is

a beam pattern generated by one RF chain at receiver. H ∈
C

NR×NT represents the channel matrix, and n ∈ C
NR×1 is

the noise vector. Collecting yq,m for q ∈ {1, . . . , NBlock
R }, we

get ym ∈ C
NBeam

R
×1 given by

ym = WHHfmxp + diag(WH
1 , . . . ,WH

NBlock

R

)

× [nT
1,m, . . . ,nT

NBlock

R
,m]T ,

(2)

where W = [W1, . . . ,WNBlock

R

] ∈ C
NR×NBeam

R . ym is

the received signal for fm in q time slots. To represent the

signals for all NBeam
T transmit beams, we collect ym for

m ∈ {1, . . . , NBeam
T } to get

Y = WHHFX+N

=
√
PWHHF+N

(3)

where Y = [y1, . . . ,yNBeam

T

] ∈ C
NBeam

R
×NBeam

T , F =

[f1, . . . , fNBeam

T

] ∈ C
NT×NBeam

T and N ∈ C
NBeam

R
×NBeam

T

is the noise matrix given by

N = diag(WH
1 , . . . ,WH

NBlock

R

)
[

[nT
1,1, . . . ,n

T
NBlock

R
,1]

T ,

. . . , [nT
1,NBeam

T

, . . . ,nT
NBlock

R
,NBeam

T

]T
]

.
(4)

The matrix X ∈ C
NBeam

T
×NBeam

T is a diagonal matrix with

xp on its diagonal. Throughout the paper, we assume identical

pilot symbols so that X =
√
P INBeam

T

where P is the pilot

power.

In the mmWave communication, hybrid MIMO architecture

is employed. The transmit and receive training matrices are

regarded as hybrid beamforming matrix and they can be

decomposed as F = FRFFBB and W = WRFWBB ,

where FRF ∈ C
NT×NT and WRF ∈ C

NR×NR represent

the RF beamforming matrices, FBB ∈ C
NT×NBeam

T and

WBB ∈ C
NR×NBeam

R represent the baseband processing

matrices. In this case, (3) can be formulated as

Y =
√
P (WRFWBB)

HH(FRFFBB) +N. (5)

FRF , WRF , WBB and FBB will be designed in Section V.

The mmWave narrowband channel can be approximated by

a geometric channel mode with L scatters due to its limited



Fig. 2. Hybrid Massive MIMO system for mmWave communication

scattering feature [3]. Each scatterer contributes only one path

of propagation between transmitter and receiver. The channel

matrix can be written as

H =

√

NTNR

L

L
∑

ℓ=1

αℓar(θ
r
ℓ )a

H
t (θtℓ), (6)

where L is the number of scatterers, αℓ is the complex gain, θrl
and θtl are the AoA and AoD of the l-th path, respectively. We

assume the uniform linear arrays (ULA) whose array response

vectors are denoted as ar(θ
r
l ) ∈ C

NR×1 for the receiver and

at(θ
t
l ) ∈ C

NT×1 for the transmitter. For an N-element ULA,

the steering vector can be given by

a(θ) = [1, e−j2πϑ, e−j4πϑ, ..., e−j2πϑ(N−1)]T , (7)

where the normalized spatial angle ϑ is related to the physical

angle (of arrival or departure) θ ∈ [0, π) as ϑ = d
λ cos θ =

β cos θ, d denotes the antenna spacing, λ denotes the wave-

length of operation and β is the normalized antenna spacing.

We assume that N = NT when at(θt) represents the array

weights needed to transmit a beam focused in direction θt, and

N = NR when ar(θr) represents the signal response at the re-

ceiver array due to a point source in direction θr. In this paper,

we consider d = λ
2 . The channel gains {αℓ}Lℓ=1 are modeled

by i.i.d. random variables with distribution CN (0, σ2
α). The

AoAs and AoDs are modeled by the Laplacian distribution

whose mean is uniformly distributed over [0, π), and angular

standard deviation is σAS . The channel model in (6) can be

rewritten in matrix form as

H = ARHaA
H
T , (8)

where Ha =
√

NTNR

L diag(α1, . . . , αℓ, . . . , αL), AR =

[ar(θ
r
1), . . . ,ar(θ

r
ℓ ), . . . ,ar(θ

r
L)] ∈ C

NR×L, and AT =
[at(θ

t
1), . . . ,at(θ

t
ℓ), . . . ,at(θ

t
L)] ∈ C

NT×L.

To exploit the sparsity of mmWave channel, typically, the

AoAs/AoDs (θt, θr) are estimated as one point in an uniform

grid of size G as ϕt
ℓ, ϕ

r
ℓ (ϕt

ℓ, ϕ
r
ℓ ∈ {0, π

G−1 , . . . ,
π(G−1)
G−1 }),

with G ≫ L to achieve desired resolution in [3],[10],

[12]. ĀT = [at(ϕ
t
1), . . . ,at(ϕ

t
ℓ), . . . ,at(ϕ

t
G)] ∈ C

NT×G and

ĀR = [ar(ϕ
r
1), . . . ,ar(ϕ

r
ℓ), . . . ,ar(ϕ

r
G)] ∈ C

NR×G are de-

fined as array response matrices. Using these matrices, H can

be approximated in terms of a L-sparse matrix Hb ∈ C
G×G,

with L non zero elements in the positions corresponding to

the AoAs and AoDs.

H = ĀRHbĀ
H
T +E (9)

There is a grid error E in (9), because the true continuous

AoDs/AoAs do not fall onto the uniform grid points precisely

as illustrated in Fig. 1. Intuitively, the grid errors can be

mitigated by increasing the grid size. However, for CS channel

estimation in mmWave communication, using larger G is not

desirable due to the increasing coherence between steering

vectors for each grid angle. In this case, the sensing matrix

employed in channel estimation does not satisfy Restricted

Isometry Property (RIP) and leads to even worse estimation

performance [16]. Also a larger G leads to exponentially

increasing complexity of OMP algorithm. Most works on

channel estimation for mmWave MIMO communication leave

grid errors as unexplored area. Therefore, to improve the

achievable channel estimation performance with a reasonable

complexity, in this paper, we propose to employ Interior Point

(IP) method to minimize the off grid angle error and refine

the grid accordingly in every iteration of OMP algorithm.

III. FORMULATION OF MMWAVE CHANNEL

ESTIMATION PROBLEM

In this section, two different formulations of mmWave

channel estimation problem are presented. Least Square for-

mulation is first presented for the purpose of comparison.

A. Least Square Channel Estimation

To formulate the channel estimation problem, it is necessary

to vectorize the received signal matrix Y in (5). Denoting

vec(Y) by yv and therefore (5) is rewritten as

yv =
√
P (FT

BBF
T
RF ⊗WH

BBW
H
RF ) · vec(H)

+ vec(N)

= Q · vec(H) + nQ,

(10)

Using the property of the Khatri-Rao product

vec(ABC) = (CT ⊗A) · vec(B). (11)

The matrices WH
BBW

H
RF , H and FRFFBB in (5) are re-

garded as A, B and C in (11) respectively. nQ is the

vectorized noise. Let Q =
√
P (FT

BBF
T
RF ⊗ WH

BBW
H
RF ) ∈

C
NBeam

T
NBeam

R
×NTNR , a natural approach to estimating



vec(H) is the LS approach, which results in a closed-form

solution given by (QHQ)−1QHyv . The use of LS solution for

mmWave communication is difficult. Because the LS solution

requires NBeam
T NBeam

R ≥ NTNR so that QHQ has full rank.

However, (NT , NR) are usually large integers for mmWave

MIMO system and NBeam
T NBeam

R ≤ NTNR. This difficulty

can be overcome in the CS approach because the number of

entries to be estimated in the CS formulation is proportional

to the sparsity level which is much less than (NTNR).

B. Compressive Sensing Channel Estimation

Considering the system model in (5) and channel model in

(9) neglecting grid error E, the mmWave channel estimation

can be formulated as a sparse problem by vectorizing Y in

(5). Using property of Khatri-Rao product (11) for (5) and Hb

in (9), equation (10) can be rewritten as

yv=
√
P (FT

BBF
T
RF ⊗WH

BBW
H
RF ) · vec(Hb) + nQ

=
√
P (FT

BBF
T
RF ⊗WH

BBW
H
RF )ADhb + nQ

=Q̄ · (hb) + nQ,

(12)

where AD = Ā∗

T ⊗ ĀR is an NTNR ×G2 dictionary matrix

that consists of the G2 column vectors of the form aHt (θu)⊗
ar(θv), with θu and θv , the uth and vth points, respectively, of

the angle uniform grid. For example, θu = πu/(G− 1) (u =
0, 1, ..., G − 1) and θv = πv/(G − 1) (v = 0, 1, ..., G − 1).
hb = vec(Hb) is an G2 × 1 vector which represents the

path gains of the corresponding quantized directions. In (12),

Q̄ =
√
P (FT

BBF
T
RF ⊗WH

BBW
H
RF )AD ∈ C

NBeam

T
Nbeam

R
×G2

is the sensing matrix. The formulation of the vectorized

received signal in (12) represents a sparse formulation of

the channel estimation problem as hb has only L non-zero

elements and L ≪ G2. This implies that the number of

required measurements to detect the non-zero elements of

hb is much less than G2. Given the formulation in (12), CS

algorithms such as OMP can be adapted to solve this channel

estimation problem.

IV. PROPOSED ESTIMATION ALGORITHM FOR

MMWAVE MIMO CHANNELS

Considering the previous estimation problem using CS

method in (12), given that the true continuous-domain AoDs

and AoAs may lie off the grid, the grid representation in this

case will result in the degradation of estimation performance.

This can be mitigated to a certain extent by finer discretization

of the grid, but that may lead to longer computation time and

higher mutual coherence of the sensing matrix, thus becoming

less effective for sparse signal recovering. To effectively

estimate the position of non-zero values, and consequently the

corresponding AoDs/AoAs and path gains, OMP method is

used in conjunction with the IP method. In this paper, it is

named as IP-OMP. The proposed IP-OMP algorithm solving

(12) is summarized in Algorithm 1.

Algorithm 1 operates as follows. In the initial stage, when

t = 1, this algorithm chooses the column j of Q̄ that is

the most strongly correlated with the residual rt−1 in step

3. Each column index obtained in step 3 corresponds to an

AoD/AoA pair and is called AoD/AoA pair index. In step 4,

the column number j is added to set Ωt. The most strongly

correlated column in Q̄ is determined by the column of the

dictionary matrix AD when hybrid precoding and combining

matrix are given. Because AD = Ā∗

T ⊗ĀR is an NTNR×G2

dictionary matrix that consists of the G2 column vectors of

the form aHt (θu) ⊗ ar(θv), with θu and θv , the uth and

vth discrete points, respectively, of the uniform angle grid.

We can find the estimated AoD/AoA value through column

index j in the tth iteration as AoDt = 0 + ceil( j
G ) π

G−1 and

AoAt = 0 + (mod(j − 1, G) + 1) π
G−1 where u = ceil( j

G ),
v = mod(j − 1, G) + 1 as described in step 5. However, the

main problem for conventional OMP method is that the off

grid angles deteriorate the accuracy in step 3. Because the

true AoD/AoA are continuous values instead of the discrete

values in step 5. It means that, in step 3, |Q̄(i)Hrt−1|
can be even larger than the value corresponding to the jth

column if we can choose a more accurate AoD/AoA pair.

In this case, it is obvious that we can obtain improved

AoD/AoA pair through maximizing |Q̄(i)Hrt−1|. Considering

the order of complexity, we choose to employ IP method

to minimize the off grid error and estimate more accurate

AoD/AoA pair index based on the result from step 3. We

set xt = (AoDt, AoAt) as original point corresponding to

the jth column in Q̄. We define the correlation between

the sensing column and the residual as f(AoD′

t, AoA
′

t) =
|((FT

BBF
T
RF ⊗ WH

BBW
H
RF )(a

∗(AoD′

t) ⊗ a(AoA′

t)))
Hrt−1|

and set −f(AoD′

t, AoA′

t) as objective function. Through min-

imizing objective function between the adjacent grid points,

we can obtain new angle pair x′

t = (AoD′

t, AoA′

t) which is

most correlated with residual rt−1. This optimization problem

in step 6 can be formulated as

min
AoD′

t
,AoA′

t

−f(AoD′

t, AoA′

t)

s.t.

{

|AoD′

t −AoDt| < π
2(G−1) ,

|AoA′

t −AoAt| < π
2(G−1) .

When we obtain x′

t using IP method, the new most

strongly correlated column is calculated as p = (FT
BBF

T
RF ⊗

WH
BBW

H
RF )(a

∗(AoD′

t) ⊗ a(AoA′

t)) in step 7. Use p to

replace the column j in sensing matrix Q̄ as step 8. The

updated matrix Q̄ is the new sensing matrix with the corrected

grid. In this way, we adjust the grid point and sensing matrix

in every iterative step to find a more accurate angle and

corresponding path gain. The channel gains associated with

the new grid points are obtained by evaluating the LS solution

of yv = Q̄Ωt
h in step 9, where Q̄Ωt

∈ C
NBeam

t
NBeam

r
×t is the

sub-matrix of Q̄ that only contains the columns whose indices

are included in Ωt and h ∈ C
t×1 is a vector with varying size.

In step 10, the contributions of the chosen column vectors to

yv are subtracted to update the residual. This procedure is

repeated until t = K. In step 13, the algorithm constructs the

sparse channel vector hb ∈ C
G2

×1 by putting K estimated

channel gains into the corresponding position according to



elements in Ωt. So that hb(i) = ht−1 for i ∈ Ωt−1 and

hb(i) = 0, otherwise. hb is the channel matrix as in (12).

Algorithm 1 IP-OMP method for mmWave channel

estimation

Require: sensing matrix Q̄, measurement vector yv ,

sparsity K and grid G
1: Ωt−1 =empty set, residual r0 = yv , set the iteration

counter t = 1
2: while t ≤ K do

3: j = arg max
i=1,...,G2

|Q̄(i)Hrt−1|
4: Ωt = Ωt−1 ∪ {j}
5: AoDt = 0 + ceil( j

G ) π
G

AoAt = 0 + (mod(j − 1, G) + 1) π
G

xt = (AoDt, AoAt)
6: min

AoD′

t
,AoA′

t

f(AoD′

t, AoA′

t), x
′

t = (AoD′

t, AoA
′

t)

7: p = (FT
BBF

T
RF ⊗WH

BBW
H
RF )(a

∗(AoD′

t)⊗
a(AoA′

t))
8. Q̄j = p

9: ht = argmin
h

‖yv − Q̄Ωt
h‖2

10: rt = yv − Q̄Ωt
ht

11: t = t+ 1
12: end while

13: hb(i) = ht−1 for i ∈ Ωt−1 and

hb(i) = 0 otherwise

14: return hb

V. SIMULATION RESULTS

The performance of the proposed method is examined

through computer simulation with the following parameters.

ULAs are assumed at both transmitter and receiver with

NT = NR = 32. They have DFT training beams with

NBeam
T = NBeam

R = 32. All simulation results are averaged

over 500 channel realizations with a carrier frequency of

60GHz. At each channel realization, the number of scatterers L
is determined by L = max{P10, 1} where P10 is the outcome

of the Poisson random variable with mean 10. The design of

analog/digital hybrid precoding and combining matrices have

been extensively investigated [3], [4]. We use phase shifts to

generate DFT beams for analog beamforming. So FRF and

WRF can be designed as DFT matrices. The transmit and

receive weight vectors are given by the columns of NBeam
T ×

NBeam
T and NBeam

R ×NBeam
R DFT matrices respectively. We

use the approach in [15] and [12] to generate precoding matrix

for baseband through minimizing the coherence of sensing

matrix Q̄. FBB and WBB are block diagonal matrices given

by FBB = diag(FBB,1, . . . ,FBB,i, . . . ,FBB,Nblock

T

) and

WBB = diag(WBB,1, . . . ,WBB,i, . . . ,WBB,Nblock

R

) whose

diagonal entries, FBB,i and WBB,i, consist of NRF ×NRF

complex valued matrices. NBlock
R =

NBeam

R

NRF
and NBlock

T =
NBeam

T

NRF
are the number of receive blocks and transmit block

respectively. It is shown in [15] that the optimal solution of

Fig. 3. NMSEs at different SNR levels (dB)

Fig. 4. NMSEs at different SNR levels (dB)

WBB and FBB to minimize coherence of sensing matrix are

given by (13) and (14).

WBB,i = U1(Λ1
−1/2)H , 1 ≤ i ≤ NBlock

R , (13)

where U1 and Λ1 are the matrices of the eigenvectors and

eigenvalues, respectively, satisfying WH
RF,iĀRĀ

H
RWRF,i =

U1Λ1U1
H .

FBB,i = U2
∗(Λ2

−1/2)T , 1 ≤ i ≤ NBlock
T , (14)

where U2 and Λ2 are the matrices of the eigenvectors and

eigenvalues, respectively, satisfying FT
RF,iĀ

∗

T (F
T
RF,iĀ

∗

T )
H =

U2Λ2U2
H . FBB and WBB are calculated as (13) and (14).

Fig. 3 compares the normalized mean square error (NMSE)

defined as 10 log10
(

E(‖H−HLS/CS‖2F /‖H‖2F )
)

. Noted, nor-

malization is used because the sparsity of channel makes MSE

always extremely small. We consider different AoDs/AoAs



with the same grid size G = 40 using conventional OMP

algorithm, referred to as OFF1, OFF2, OFF3 for off grid

angle ∆θ = (0, π
4G , π

2G ). We also consider the estima-

tion using known AoDs/AoAs for the purpose of compar-

ison as OFF4. The grid points used in OMP algorithms

are uniformly distributed in [0, π). We set the true con-

tinuous AoD/AoA as (θt,ℓ, θr,ℓ) with ℓ ∈ {0, 1, . . . , L}.

For OFF1, OFF2, OFF3, (θt,ℓ, θr,ℓ) take values from set

{θr,ℓ, θt,ℓ} ∈ {0, π
G−1 , . . . ,

π(G−1)
G−1 }, {θr,ℓ, θt,ℓ} ∈ {0 +

π
4G , π

G−1 + π
4G , . . . , π(G−1)

G−1 + π
4G} and {θr,ℓ, θt,ℓ} ∈ {0 +

π
2G , π

G−1 + π
2G , . . . , π(G−1)

G−1 + π
2G} respectively. As shown in

Fig. 3, OFF3 is not close to OFF4. Because AoDs/AoAs can

not be perfectly estimated by OMP algorithm even without

off grid error. OFF1, OFF2 and OFF3 shows that the off grid

angles deteriorate channel estimation performance severely. It

demonstrates that the channel estimation performance can be

improved by enhancing the angle estimation.

In Fig. 4, we consider OMP algorithms and IP-OMP al-

gorithms with different grid size G. For G = 64, 128, 256,

OMP algorithms are named as OMP1, OMP2 and OMP3

respectively. And IP-OMP algorithms with G = 64, 128, 256
are named as the IP-OMP1, IP-OMP2 and IP-OMP3 respec-

tively. G should be large enough to guarantee the sparsity

of channel representation. The grid points used in OMP

algorithms are uniformly distributed over [0, π). We also

consider the conventional LS algorithm for comparison. Fig.

4 compares the NMSE of the above algorithms. As shown in

Fig. 4, LS method has the worst performance with complexity

O
(

(NTNR)
2NBeam

T NBeam
R

)

. And all of the OMP based

methods with complexity O(LNBeam
T NBeam

R G2) can achieve

better performance compared to the LS method. Among three

conventional OMP methods, as expected, the performance is

better when G increases from 64 to 128. However, when

G grows from 128 to 256, the estimation becomes worse.

Because the large grid size induces a higher mutual coherence

of sensing matrix which does not satisfy RIP. In CS theory,

sensing matrix should satisfy RIP to guarantee recovery per-

formance. So we can not improve estimation performance by

further increasing G. In order to achieve a desirable estimation

performance, IP-OMP algorithms are employed. Comparing

with OMP, IP-OMP algorithm performs better when G =
64, 128, 256. Especially, for G = 64, 128, the impact of grid

error is significantly mitigated and the performances are much

better than the corresponding OMP algorithm with the same

G. IP-OMP3 improves little because of the great number of G

results in limited space to further improve the angle estimation.

Because IP-OMP and OMP have the same order of complexity.

We use MATLAB to calculate the computational complexity

of IP-OMP and OMP for G = 64, 128, 256 respectively. If

we consider the complexity of OMP G = 64 as 1. Then

the complexity is 1, 4 and 16 for OMP G = 64, 128, 256.

The results show that the complexity of IP-OMP is 6, 12 and

24. That is to say IP-OMP with G = 64 can achieve much

better performance than that of OMP with G = 128, 256,

at the cost of slightly increased complexity compared with

OMP G = 128 and significantly reduced complexity compared

with OMP G = 256. In summary, IP-OMP algorithm can use

a small G value to achieve significant improved estimation

performance without causing unaffordable computational load.

VI. CONCLUSION

In this paper, we presented a novel approach for channel

estimation in mmWave MIMO communication. To solve the

problem in the conventional grid-based OMP, IP method was

applied to improve the angle estimation, and thereby improve

the channel estimation. The simulation results demonstrated

that the IP-OMP can outperform OMP, while requiring an

affordable computation, and that the achievable best perfor-

mance of estimation is much better than that of the OMP with

increased grid number. Interesting extensions to this work will

be to improve the angle optimization algorithms or to design

the CS algorithm without grid.
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