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Bayesian Polytrees with Learned Deep Features for

Multi-Class Cell Segmentation
Hamid Fehri, Student Member, IEEE, Ali Gooya, Member, IEEE, Yuanjun Lu, Erik Meijering, Senior Member,

IEEE, Simon A. Johnston, Alejandro F. Frangi Fellow, IEEE

Abstract—The recognition of different cell compartments, types
of cells, and their interactions is a critical aspect of quantitative
cell biology. However, automating this problem has proven to be
non-trivial, and requires solving multi-class image segmentation
tasks that are challenging owing to the high similarity of
objects from different classes and irregularly shaped structures.
To alleviate this, graphical models are useful due to their
ability to make use of prior knowledge and model inter-class
dependencies. Directed acyclic graphs, such as trees have been
widely used to model top-down statistical dependencies as a
prior for improved image segmentation. However, using trees,
a few inter-class constraints can be captured. To overcome this
limitation, we propose polytree graphical models that capture
label proximity relations more naturally compared to tree based
approaches. A novel recursive mechanism based on two-pass
message passing was developed to efficiently calculate closed
form posteriors of graph nodes on polytrees. The algorithm
is evaluated on simulated data and on two publicly available
fluorescence microscopy datasets, outperforming directed trees
and three state-of-the-art convolutional neural networks, namely
SegNet, DeepLab and PSPNet. Polytrees are shown to outperform
directed trees in predicting segmentation error, by highlighting
areas in the segmented image that do not comply with prior
knowledge. This paves the way to uncertainty measures on
the resulting segmentation and guide subsequent segmentation
refinement.

Index Terms—hierarchical graphs, cell and nucleus segmenta-
tion, multi-class segmentation, error prediction

I. Introduction

Accurate and efficient image segmentation of complex spa-

tial object arrangements composed of multiple constituting

structures (or classes) is challenging yet paramount for bio-

logical discoveries underpinned by quantitative imaging. For

example, the identification of different cells within tissue [1]
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or organelles within cells [2], the sub-cellular localization of

proteins [3], the interactions of different cell types in organ

development [4], or the immune response during infection

[5], as just a few examples of relevant problems in biology.

To assess the morphological and behavioral characteristics of

these cells (some having unknown causes [6]) quantitative

metrics are devised, which require image segmentation as an

unavoidable first step. Additionally, histology images are in-

creasingly used for disease diagnosis and grading. Quantitative

analysis of these images through the developed metrics (e.g.

for abnormal nuclei as a potential indicator of cancer) helps

pathologists by providing a supporting diagnosis and disease

progress evaluation [7], [8]. Still, at a finer resolution, the

biology of cell nucleus, i.e. the organization of the genome

and the proteins, has a functional relevance with the biological

cell processes, and their mis-localization (hence segmentation)

can be a valuable indicator for many pathologies [9], [10],

[11]. Given that all the above mentioned examples are multi-

class segmentation problems, automatic methods are of high

significance due to their labor-intensity, and inter- and intra-

observer variability of manual analysis, especially for large

datasets. However, common features of such images, such

as defused or overlapping boundaries, irregular shapes and

high deformability of objects, limited resolution and quality

in biological images, may contribute to the poor segmentation

performance of automatic methods.

Incorporation of prior knowledge can play an important

role in aiding and improving segmentation. Inter-object de-

pendencies have been used in the segmentation of interacting

objects [12] and intra-object spatial relationships were shown

to enhance the segmentation of cell organelles [13]. Other

examples in cell segmentation include using priors to consider

the relative topology of cells and nuclei [14], [15], and to

impose area and size constraints on segmented regions [16],

to achieve a better segmentation. In brain tissue analysis,

appearance and spatial priors have been used to improve tumor

localization [17], generalization to unseen images [18], and

lesion recognition as atypical brain tissues [19].

Graphical models enable modeling associative relations

between random variables [20]. These probabilistic models can

improve segmentation by imposing constraints emerged from

the prior knowledge [21], [22]. The key aspect of graphical

models is that the label of each node is determined based on

both its own attributes and attributes of other nodes connected

through graph edges. This way, not only all the information is

incorporated in inferring the labels, but also label configura-

tion constraints can be effectively applied during inference.
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For instance, Chen et al. [23] employed graphical models

to incorporate nuclear positions with boundary information

for yeast cell segmentation. In a rather different application,

segmentation of retinal images, graphical models have been

used for combining appearance models with shape priors [24].

We propose polytree graphical models for implementation

of local label configurations for multi-class segmentation prob-

lems. Polytrees are a type of Bayesian Networks (BNs) whose

nodes can have more than one parent. Compared to other

well-known BNs based on trees [25], [26], [27], [28], where

each node only has one parent, polytrees can capture more

complex configurations and constraints. This higher flexibility

of polytrees also inhibits certain unfeasible label cliques on

the graph that trees are unequipped to exclude in spite of

their contravening prior knowledge. The performance of the

proposed method was compared to that of the directed trees

and three convolutional neural networks to assess the modeling

and error prediction efficiencies.

II. Related work

Two types of graphical models have been used for image

segmentation, namely Markov Random Fields (MRFs) and

Bayesian Networks (BNs). MRFs have weighted edges indicat-

ing dependencies between variables and are used for capturing

correlations between random variables. Directed edges in BNs

indicate causal relationships between random variables [29]. In

this paper, we focus on BNs and enforce the constraints using

conditional probabilities that appear in the joint probability

distribution. To find optimal labels of the graph, different

inference algorithms have been proposed. Two-pass inference

algorithms were initially proposed for chain-based models,

which calculate exact probabilities for node labels [30]. Ex-

tension of this forward-backward algorithm, known as belief

propagation [31], [32], resulted in exact solutions for two main

types of Directed Acyclic Graphs (DAGs): trees and polytrees.

Directed trees are BNs with only one route between each pair

of nodes in the graph (i.e. singly connected [20]), with each

node, except the root node, having exactly one parent node.

Polytrees, however, are singly connected BNs where each node

can have more than one parent node. Existing solutions for

these two DAGs factorize the posterior of each node into two

factors: a marginal posterior given a subset of observations,

and a subgraph data likelihood given the label of the node [32].

Despite their being exact and non-iterative, the dependency

on the likelihood function in these factorizations makes the

numerical implementation impractical [33]. This is because

probability values become very small at some nodes, where

the likelihoods involve a large number of data components,

hence causing arithmetic underflow.

To address the implementation problem of the proposed

algorithms for inference, Laferte et al. [33] designed a re-

cursive framework that calculates exact posteriors of nodes

on a regular quadtree, based on posteriors of its neighboring

nodes. Feng et al. [34] used Tree-Structured Belief Networks

(TSBNs) as a prior model combined with a neural network

for local prediction of class labels. TSBNs suffer from block

artifacts [35] resulting from the descendants of a node s

on a tree being conditionally independent, given the state

of s. More complex graph structures, such as overlapping

trees [36] whose nodes do not point to distinct areas of the

image, and two-dimensional trees [37] have been proposed to

reduce this effect at the expense of higher computational costs.

Alternatively, a group of authors proposed trees with dynamic

structures fitting the image contents (e.g. [38], [39]) where the

labels and the graph structure are inferred. Priors have also

been incorporated into trees using Hierarchically-Structured

Interacting Segments (HINTS) [12], where the nodes represent

interacting segments in the image. Iterative algorithms were

proposed for approximating the optimal label configurations

for binary [40] and multi-label [41] cases. However, the

proposed optimization algorithms do not always converge and

may require modifying the graph structure or relaxing the

constraints for convergence.

To address the limitations of trees, which mainly stem

from the independence of same-level nodes [34], we propose

polytrees for multi-class image segmentation. Compared to

trees, polytrees can eliminate a wider range of unfeasible

label configurations, by modeling both inter- and intra-level

dependencies. Similar to the work of Laferte et al. [33], we

derive a two-pass inference algorithm on the polytree for

exact calculation of posterior probabilities on the graph. The

proposed polytree based method is evaluated by segmenting

objects from multiple classes in real microscopy images.

We show it outperforms state-of-the-art convolutional neural

networks and directed trees.

The proposed model is also evaluated on its ability to

predict segmentation error. Areas of the segmented image that

do not comply with the imposed priors are nominated and

their similarity to the actual segmentation error is measured.

Polytrees are shown to outperform trees in finding the wrongly

segmented areas.

Our polytree based segmentation method is fundamentally

different from the method proposed by Laferte et al. [33] and

entails important extensions. The proposed hierarchical graph

structure (Fig. 1) is made based on an initial superpixelation

step [42], and subsequently merges the most similar superpix-

els (graph nodes) until the highest level. The graph structure is

asymmetric and irregular. This property allows capturing more

natural cell boundaries for a more complex implementation.

Conversely, Laferte et al. use symmetric and regular quadtrees,

where the nodes are represented by square regions. The shapes

of the nodes do not match the actual morphologies of the cells,

rendering the method unsuitable for comparison. Inference-

wise, our method uses features extracted by convolutional

neural networks (CNN) (details explained in section IV-F) and

is applied to supervised multi-class image segmentation, while

Laferte et al. use pre-defined intensity and texture features for

an EM-based unsupervised image classification. See Table I

for a summary of fine differences between the three mentioned

methods.

This paper significantly extends our preliminary work pre-

sented in [43] through the following specific contributions:

• The role of features in the final segmentation performance

is investigated by using scale-space differential invariants
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of intensity with an automatic feature selection scheme,

employing the most relevant features for the analysis.

• We have shown how deep features from recent convo-

lutional neural networks can be systematically exploited

within the proposed polytree framework for improved

segmentation quantities.

• Polytrees are compared to customized trees, and state-

of-the-art CNNs, namely SegNet [44], DeepLab [45] and

PSPNet [46], using synthetic and two real microscopy

image datasets.

• A novel mechanism is employed to predict possible

errors in the segmented images, by comparing the label

configurations with the imposed label constraints.

• The error introduced through the superpixel generation

step of the algorithm is analyzed for more accurate

evaluation of the inference.

III. Method

Herewith, we present our proposed graphical model for

image segmentation. First, a polytree is generated for the

image, grouping similar pixels and regarding them as nodes

in the graph. Next, the parameters of the likelihood functions

are trained and labels of the nodes are inferred. Finally, the

segmented image is constructed based on the optimal labels

on the graph.

A. Graphical modeling for image segmentation

We perform the image segmentation by reformulating it as

the problem of finding the optimal labeling for a graphical

model, generated based on the image. The graph contains

two types of nodes that represent the latent variables and the

observations for their corresponding part of the image. Given

the observations, finding the values of the latent variables is

equivalent to labeling the corresponding area in the image i.e.

segmenting the image. As shown in Fig. 2a, each element s

(representing an area in the image) in the graph G with M

elements comprises a latent variable node xs attached to an

observation node ys. This label-observation configuration is an

element of the graph, in which ys and xs can be considered

as input and output values, respectively. The latent variable

xs ∈ X (X being the set of all latent variable nodes) takes

a discrete value from the label set Λ and ys contains feature

vectors extracted from its corresponding area in the image.

The process of generating the graph and labeling it based on

the imposed priors is explained in the rest of this section.

B. Graph generation

Initially, the graph is generated grouping pixels into locally

coherent areas (superpixels), each representing a single root

node (Fig. 1). We use the SEEDS algorithm [42], which refines

an initial grid of identically block shaped superpixels into

more coherent ones. The two most similar superpixels are then

recursively merged to generate higher-level nodes in the graph

hierarchy, in a similar manner to generating a merge-tree [47].

For each superpixel at the finest level, one (root) node in

the lowest level of the graph is created (see Fig. 1). Every two

ℒ: Leaf node (mother node)

ℛ: Root nodes (lowest level) Initial superpixels

M
e
rg
in
g

Fig. 1. Generating a polytree from an oversegmented input image.

nodes achieving highest scores according to a similarity metric

are then merged to create a new super node. The new super

node is the union of image regions attached to its two lower

level descendant nodes. We define the similarity metric as a

superposition of distances using spatial and intensity features

of the superpixels. A vector β = [βs;βi] is introduced to

adjust contributions of each feature in the similarity metric. An

adaptive scheme is designed for setting β, which helps in the

generation of more meaningful nodes on the graph. Nodes in

lower levels of the graph represent subregions of objects, rather

than their full areas. For these nodes, we set β such that βs

consists of greater values compared to βi. This makes merging

neighboring nodes that correspond to parts of the same object

(i.e. a cell or a nucleus in our case) more probable. In higher

levels, however, values of βi are set to be greater than those of

βs to facilitate the merging of regions belonging to the same

class, although they might not be neighbors. Assuming βi=βi1

and βs = βs1 and setting βi=1 for simplicity, β is determined

by a cross validation merely on βs.

After each merging step, the new node and all the other

orphan nodes, are assessed with the similarity metric to

recognize candidate nodes for merging next. Region merging

is continued until only two orphan nodes remain in the graph,

which are eventually merged to create the leaf node that

corresponds to the whole image (Fig. 1). Since two nodes

are merged at each step of the graph evolution, the resulting

structure is a binary graph; i.e. each non-root node has two de-

scendant nodes directly connected to it. We call this three-wise

structure a clique and denote it by parent1 − child − parent2.

Figure 2b shows a symbolic process of merging for a cell

(C) with a nucleus (N). Here, nodes 1 and 2 align with blue

and yellow areas in the synthetic cell. If these two nodes are

chosen to be merged based on their value in the similarity

metric, node 3 is generated, which corresponds to the union

of blue and yellow areas annotated by the dashed ellipse. This

clique is represented by 1 − 3 − 2.

C. Graph definition

The generated graph is a hierarchical structure modeling the

interrelations between areas corresponding to different classes.

Nodes in lower levels correspond to smaller superpixels, such

as sub-areas of cells, and are therefore more homogeneous.

Higher level nodes correspond to one or multiple objects

that can be of different classes. The hierarchical structure

allows merging smaller areas from the same class (in lower

levels), and embedding of objects within larger regions with
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TABLE I
Summary of key differences between Laferte et al. method and the proposed tree and polytree

Method Laferte et al. Proposed tree Proposed polytree

Number of descendants 4 2 2
Hierarchical structure Regular Irregular Irregular
Features Intensity and texture CNN Intensity features/ CNN
Application Unsupervised segmentation Supervised segmentation Supervised segmentation

Sample constructing element
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Fig. 2. Explanation of the graphical model used for segmentation. A label-
observation element s corresponding to an area in the image is shown in (a),
in which the blue plate represents M elements of which only an example is
shown. Panel (b) shows a symbolic process of node merging for a synthetic
cell (C) with a nucleus (N) resulting a polytree constructing element.
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Fig. 3. Edge directions on cliques in directed tree (a) and polytree graphical
models (b).

different classes (in higher levels) according to certain merging

rules. These rules are introduced in the model by defining

and applying priors on label configurations. In this setting,

segmenting the image equals inferring labels xs given the

observations ys ∈ Y (Y being the set of all observation nodes),

where the label configurations comply with the prior imposed

on the model.

D. Imposing priors on the graph

Applying inclusion-based prior knowledge is the main ad-

vantage of using hierarchical graphs and is a way to constrain

the solution to plausible results. In a directed graphical model,

prior knowledge can be modeled through setting specific

forms of the conditional probabilities that implement causality

according to the directions of the edges. These probabilities

act as the prior factor in the Bayesian factorization of the

posterior.

In directed trees, the joint probability consists of one-to-

one priors that can only model across-level dependencies.

For instance, in the constructing element of a dyadic tree

depicted in Fig. 3a (excluding the observation nodes tem-

porarily for simplicity) the joint probability is written as

p(X) = p(xs+
1
|xs)p(xs+

2
|xs)p(xs), where p(xs+

1
|xs) and p(xs+

2
|xs)

are the one-to-one priors. In polytrees however, the joint

probability has multiple-to-one priors modeling both across-

level and same-level dependencies. The joint probability for

the sample polytree structure of Fig. 3b is factorized as p(X) =

p(xs|xs+
1
, xs+

2
)p(xs+

1
)p(xs+

2
), in which the factor p(xs|xs+

1
, xs+

2
) is

the prior. To show how this can influence the modeling ability

of the hierarchy, imagine the label set consists of two classes:

Λ = {A, B}. Also, assume B−A−A is a feasible and B−A−B is

an unfeasible configuration. Using trees, B−A−A is allowed by

setting probabilities p(xs+
i
= B|xs = A) and p(xs+

i
= A|xs = A)

to non-zero values. However, enforcing the former constraint

also makes B−A−B cliques feasible, even though they are to

be prevented by the model. But thanks to the more complex

priors in the polytree, setting p(xs = A|xs+
1
= B, xs+

2
= A) to

non-zero values and setting p(xs = A|xs+
1
= B, xs+

2
= B) to zero

satisfies both of the constraints with no conflicts. This simple

example shows the advantage of polytrees over directed trees

in modeling more complex problems, by using a larger number

of parameters.

In this paper, we use the generated polytree (details ex-

plained in section III-B) to segment the image by inferring

the optimal labels for latent variable nodes. Each node at

the lowest graph level (finest image resolution) is a root (in

contrast to the single root node in directed trees) and there is

only one leaf node (see Fig. 1).

Figure 4 shows the tables of priors p(xs+
1
|xs) in trees and

p(xs|xs+
1
, xs+

2
) in polytrees, and possible label configurations,

when three classes of background (B), cell (C) and nucleus (N)

exist in the image. Conditional probabilities were set to zero

for implausible configurations, e.g. p(xs = C|xs+
1
= B, xs+

2
=

B) = 0, and to nonzero for plausible configurations, e.g. p(xs =

B|xs+
1
= B, xs+

2
= B) = 1. For cases where no child label xs is

possible for a pair of parent labels xs+
1

and xs+
2
, a uniform prior

was considered, e.g. p(xs|xs+
1
= B, xs+

2
= N) = 1/3.

E. Label inference

Let X = {xs} and Y = {ys} denote sets of labels (latent

variables) and the corresponding observed features at nodes,

respectively, G denote the set of nodes and edges and xs ∈ Λ,

where Λ is the set of all possible labels. For an internal node

(neither in the lowest level nor the leaf node) s in the graph,

s−, s+ and s′ denote nodes in higher, lower and same layers,

respectively (Fig. 5a).
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Fig. 4. The prior knowledge used in this paper for the three-class problem of cell and nucleus segmentation. Panel (a) shows the plausible label-configurations
based on the inclusion of nuclei by cells and cells by the background. Panel (b) shows equivalent probabilistic conditionals when directed trees or polytrees
are used for modeling the image. When no child label xs is plausible for a pair of parent labels xs+

1
and xs+

2
, a uniform prior 1/3 was considered.

We now derive equations governing the posterior probabili-

ties of graph nodes. Given the observed data Y, finding the best

segmentation equals the best configuration of labels X for the

graph. Bayesian inference associates the most probable label

from the set of possible labels Λ, given all observations:

∀s ∈ G, x̂s = arg max
xs∈Λ

p(xs|Y) (1)

A new set of equations is derived to calculate the closed-

form posterior probabilities at each node in the polytree. The

inference algorithm calculates the posteriors of the nodes in

two passes. These two consist of a pass from the leaf to the

roots, (top-down pass), and another from the roots to the leaf

(bottom-up pass).

The probability of a node’s label xs, given all data Y, is

computed by marginalizing the probability of the clique over

two parent nodes s+
1

and s+
2

given Y, and the joint posterior

is given by

p(xs|Y) =
∑

xs+
1
,xs+

2

p(xs, xs+
1
, xs+

2
|Y)

(2)

Three-wise constraints on cliques appear in the posterior calcu-

lation. To factorize the joint probability, we need a mechanism

to identify the dependency of the nodes in the graph.

D-separation: Consider three sets of nodes A, B and C in

a directed acyclic graph. We want to verify the conditional

dependency of A and B, given C. D-separation (directional

𝑥" 𝑥"#

𝑥
"$
% 𝑥

"&
%

𝑥"'

(a)

𝑥𝑠 𝑥𝑠′
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𝒚𝑠−

𝒚𝑠1+
𝒚𝑠′

𝒚𝑠2+

(b)

Fig. 5. Distribution of latent and observation nodes on the graph. The notation
for nodes connected to an internal node s of the graph is shown in (a). In
(b), the graphical representation of ascendant, Ya(s), and descendant, Yd(s),
observation nodes is depicted.

separation) rule [31] can determine this based on the paths

that exist between A and B on the graph. Each path connecting

A and B is blocked if it involves a node s for which either:

a) arrows meet head-to-tail or tail-to-tail at node s and s ∈

C (Fig. 6a), or b) arrows meet head-to-head at node s and

neither the node nor any of its descendants are in the set C

(section 6b). If all paths from A and B are blocked, they are

conditionally independent, given C (A and B are d-separated

by C and A y B|C).

𝑠
𝐴 𝐵

𝑠
𝐴 𝐵

(a)

𝑠
𝐴 𝐵

(b)

Fig. 6. D-separation rule. Nodes A and B are conditionally independent
given C, when graph edges meet head-to-tail or tail-to-tail and s ∈ C (a), or
when graph edges meet head-to-head and s < C (b).

Using the d-separation rule, the joint posterior in Eq. 2 is

expanded as

p(xs, xs+
1
, xs+

2
|Y) = p(xs|xs+

1
, xs+

2
,Y)p(xs+

1
, xs+

2
|Y)

= p(xs|xs+
1
, xs+

2
,Ya(s))

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
),Yd(s+

1
,s+

2
)),

(3)

where Ya(.) and Yd(.) refer to the sets of observation nodes

of the ascendant and descendant nodes, respectively (Fig. 5b).

For each node s (or a set of nodes S), ascendant nodes refer to

the set of all nodes that are connected to s (S) through edges

with inward directions. Similarly, descendant nodes include the

nodes connected to node s (S) through outward oriented graph

edges. The union of ascendant and descendant observation

nodes constructs the set of all observations. See Fig. 5b for a

graphical explanation.

We first elaborate on the factor p(xs|xs+
1
, xs+

2
,Ya(s)) on the

right-hand side of Eq. 3. This factor enforces posteriors of

unfeasible configurations to zero, as it is a product of the joint

probability of a child node and its two parent nodes.

p(xs|xs+
1
, xs+

2
,Ya(s)) =

p(xs, xs+
1
, xs+

2
|Ya(s))

∑

x′s
p(x′s, xs+

1
, xs+

2
|Ya(s))

(4)
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Using the d-separation rule, the numerator becomes:

p(xs, xs+
1
, xs+

2
|Ya(s)) = p(xs+

1
, xs+

2
|xs)p(xs|Ya(s))

=
p(xs, xs+

1
, xs+

2
)

p(xs)
p(xs|Ya(s)).

(5)

The factor p(xs, xs+
1
, xs+

2
) in Eq. 5 controls the occurrence of

feasible and unfeasible configurations on the graph, by setting

nonzero and zero values, respectively. The factor p(xs|Ya(s)) in

Eq. 5 is the posterior of node s given the observations of all

its ascendant nodes and its own observations. This top-down

posterior is expanded as:

p(xs|Ya(s)) ∝
∑

xs− ,xs′

p(ys|xs)p(ys′ |xs′ )p(xs′ |Yd(s′))

p(xs, xs′ , xs− )

p(xs− )p(xs′ )
p(xs− |Ya(s−)).

(6)

Equation 6 indicates that having calculated the likelihood

probabilities p(ys|xs), p(ys′ |xs′ ), and the posterior p(xs′ |Yd(s′)),

the top-down posterior of node s is calculated based on top-

down posterior of the node s−. This implies that a top-down

recursion calculates the top-down posteriors for all nodes.

The factor p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
),Yd(s+

1
,s+

2
)) on the right-hand side

of Eq. 3 is factorized by several applications of d-separation

rule. This factorization separates parts calculated from ascen-

dant and descendant nodes as follows.

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
),Yd(s+

1
,s+

2
))

∝ p(Ya(s+
1
,s+

2
),Yd(s+

1
,s+

2
)|xs+

1
, xs+

2
)p(xs+

1
, xs+

2
)

= p(Ya(s+
1
,s+

2
)|xs+

1
, xs+

2
)p(Yd(s+

1
,s+

2
)|xs+

1
, xs+

2
)p(xs+

1
, xs+

2
)

= p(Ya(s+
1
,s+

2
)|xs+

1
, xs+

2
)p(Yd(s+

1
)|xs+

1
)p(Yd(s+

2
)|xs+

2
)p(xs+

1
, xs+

2
)

∝ p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
))

p(xs+
1
|Yd(s+

1
))

p(xs+
1
)

p(xs+
2
|Yd(s+

2
))

p(xs+
2
)

(7)

Similar to Eq. 6, p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
)) on the right-hand side

of Eq. 7 is calculated through a top-down recursion as below.

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
)) ∝
∑

xs

p(ys+
1
|xs+

1
)p(ys+

2
|xs+

2
)

p(xs+
1
, xs+

2
|xs)p(xs|Ya(s))

(8)

The factors p(xs+
1
|Yd(s+

1
)) and p(xs+

2
|Yd(s+

2
)) in Eq. 7 are called

bottom-up posteriors as they are calculated based on posteriors

of their descendant nodes. For each node s in the graph, the

bottom-up posterior is written as

p(xs|Yd(s)) ∝
∑

xs+
1
,xs+

2

p(ys+
1
|xs+

1
)p(ys+

2
|xs+

2
)

p(xs+
1
|Yd(s+

1
))p(xs+

2
|Yd(s+

2
))p(xs|xs+

1
, xs+

2
).

(9)

Derivations of Eq. 6, 8 and 9 are included in Appendix A.

Making use of Eq. 3, 4, 5 and 7, the node’s posterior in

Eq. 2, given all the observations, is written as follows.

p(xs|Y) ∝
∑

xs+
1
,xs+

2

p(xs, xs+
1
, xs+

2
|Ya(s))

∑

x′s
p(x′s, xs+

1
, xs+

2
|Ya(s))

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
))

p(xs+
1
|Yd(s+

1
))

p(xs+
1
)

p(xs+
2
|Yd(s+

2
))

p(xs+
2
)

(10)

Equation 10 calculates the posterior at each node

s using three marginal posteriors p(xs, xs+
1
, xs+

2
|Ya(s)),

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
)) and p(xs|Yd(s)), in Eq. 5, 8 and 9. Each

term is calculated through either a top-down or a bottom-up

recursion. The inference is summarized in Algorithm 1. Note

that R and L denote the set of root nodes and the leaf node

in the graph, respectively.

Algorithm 1 Label inference on polytrees

� Preliminary pass. This initial upward recursion computes

prior marginals for each node. The parameters p(xs|xs+
1
, xs+

2
)

are set based on problem the model represents, as explained

in Fig. 4 and section III-D.

for all s ∈ R do

p(xs) =
1
|Λ|

end for

for all s < R do

p(xs) =
∑

xs+
1
,xs+

2

p(xs|xs+
1
, xs+

2
)p(xs+

1
)p(xs+

2
)

p(xs+
1
, xs+

2
|xs) =

p(xs |xs+
1
,xs+

2
)p(xs+

1
)p(xs+

2
)

p(xs)

end for

△ Bottom-up pass. Upward recursion for calculating

bottom-up posteriors of nodes.

for all s ∈ R do

p(xs|Yd(s)) = p(xs)

end for

for all s < R do

p(xs|Yd(s)) ∝
∑

xs+
1
,xs+

2

p(ys+
1
|xs+

1
)p(ys+

2
|xs+

2
)

p(xs+
1
|Yd(s+

1
))p(xs+

2
|Yd(s+

2
))p(xs|xs+

1
, xs+

2
)

end for

∇ Top-down pass. Downward recursion for calculating top-

down posteriors and calculation of complete posteriors from

marginal posteriors.

if s = L then

p(xs|Ya(s)) = p(xs|ys) ∝ p(ys|xs)p(xs)

end if

for all s , L do

p(xs|Ya(s)) ∝
∑

xs− ,xs′
p(ys|xs)p(ys′ |xs′ )p(xs′ |Yd(s′))

p(xs,xs′ |xs− )

p(xs′ )
p(xs− |Ya(s−))

p(xs, xs+
1
, xs+

2
|Ya(s)) = p(xs+

1
, xs+

2
|xs)p(xs|Ya(s))

p(xs+
1
, xs+

2
|Ya(s+

1
,s+

2
))

∝
∑

xs
p(ys+

1
|xs+

1
)p(ys+

2
|xs+

2
)p(xs+

1
, xs+

2
|xs)p(xs|Ya(s))

end for

IV. Experiments and results

A. General experimental design

We evaluated the proposed inference algorithm and com-

pared it to trees by classifying synthetic data generated us-

ing ancestral sampling. After quantifying the performance of

the superpixel generation, two fluorescent microscopy image

datasets were used for evaluating our multi-class segmentation

method. The results were compared to SegNet [44], DeepLab

[45] and PSPNet [46] as instances of deep convolutional neural

networks introduced for multi-label image segmentation. We

also compared segmentation using both trees and polytrees on

the real image datasets to explore how changing the direction
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of edges and therefore the use of two-wise priors instead of

three-wise priors affect the results. For inferring posteriors on

trees, we adapted Laferte et al. [33] formulation into the graphs

generated in this work.

B. Validation of the inference algorithm: ancestral sampling

To assess the performance of the inference algorithm, re-

gardless of the image processing tools employed, we com-

pared polytrees to trees on the classification of synthetic data

generated by ancestral sampling technique. Samples are drawn

for xs variables to represent ground truth data. Based on this,

the ys variables are then drawn according to the presumed

class conditional distributions. Next, ignoring the reference xs

variables of the first step, new values are inferred for xs from

the observed ys variables only. We then compare the inferred

xs variables to the ground truth and experimentally validate

the viability of our inference algorithm.

To draw samples x̂1, x̂2, ..., x̂N from the joint distribution

p(X,Y), we first sample from the probability distribution

p(xs)
∣

∣

∣

s∈R
for all root nodes. Visiting each internal node in an

upward recursion, we sample from the conditional distribution

p(xs|xs+
1
, xs+

2
), where the parent labels x̂s+

1
and x̂s+

2
have been

sampled in previous steps. Once we have sampled from the

leaf node of the graph, x̂N , we will have obtained a sample

from the joint distribution p(X,Y).

In this section only, we considered two classes for xs for

simplicity, and selected ys from the continuous range of [0, 1].

Class conditional likelihood functions, p(ys|xs) were Beta

distributions. For different numbers of root nodes ranging from

10 to 100000 (i.e. 19 to 199999 nodes in total as the graph

is binary), graphs with random structures were generated and

labels were inferred. Figures 7a and 7b show Beta distribu-

tions for different selectivities. Figures 7c and 7d depict the

percentages of the wrongly inferred labels for different graph

sizes and the corresponding Beta distributions in directed trees

and polytrees, respectively. Results show that polytrees achieve

higher accuracies in predicting labels of graph nodes, com-

pared to directed trees. This experiment shows that even with

significant overlaps between the likelihoods of two classes,

where a > 0.8, the polytree inference error is stable and small

(i.e., less than 10%). Therefore, this experiment verifies the

correctness of the developed derivations and also indicates

that inference accuracy increases with the selectivity of the

likelihood functions.

C. Oversegmentation performance evaluation

The SEEDS oversegmentation algorithm [42], used for gen-

erating superpixels, finds areas in the image based on intensity

homogeneity and boundary smoothness. Ideally, all of the

object and within-object boundaries should lie on superpixel

boundaries. However, due to the existence of noise and illumi-

nation artifacts in the images, not all the superpixels accurately

resemble boundaries. To investigate the error introduced by

oversegmentation, we labeled the superpixels in the image

merely according to the ground truth, to calculate the max-

imum achievable segmentation accuracy for the segmentation

algorithms employing SEEDS. To do this, the label of each

superpixel was set based on the labels of the majority of its

pixels in the Ground Truth. Figure 8 shows two samples from

BBBC020 and BBBC007 datasets, for which the overseg-

mented image and the labeled superpixels can be compared

to the ground truth. The Dice similarity coefficients (DSC)

between the labeled superpixels and the ground truth in Fig. 9

quantitatively show the maximum segmentation accuracy that

the graph-based algorithms employing superpixels in this work

can achieve for the two datasets.

D. Validation on multi-class image segmentation

The proposed algorithm was applied to the problem of

supervised multi-class image segmentation, and to evaluate

the role of exploiting prior knowledge in segmentation. Two

real image datasets were chosen from the publicly avail-

able datasets on Broad Bioimage Benchmark Collection that

contain two-channel fluorescence microscopy images with

cells and nuclei, namely BBBC020 and BBBC007 datasets

[48]. In these cases, between-class relationships can help to

improve the segmentation results, as only a certain set of label

configurations are plausible. The results of this experiment

were compared to those of SegNet, DeepLab and PSPNet.

BBBC020 contains 20 two-channel in vitro microscopy

images of murine bone marrow macrophages, and BBBC007

has 16 two-channel in vitro microscopy images of drosophila

Kc167 cells. Manual annotations are available for both

datasets. These two datasets have the same type of images

and define similar multi-class segmentation problems of cells

and nuclei. The BBBC007 dataset has a larger number of

overlapping cells and noisier images, which makes the seg-

mentation more challenging. See Fig. 10 for samples from the

two datasets.

To explore the role of features used for inference, we used

two types of features: 1) scale-space first and second order

differential invariants [49], 2) deep representations extracted

by SegNet. In the following, details of experiments with

the two feature sets are explained and results are compared

to the three convolutional neural networks. The accuracy

of the segmentation was measured by calculating confusion

matrices and the Dice similarity coefficients [50] computed

by comparing the segmentation results with the ground truth.

E. Polytree with scale-space differential invariant features

In this experiment, features were chosen to be intensity

value, the absolute value of the gradient, and determinants

and traces of Hessian matrix at 7 scales, for each microscopy

channel. A total of 32 features were initially calculated for

each image, out of which the most relevant features were

selected using Fisher discriminant score [29]. Fisher scores,

Wd, are weights with higher values for features that have

higher discrimination abilities and are calculated as follows.

Wd =

∑K
c=1(md − md,c)2

∑K
c=1 s2

d,c

K

K − 1
(11)

Where d is the index of the feature, K is the total number of

classes, md is the mean of dth feature over the training images.
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Fig. 7. Panels (a) and (b) show Beta distributions used as class conditional likelihood functions in ancestral sampling. The value of b was fixed and curves
correspond to the values of a ranging from 0.2 to 1, respectively, with an increasing overlap on the likelihoods (thus potential classification errors). In (c) and
(d), the percentages of wrongly inferred labels using ancestral sampling are shown for tree and polytree models, respectively.

Input image Oversegmented image Labeled oversegmentation Ground truth

Fig. 8. Evaluating the performance of the oversegmentation. First and second rows show the superpixels and the best possible labeling of the image using
the generated superpixels, for two samples from BBBC020 and BBBC007 datasets, respectively. The finest superpixels were not shown in the oversegmented
images for a better visualization.

(a) (b)

Fig. 9. Dice similarity coefficients between the labeled superpixels and the
ground truth on (a) BBBC020 and (b) BBBC007 datasets. These values show
the accuracy of the SEEDS oversegmentation algorithm [42] in generating
superpixels.

md,c and sd,c denote mean and standard deviation of dth feature

within samples of cth class, respectively.

For each dataset, four images were used for feature selection

through ranking features based on their Fisher scores. The rest

of the images were used for cross validation, i.e. 4- and 6-fold

cross validations were applied on the 16 and 12 remaining

images in BBBC020 and BBBC007 datasets, respectively. The

four images used for Fisher score calculation were always

included in the training sets during cross validation.

Once the Fisher scores were calculated, features were

ranked for each class separately, and the first F of them were

selected for classification. Gaussian distributions were used for

class conditional likelihood functions with a layer dependent

variance that allows higher within-class variances for nodes

in the higher levels of the graph. Parameters of the method,

including βs (explained in section III-B), number of intensity

features used for graph generation (D) and inference (F), and

values of mean (µc) and covariance matrix (Σc) for each class

c are optimized through cross validation for each of the two

datasets. Figure 11 shows the block diagram of polytree and

tree based segmentation using scale-space differential invariant

features.

We applied SegNet to the two datasets and compared the

results with polytree and tree segmentation using scale-space

differential invariants. As the size of the datasets was not suffi-

ciently large for training SegNet, random elastic deformations

of the training images and their annotations were added to

the training sets during each cross validation experiment. This

way, the size of the training sets for each experiment on the
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Input image Ground truth Tree + SS Polytree+SS SegNet DeepLab PSPNet Tree + SN Polytree+SN

Fig. 10. Sample images from BBBC020 (first and second rows) and BBBC007 (third and fourth rows), their corresponding ground truth and automatic
segmentations. Third and fourth columns show segmentation results using trees and polytrees with scale-space (SS) features (section IV-E), respectively. Fifth,
sixth and seventh columns show results of applying SegNet, DeepLab and PSPNet to the images, respectively. The last two columns depict segmentation
results using directed trees and polytrees with features generated by SegNet, labeled Tree + SN and Polytree + SN, respectively.

Test Set

Oversegmentation

Graph generation Label inference
Segmented 

Images

Learning node 
labels

Learning likelihood 
parameters

Scale-space 

differential invariants 

for each channel

𝑊𝑑 =  𝑐=1𝐾 𝑚𝑐 −𝑚𝑑,𝑐 2 𝑐=1𝐾 𝑠𝑑,𝑐2 . 𝐾𝐾 − 1
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𝐷 𝛽𝑠

𝝁𝒄, 𝚺𝒄
Training 

Set

𝐹
K-fold 
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Validation set

Training set

Feature extraction

Fisher ranking

Fig. 11. Block diagram for polytree and tree segmentation with scale-space differential invariant features.

two datasets was increased to 400 images (chosen based on

experiments with different numbers of augmented images) to

improve shift and rotation invariance, and robustness to de-

formations and gray value variations [51], [52]. Furthermore,

5000 iterations were performed for the experiments on the

two datasets with the cost function reaching its minimum after

about 1000 iterations. The trained network was then evaluated

on its segmentation of the test set. Figure 12 shows the con-

fusion matrices for SegNet, tree and polytree segmentations

of BBBC020 and BBB007 datasets. The overall segmentation

accuracies are similar for the three methods on BBBC020

dataset, while SegNet outperforms the other two on BBBC007.

Dice similarity coefficients (DSC) in Fig. 13 indicate SegNet

is more accurate than tree and polytree in both classes on the

BBBC007, while tree and polytree provide higher DSC values

for the segmentation of cells in BBBC020. DSC values for the

segmentation of nuclei in BBBC020 are similar for SegNet and

tree, being more accurate than that for polytree.

This experiment indicates outperformance of SegNet in

segmentation. However, the three methods were compared

using different experimental setups. First, SegNet was trained

using a larger set of training images (through augmentation).

The numbers of features (F) selected after ranking them

based on the Fisher scores were 20 and 6, for BBBC020

and BBBC007 datasets, respectively, which are very small

compared to the number of features extracted by SegNet. To

investigate the methods regardless of the type of features used,

we propose the use of polytrees with features employed by

SegNet in the next section.

F. Polytree with SegNet-based deep features

To compare the developed polytree inference and SegNet

using similar preprocessing, feature extraction and selection
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Fig. 12. Confusion matrices for SegNet with augmented images, tree and
polytree segmentations with scale-space differential invariants on the two real
datasets. The overall accuracies of tree (b) and polytree (c) were slightly higher
than SegNet (a) on the BBBC020 dataset, while SegNet (d) outperforms tree
(e) and polytree (f) on the BBBC007 dataset. Number of pixels corresponding
to each percentage is shown in bold. Black and white percentages in each box
show the proportion of correctly and incorrectly classified pixels, respectively.

and training size, we developed a framework to employ fea-

tures calculated by SegNet, shown in Fig. 14. In this section,

we have also applied directed trees with SegNet features to

the segmentation of images in the two datasets. The directed

tree was generated by reversing the directions of edges on the

irregular polytree and the inference proposed by Laferte et

al. was adapted to it. Softmax [29] functions were chosen as

posteriors.

p(xs = c|ys) ∝
exp(wT

c ys)
∑K

k exp(wT
k

ys)
(12)

In Eq. 12, wk’s are the vectors of weights for each class

k, calculated by the CNN to describe the distribution of each

class, and K denotes the total number of classes (K = 3 in our

case).
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Fig. 13. Dice similarity coefficients (DSC) of polytree and tree based
segmentations using scale-space differential invariant features compared to
SegNet on (a) BBBC020 and (b) BBBC007 datasets.

Note that Eq. 12 implies that a set of improper (unnormal-

ized) class conditional likelihoods, i.e. exponentials, have been

used. However, looking at Algorithm 1, the proposed inference

algorithm normalizes every term that contains likelihood prob-

ability of nodes, facilitating the utilization of unnormalized

likelihood functions. For this reason, we chose exponentials

as the likelihood functions, i.e. p(ys|xs = c) ∝ exp(wT
c ys).

Both of the class parameters (wc) and feature vectors (ys) are

provided by the SegNet. Therefore, having trained the SegNet,

we do not require any additional training steps.

In this section, we compared the results of the proposed

polytree and tree methods with SegNet, Deeplab and PSPNet.

In applying the CNNs on BBBC020 and BBBC007 datasets,

the same image augmentation procedure as explained in sec-

tion IV-E was employed. Segmentation performance of the

methods were compared at three different sizes of datasets;

original dataset size (20 images for BBBC020 and 16 images

for BBBC007), 200, and 400 augmented images. In each of the

experiments, a four-fold cross validation was done. To perform

a cross validation, the augmented images were generated based

only on the images in the training folds, so that the network

was trained independently of the testing set.

For these experiments, the images were first oversegmented

using the SEEDS algorithm [42]. The features provided by

SegNet were then used for graph generation and, in the next

step, for label inference (F = D).

Figure 15 shows the DSC of the five methods when SegNet

features are used for polytree and tree with variable numbers of

the training samples. Table II shows average accuracy values

for each of the five methods and for each size of the training set

for BBBC020 and BBBC007 datasets. The superior results of

the directed tree and polytree indicate the effectiveness of the

prior knowledge imposed by these directed graphical models,

which cannot be explicitly modeled by CNNs. It can also be

seen that the performance of directed trees tend to have larger

variances compared to polytrees. This higher uncertainty is

likely to stem from the inability of directed trees to eliminate

unfeasible label configurations, eliminated by polytrees, that

allows semantically wrong segmentations (see section III-D).

To assess the complexity of the segmentation algorithm,

graph generation and Bayesian inference stages were timed

for graphs ranging from 20 to 200000 nodes. Results show

that the time of run, t, on a machine equipped with Intel

Xeon(R) CPU E5620 2.40GHz and 32GB of RAM, using
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Fig. 14. The proposed architecture for using SegNet-based deep features and learning class conditional likelihood functions.

(a) (b)

Fig. 15. Dice similarity coefficients of the five methods for segmenting cells and nuclei in (a) BBBC020 and (b) BBBC007 datasets, respectively.

TABLE II
Mean Dice score coefficients of the five methods on BBBC020 and BBBC007 datasets.

Dataset BBBC020 BBBC007

# Images 20 200 400 16 200 400

Polytree 78.60 ± 5.42 80.43 ± 4.76 81.35 ± 5.18 80.28 ± 8.44 82.09 ± 7.46 83.06 ± 6.85

Directed tree 78.45 ± 5.39 80.52 ± 4.82 81.45 ± 5.21 79.65 ± 10.62 81.00 ± 10.40 81.75 ± 9.64

SegNet 77.00 ± 5.28 79.42 ± 4.71 80.40 ± 5.06 77.40 ± 8.83 80.06 ± 7.79 81.03 ± 7.43

DeepLab 78.17 ± 3.73 81.35 ± 2.60 81.37 ± 2.98 79.96 ± 5.97 80.56 ± 5.95 80.75 ± 4.95

PSPNet 76.72 ± 3.14 78.35 ± 3.30 78.27 ± 3.13 78.37 ± 4.84 77.56 ± 4.50 77.37 ± 4.71

Ubuntu 14.04, scales with the number of graph nodes, n, with

t = 5× 10−5n1.3 and t = 2.4× 10−6n2 for graph generation and

inference, respectively. This shows a sustainable scalability of

the proposed algorithm with increasing the number of nodes.

G. Prediction of segmentation error

Unlike discriminative models, generative models incorpo-

rate priors in calculating the posterior distributions. Accord-

ingly, the proposed polytree graphical model can evaluate to

what extent its estimated clique labels comply with the im-

posed priors. A strong disagreement can indicate an erroneous

segmentation that can be flagged up for manual inspection. To

implement this, the labels of cliques are read from the graph

representing the segmented image, and their probabilities are

calculated using the constraints in Fig. 4b. Areas in the

image that correspond to cliques with unfeasible labels (zero

probabilities) are then marked as potential segmentation errors.

Figure 16 shows samples from BBBC020 and BBBC007 and

the error predicted for them. To represent the confidence of

the model in labeling the wrongly segmented areas, they are

marked by red colors with different values, corresponding to

the entropy of the joint posterior of the clique. Areas with

lower and higher error likelihoods (entropies), are shown in

lighter and darker colors, respectively.

The error prediction ability of the directed trees was also

evaluated. Figure 17 shows Dice similarity coefficients be-
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Input image Ground truth Polytree segmentation Predicted error

Fig. 16. The ability of the proposed method in nominating the possibly wrongly segmented areas shown for samples from BBBC020 (first row) and BBBC007
(second row) datasets. Value of red color is proportional to the probability of being an error in the segmentation.

(a) (b)

Fig. 17. Dice similarity coefficients between the predicted and the actual
segmentation error for directed trees and polytrees on (a) BBBC020 and (b)
BBBC007 datasets.

tween the potentially incorrectly segmented areas and the

actual segmentation error for both methods. Figure 18 shows

the average Dice similarity coefficients for different thresholds

of entropies for the models on the two datasets. These two

figures indicate that polytrees are superior in predicting the

segmentation error. This superiority is due to the more ef-

fective imposition of prior knowledge in polytrees compared

to trees (three-wise constraints versus two-wise constraints,

respectively).

V. Discussion and conclusions

This work proposes a new inference algorithm for multi-

class segmentation using irregular directed graphical models.

The image is first oversegmented and a graph is generated

by recursively merging the two most similar nodes in the

graph until a hierarchical graphical model is generated that

has no loops. Two types of features were used in this study: 1)

scale-space differential invariants of intensity and 2) SegNet-

based deep image representations. This was done to investigate
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Fig. 18. Average Dice similarity coefficients between the predicted and actual
segmentation error for directed trees and polytrees at different thresholds of
entropies of cliques on (a) BBBC020 and (b) BBBC007 datasets.

the dependency of the method performance on the features

used. Two publicly available real microscopy image datasets

were used for evaluation. We showed that our polytree based

method outperforms the customized tree and three state-of-

the-art convolutional neural networks, SegNet [44], DeepLab

[45] and PSPNet [46]. The oversegmentation performance

was evaluated by comparing the labeled superpixels to GT to

determine the maximum achievable accuracy of the segmen-

tation methods employing the generated superpixels using the

SEEDS algorithm [42]. In terms of predicting segmentation

errors, polytrees also outperformed directed trees.

In the literature, directed graphical models have been em-

ployed to incorporate prior knowledge to improve segmen-

tation [23], [24]. However, a large majority of the works

rely on directed trees, due to more simple inference and the

existence of efficient closed form solutions for posteriors. This

work uses polytrees for multi-class segmentation and models

more complex label dependencies between the child and parent

nodes, deriving closed form solutions for the posteriors on the
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polytree. The distinct orientation of edges on polytrees allows

them to model label configurations for nodes in horizontal

vicinity, in addition to the vertical nodes modeled by trees.

This improves the compliance of the inferred labels with

the imposed constraints and is a key feature of polytree, as

modeling the same relations with Markov Random Fields

requires graphs with loops, for which the inference is iterative

and approximate. It should be noted that factor graphs [53] can

also provide closed form solutions as long as the original graph

structure can be converted to a factor graph without loops.

However, the proposed inference method does not require the

extra step for generating a second factor graph, simplifying

the implementation.

Using polytrees with scale-space differential invariant fea-

tures (Fig. 13) suggests that depending on the choice of

model features and parameters, it can outperform SegNet, even

though the latter is trained on a much larger training set (16

vs. 400 images). Additionally, the distinct performance of the

polytree segmentation on BBBC007 dataset when different

types of features were used reveals the key role of features

in the segmentation performance. By using the same features

of the SegNet, polytree provides a superior segmentation

compared to directed trees and three CNNs (see Table II). This

superiority owes to the model’s ability to explicitly enforce

prior knowledge and to eliminate unfeasible label configura-

tions. An example of these configurations for the problem of

segmenting cells and nuclei is the existence of a cell area

inside a nucleus. CNNs can also learn such dependencies

through their cascade of convolutional layers. However, their

efficiency relies on the quality of the training data and the

existence of sufficient instances of the dependencies, which

might not be possible for every dataset.

Evaluating the performance of oversegmentation shows that

this stage significantly contributes to the overall segmentation

error. The maximum achievable accuracies depicted in Fig.

9 show an upper bound for the Dice scores that could be

achieved by segmentation methods employing SEEDS on the

two datasets. Using other superpixel generation algorithms

might address this problem by drawing superpixels with

boundaries more accurately matching objects boundaries in

the image.

In the current implementation of the proposed algorithm,

the overall segmentation performance of the method can be

confined by the graph generation quality. To address this, one

line of future work can be the development of a Maximum

Posterior (MAP) estimation [29] for graph generation that

optimizes the graph structure jointly with label inference. On

the other hand, it is worth mentioning that the small margin

of improvement by the proposed graph based segmentation

over SegNet is because features learned by the CNN are

minimizing the cost function of SegNet rather than the cost

function of the polytree. Another line of future work can be

extracting features by neural networks that are specifically

minimizing the cost of polytree. In predicting the segmentation

error, however, polytrees significantly outperform trees (see

Fig. 17 and 18). The lower variance of the average DSC

in Table II when using DeepLab and PSPNet is due to the

additional network layers that that improve the localization

of boundaries for a cost of adding to the computational

complexity. An extension of current work can be employing

deep representations extracted by these two networks with the

use of polytrees for incorporating prior knowledge for possible

improvements in the segmentation results.

The proposed application of the directed graphical models

facilitates extracting statistics of relationships between class la-

bels from the graph, in addition to the current use of the graph

for imposing prior knowledge. For example, using the pro-

posed method for the segmentation of host and pathogen cells,

the proportions of intracellular and extracellular pathogen

cells, infected and healthy host cells can be calculated from

the labeled graph, both at a specific time point and over

time for disease progression monitoring. Such applications

introduce new capabilities of graph based segmentation for

the behavioral analysis of diseases and biological systems.

Other than their use in the image analysis, polytrees can

model phenomena involving the interrelations of different

objects with underlying dependencies. One example can be

the genetic networks where polytrees can model relationships

between different entities including genes or individuals and

the expression of certain genes in different generations. The

inference platform presented here can be extended to the case

where each node can have more than two and generally an

arbitrary number of descendant nodes to improve its adaptation

to the problem being modeled.

Appendix A

Proofs of equations

• Expansion of Eq. 6 (top-down)

p(xs|Ya(s)) ∝ p(xs,Ya(s))

=
∑

xs− ,xs′

p(Ya(s), xs− , xs, xs′ )

=
∑

xs− ,xs′

p(Ya(s)|xs− , xs, xs′ )p(xs− , xs, xs′ )

=
∑

xs− ,xs′

p(ys|xs)p(ys′ |xs′ )p(Yd(s′)|xs′ )

p(Ya(s−)|xs− )p(xs− , xs, xs′ )

∝
∑

xs− ,xs′

p(ys|xs)p(ys′ |xs′ )p(xs′ |Yd(s′))

p(xs, xs′ , xs− )

p(xs− )p(xs′ )
p(xs− |Ya(s−))

(13)

• Expansion of Eq. 8 (top-down)
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2
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2
|ys+

1
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2
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∝
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(14)
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• Expansion of Eq. 9 (bottom-up)
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∑

xs+
1
,xs+

2

p(xs, xs+
1
, xs+

2
|Yd(s))

∝
∑

xs+
1
,xs+

2

p(ys+
1
,Yd(s+

1
), ys+

2
,Yd(s+

2
)|xs, xs+

1
, xs+

2
)

p(xs, xs+
1
, xs+

2
)

=
∑

xs+
1
,xs+

2

p(ys+
1
|xs+

1
)p(Yd(s+

1
)|xs+

1
)p(ys+

2
|xs+

2
)

p(Yd(s+
2

)|xs+
2
)p(xs, xs+

1
, xs+

2
)

∝
∑

xs+
1
,xs+

2

p(ys+
1
|xs+

1
)p(ys+

2
|xs+

2
)

p(xs+
1
|Yd(s+

1
))p(xs+

2
|Yd(s+

2
))p(xs|xs+

1
, xs+

2
)

(15)

References

[1] A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, and P. Allavena,
“Tumour-associated macrophages as treatment targets in oncology,”
Nature reviews Clinical oncology, 2017.

[2] J. C. Kagan and G. M. Barton, “Emerging principles governing signal
transduction by pattern-recognition receptors,” Cold Spring Harbor

perspectives in biology, vol. 7, no. 3, p. a016253, 2015.

[3] X. Xiao, X. Cheng, S. Su, Q. Mao, and K.-C. Chou, “pLoc-mGpos:
incorporate key gene ontology information into general PseAAC for
predicting subcellular localization of Gram-positive bacterial proteins,”
Natural Science, vol. 9, no. 09, p. 330, 2017.

[4] A. Fatica and I. Bozzoni, “Long non-coding RNAs: new players in
cell differentiation and development,” Nature Reviews Genetics, vol. 15,
no. 1, pp. 7–21, 2014.

[5] A. Bojarczuk, K. A. Miller, R. Hotham, A. Lewis, N. V. Ogryzko, A. A.
Kamuyango, H. Frost, R. H. Gibson, E. Stillman, R. C. May, S. A.
Renshaw, and S. A. Johnston, “Cryptococcus neoformans Intracellular
Proliferation and Capsule Size Determines Early Macrophage Control
of Infection,” Scientific Reports, vol. 6, p. srep21489, Feb. 2016.

[6] J. F. Gibson and S. A. Johnston, “Immunity to Cryptococcus neoformans
and C. gattii during cryptococcosis,” Fungal Genetics and Biology,
vol. 78, pp. 76–86, May 2015.

[7] H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, “Methods for Nuclei
Detection, Segmentation, and Classification in Digital Histopathology: A
Review-Current Status and Future Potential,” Biomedical Engineering,

IEEE Reviews in, vol. 7, pp. 97–114, 2014.

[8] M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot,
and B. Yener, “Histopathological Image Analysis: A Review,” IEEE

Reviews in Biomedical Engineering, vol. 2, pp. 147–171, 2009.

[9] W. H. De Vos, L. Van Neste, B. Dieriks, G. H. Joss, and P. Van Oostveldt,
“High content image cytometry in the context of subnuclear organiza-
tion,” Cytometry Part A, vol. 77A, pp. 64–75, Jan. 2010.

[10] M. B. Resnick, T. Konkin, J. Routhier, E. Sabo, and V. E. Pricolo,
“Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a
tissue microarray study,” Modern Pathology, vol. 18, p. 511, Apr. 2005.

[11] T. Misteli and K. Meaburn, “Prostate Cancer Diagnostics and Prog-
nostics Based on Interphase Spatial Genome Positioning,” tech. rep.,
The Geneva Foundation Tacoma United States, The Geneva Foundation
Tacoma United States, Mar. 2016.

[12] Y. Yin, X. Zhang, R. Williams, X. Wu, D. D. Anderson, and M. Sonka,
“LOGISMOS-Layered Optimal Graph Image Segmentation of Multiple
Objects and Surfaces: Cartilage Segmentation in the Knee Joint,” IEEE

Transactions on Medical Imaging, vol. 29, pp. 2023–2037, Dec. 2010.

[13] A. Lucchi, C. Becker, P. M. Neila, and P. Fua, “Exploiting enclosing
membranes and contextual cues for mitochondria segmentation,” in
International Conference on Medical Image Computing and Computer-

Assisted Intervention, pp. 65–72, Springer, 2014.

[14] S. Farhand, R. B. Montero, X. Vial, D. T. Nguyen, M. Reardon, S. M.
Pham, F. M. Andreopoulos, and G. Tsechpenakis, “Probabilistic multi-
compartmenty geometric model: Application to cell segmentation,” in
2012 9th IEEE International Symposium on Biomedical Imaging (ISBI),
pp. 174–177, May 2012.

[15] K. Mosaliganti, A. Gelas, A. Gouaillard, R. Noche, N. Obholzer, and
S. Megason, “Detection of spatially correlated objects in 3d images
using appearance models and coupled active contours,” in Medical Image

Computing and Computer-Assisted InterventionMICCAI 2009, pp. 641–
648, Springer, 2009.

[16] S. Li, J. Wakefield, and J. A. Noble, “Automated segmentation and
alignment of mitotic nuclei for kymograph visualisation,” in Biomedical

Imaging: From Nano to Macro, 2011 IEEE International Symposium

on, pp. 622–625, IEEE, 2011.
[17] A. Gooya, K. M. Pohl, M. Bilello, L. Cirillo, G. Biros, E. R. Melhem,

and C. Davatzikos, “GLISTR: Glioma Image Segmentation and Regis-
tration,” IEEE transactions on medical imaging, vol. 31, pp. 1941–1954,
Oct. 2012.

[18] F. O. Kaster, B. H. Menze, M.-A. Weber, and F. A. Hamprecht, “Com-
parative validation of graphical models for learning tumor segmentations
from noisy manual annotations,” in International MICCAI Workshop on

Medical Computer Vision, pp. 74–85, Springer, 2010.
[19] M. L. Seghier, A. Ramlackhansingh, J. Crinion, A. P. Leff, and C. J.

Price, “Lesion identification using unified segmentation-normalisation
models and fuzzy clustering,” NeuroImage, vol. 41, pp. 1253–1266, July
2008.

[20] M. J. Wainwright, M. I. Jordan, and others, “Graphical models, expo-
nential families, and variational inference,” Foundations and Trends in

Machine Learning, vol. 1, no. 12, pp. 1–305, 2008.
[21] Z. Kato and J. Zerubia, “Markov Random Fields in Image Segmenta-

tion,” Foundations and Trends in Signal Processing, vol. 5, pp. 1–155,
Oct. 2012.

[22] L. Zhang and Q. Ji, “Image Segmentation with a Unified Graphical
Model,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 32, pp. 1406–1425, Aug. 2010.
[23] S.-C. Chen, T. Zhao, G. J. Gordon, and R. F. Murphy, “A novel graphical

model approach to segmenting cell images,” in 2006 IEEE Symposium

on Computational Intelligence and Bioinformatics and Computational

Biology, pp. 1–8, IEEE, 2006.
[24] F. Rathke, S. Schmidt, and C. Schnrr, “Probabilistic Intra-Retinal Layer

Segmentation in 3-D OCT Images Using Global Shape Regularization,”
Medical Image Analysis, vol. 18, no. 5, pp. 781–794, 2014.

[25] K. Kampa, D. Putthividhya, and J. C. Principe, “Irregular Tree-
Structured Bayesian Network for image segmentation,” in 2011 IEEE

International Workshop on Machine Learning for Signal Processing,
pp. 1–6, Sept. 2011.

[26] S. Todorovic and M. C. Nechyba, “Dynamic trees for unsupervised
segmentation and matching of image regions,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 27, no. 11, pp. 1762–
1777, 2005.

[27] E. Mossel, S. Roch, and A. Sly, “Robust estimation of latent tree
graphical models: Inferring hidden states with inexact parameters,” IEEE

transactions on information theory, vol. 59, no. 7, pp. 4357–4373, 2013.
[28] L. Song, H. Liu, A. Parikh, and E. Xing, “Nonparametric Latent

Tree Graphical Models: Inference, Estimation, and Structure Learning,”
arXiv:1401.3940 [stat], Jan. 2014. arXiv: 1401.3940.

[29] C. M. Bishop and others, Pattern recognition and machine learning,
vol. 4. springer New York, 2006.

[30] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A Maximization Tech-
nique Occurring in the Statistical Analysis of Probabilistic Functions of
Markov Chains,” The Annals of Mathematical Statistics, vol. 41, no. 1,
pp. 164–171, 1970.

[31] J. Pearl, Probabilistic reasoning in intelligent systems: Networks of

plausible reasoning. Morgan Kaufmann Publishers, Los Altos, 1988.
[32] F. V. Jensen, An introduction to Bayesian networks, vol. 210. UCL press

London, 1996.
[33] J. M. Lafert, P. Prez, and F. Heitz, “Discrete Markov image modeling

and inference on the quadtree,” Image Processing, IEEE Transactions

on, vol. 9, no. 3, pp. 390–404, 2000.
[34] X. Feng, C. Williams, and S. Felderhof, “Combining belief networks and

neural networks for scene segmentation,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 24, pp. 467–483, Apr. 2002.
[35] C. Bouman and M. Shapiro, “A multiscale random field model for

Bayesian image segmentation,” IEEE Transactions on Image Processing,
vol. 3, pp. 162–177, Mar. 1994.

[36] W. W. Irving, P. W. Fieguth, and A. S. Willsky, “An overlapping
tree approach to multiscale stochastic modeling and estimation,” IEEE

Transactions on Image Processing, vol. 6, pp. 1517–1529, Nov. 1997.
[37] J. Li, R. M. Gray, and R. A. Olshen, “Multiresolution image classifi-

cation by hierarchical modeling with two-dimensional hidden Markov
models,” IEEE Transactions on Information Theory, vol. 46, pp. 1826–
1841, Aug. 2000.



IEEE TRANSACTIONS ON IMAGE PROCESSING 15

[38] A. J. Slorkey and C. K. L. Williams, “Image modeling with position-
encoding dynamic trees,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 25, pp. 859–871, July 2003.
[39] P. Zhang, G. Wu, Y. Gao, P.-T. Yap, and D. Shen, “A dynamic tree-

based registration could handle possible large deformations among MR
brain images,” Computerized Medical Imaging and Graphics, vol. 52,
pp. 1–7, Sept. 2016.

[40] A. Delong and Y. Boykov, “Globally optimal segmentation of multi-
region objects,” in 2009 IEEE 12th International Conference on Com-

puter Vision, pp. 285–292, Sept. 2009.
[41] H. Isack, O. Veksler, I. Oguz, M. Sonka, and Y. Boykov, “Efficient op-

timization for Hierarchically-structured Interacting Segments (HINTS),”
arXiv:1703.10530 [cs], Mar. 2017. arXiv: 1703.10530.

[42] M. V. d. Bergh, X. Boix, G. Roig, B. d. Capitani, and L. V. Gool,
“SEEDS: Superpixels Extracted via Energy-Driven Sampling,” in Com-

puter Vision ECCV 2012 (A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato,
and C. Schmid, eds.), no. 7578 in Lecture Notes in Computer Science,
pp. 13–26, Springer Berlin Heidelberg, 2012.

[43] H. Fehri, A. Gooya, S. A. Johnston, and A. F. Frangi, “Multi-class
image segmentation in fluorescence microscopy using polytrees,” in In-

ternational Conference on Information Processing in Medical Imaging,
pp. 517–528, Springer, 2017.

[44] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convo-
lutional Encoder-Decoder Architecture for Scene Segmentation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. PP,
no. 99, pp. 1–1, 2017.

[45] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on

pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2018.

[46] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing net-
work,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 2881–2890, 2017.
[47] J. Funke, C. Zhang, T. Pietzsch, and S. Saalfeld, “The Candi-

date Multi-Cut for Cell Segmentation,” ArXiv e-prints, vol. 1707,
p. arXiv:1707.00907, July 2017.

[48] V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter, “Annotated high-
throughput microscopy image sets for validation,” Nat Methods, vol. 9,
no. 7, p. 637, 2012.

[49] T. Lindeberg, “Scale-space theory: A basic tool for analyzing structures
at different scales,” Journal of applied statistics, vol. 21, no. 1-2,
pp. 225–270, 1994.

[50] L. R. Dice, “Measures of the Amount of Ecologic Association Between
Species,” Ecology, vol. 26, pp. 297–302, July 1945.

[51] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolu-
tional neural networks applied to visual document analysis.,” in ICDAR,
vol. 3, pp. 958–962, 2003.

[52] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in International Conference

on Medical Image Computing and Computer-Assisted Intervention,
pp. 234–241, Springer, 2015.

[53] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, pp. 498–519, Feb. 2001.


	Introduction
	Related work
	Method
	Graphical modeling for image segmentation
	Graph generation
	Graph definition
	Imposing priors on the graph
	Label inference

	Experiments and results
	General experimental design
	Validation of the inference algorithm: ancestral sampling
	Oversegmentation performance evaluation
	Validation on multi-class image segmentation
	Polytree with scale-space differential invariant features
	Polytree with SegNet-based deep features
	Prediction of segmentation error

	Discussion and conclusions
	Appendix A: Proofs of equations
	References

