
This is a repository copy of Sparse Gaussian Process Emulators for surrogate design 
modelling.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/141998/

Version: Published Version

Article:

Gardner, P., Rogers, T.J., Lord, C. orcid.org/0000-0002-2470-098X et al. (1 more author) 
(2018) Sparse Gaussian Process Emulators for surrogate design modelling. Applied 
Mechanics and Materials, 885. pp. 18-31. ISSN 1660-9336 

https://doi.org/10.4028/www.scientific.net/amm.885.18

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Sparse Gaussian Process Emulators
for Surrogate Design Modelling

Paul Gardner1,a, Timothy J. Rogers1,b, Charles Lord1,c,
and Robert J. Barthorpe1,d

Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield,
Sheffield, UK

apagardner1@sheffield.ac.uk,btrogers3@sheffield.ac.uk, cc.lord@sheffield.ac.uk,
dr.j.barthorpe@sheffield.ac.uk

Keywords: Gaussian Process, Sparse Gaussian Process, Kriging, Emulator, Surrogate Modelling.

Abstract. Efficient surrogate modelling of computer models (herein defined as simulators) becomes
of increasing importance as more complex simulators and non-deterministic methods, such as Monte
Carlo simulations, are utilised. This is especially true in large multidimensional design spaces. In
order for these technologies to be feasible in an early design stage context, the surrogate model (or
emulator) must create an accurate prediction of the simulator in the proposed design space. Gaussian
Processes (GPs) are a powerful non-parametric Bayesian approach that can be used as emulators. The
probabilistic frameworkmeans that predictive distributions are inferred, providing an understanding of
the uncertainty introduced by replacing the simulator with an emulator, known as code uncertainty. An
issue with GPs is that they have a computational complexity ofO(N3) (whereN is the number of data
points), which can be reduced toO(NM2) by using various sparse approximations, calculated from a
subset of inducing points (whereM is the number of inducing points). This paper explores the use of
sparse Gaussian process emulators as a computationally efficient method for creating surrogatemodels
of structural dynamics simulators. Discussions on the performance of these methods are presented
along with comments regarding key applications to the early design stage.

Introduction

Computer models (simulators) are a vital tool in exploring engineering design options. Often design
engineers want to investigate numerous different parameter choices in order to find optimal solutions.
These design spaces are often large and multidimensional, meaning that evaluation of the simulator
at all parameter combinations of interest is infeasible. In order to reduce the computational load of
running numerous simulator evaluations at all parameter combinations of interest, an emulator can be
used. An emulator is a fast surrogate model of the computationally expensive simulator that allows
accurate interpolation of the design space whilst requiring minimal simulator runs. A common ap-
proach for constructing an emulator is to fit a Gaussian process (GP) regression model to simulator
evaluations at a small number of predefined inputs in order to learn the simulator’s input to output
mapping [1,2]. Optimisation techniques and uncertainty quantification approaches often involve mul-
tiple evaluations of the simulator. An emulator provides significant computational savings in being
able to interpolate across the design space with reduced computational complexity. As a result, more
complex computer models, optimisation or uncertainty quantification techniques become practicable.
An additional strength of this approach is the statistical framework of a GP emulator, which pro-
vides an assessment of code uncertainty [3] — uncertainty introduced by approximating the simulator
with an emulator. The code uncertainty can also be included within an optimisation setting by using
a Bayesian optimisation approach [4, 5]; or in a calibration setting with methods such as Bayesian
history matching [6, 7]. The inclusion of code uncertainty means that parts of the input space are not
excluded or misrepresented when the emulator is uncertain about the prediction of the simulator.

GPs are a popular method for non-parametric, non-linear, Bayesian regression [8, 9]. An issue
with GP regression is that training costs O(N3) (for N observations) with prediction of the mean
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and variance costing bothO(N) andO(N2) respectively [10–12]. Although substantially more com-
putationally efficient than running a simulator, this time complexity can make GPs computationally
demanding in circumstances where N is significantly large. To reduce the computational load, sparse
approximations of the full GP have been developed over recent years; these have been constructed
from a regression standpoint [10,12–16]. These sparse approximations reduce the computational com-
plexity of training toO(NM2) [10–12] whereM ≪ N andM is a smaller number of inducing points
— a set of pseudo-inputs and their latent function evaluations that are independent from the training
data. This paper presents the application of state-of-the-art sparse GP approximations in the context
of creating emulators of complex computer models and discusses both model and posterior based ap-
proximations and considerations for emulation. The paper outline is as follows: an overview of GP
regression is presented, in the following section sparse GP approximations are outlined with discus-
sion on model and posterior approximations as well as implications for emulation. Lastly conclusions
are presented highlighting areas of further research.

Gaussian Process Regression

A simulator can be represented by an underlying functional mapping f between a set of inputs X
and their corresponding outputs Y = f(X). It may be possible to run the simulator at any arbitrary
set of inputs, however, to evaluate all the combinations of interest is assumed to be computationally
expensive; for this reason, only a finite set of N simulator runs are often available. The objective of
creating an emulator is to reproduce the functional mapping, via regression, so that predictions of the
outputs can be made given new inputs. Even though in this paper it is assumed that the simulator is
deterministic, a probabilistic approach is useful as the predictive distributions quantify the uncertainty
associated with the prediction, known as code uncertainty [3]. A probabilistic framework means that
the mapping between a set ofN inputsX = {xn}

N
n=1

of dimensionD and their corresponding outputs
y = {yn}

N
n=1

is modelled as p (y |f , X, θ); where θ is a small set of hyperparameters. For a GP
emulator the latent function f is modelled with a GP prior, and the simulator outputs for different
inputs are modelled as jointly Gaussian distributed. The GP prior is formulated as presented in Eq. 1.

p (f |X,θ) ∼ N (m, K) (1)

Where m is a mean function of the form h′(x)β where h′(x) is a design matrix and β the cor-
responding hyperparameters. The covariance matrix K defines the prior assumption of the functions
smoothness and is formed from the covariance function where Kij = k(xi, xj), which is dependent
on the hyperparameters θk = {σ

2

f , ψ} (σ2

f is called the signal variance and ψ are some parameters that
are dependent on the choice of covariance function). The covariance function describes the correla-
tion between any two points in the input space via a reproducing kernel Hilbert space. An example
covariance function is the squared exponential defined in Eqn. 2.

K = σ2

f exp
(

(−X −X ′)ψ (X −X ′)
T
)

(2)

A GP depends on a small number of hyperparameters collectively defined as θ = {β,θk}. The
joint prior between the latent function values (for training f and testing f ∗) at training and testing
inputs,X andX∗ respectively, can be formed as in Eqn. 3; this uses the definition that a GP is collection
of random variables where a finite set has a joint Gaussian distribution 1.

1For compactnessma is the mean function relating to the latent function a andKa,b is the covariance matrix between
the latent functions a and b, e.g.Kf,∗ is the covariance between the training and testing latent functions.
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[

f

f ∗

]

∼ N

([

mf

m∗

]

,

[

Kf,f Kf,∗

K∗,f K∗,∗

])

(3)

The likelihood for the GP emulator is typically modelled as Gaussian, however the variance term
of the likelihood is debated. It is common for a GP emulator to assume that the observations are ‘noise-
free’, i.e. repeats at the same set of inputs will always result in the same output — for a deterministic
simulator. Even so, due to numerical instabilities in inverting the covariance matrix, GP regression
becomes impractical unless a nugget term is added; usually a fixed small number to the diagonal of
the covariance matrix. This can be seen as equivalent to assuming a small level of Gaussian white
noise on the observation, as assumed in many other fields such as kriging and general regression
[9, 17] where the likelihood is formed as p (y |f) = N (f , σ2

nI); where σ2

n is the variance associated
with the noise. The inclusion of the nugget is known to sometimes lead to inference of the latent
function f that smooths through data points with a variance rather than fitting known input, output
pairs exactly. Andrianakis and Challenor proposed a penalty to the marginal likelihood in order to
force a GP emulator with a nugget term to fitting known data points exactly [18]. In this paper a
nugget term will be included and assumed to take a very small value. The resulting likelihood is of
the form p (y |f) = N (f , νI); where ν is the nugget term.

In order to perform inference the joint prior is combined with the likelihood to form the joint
posterior p (f ,f ∗ |y,θ) using Bayes rule (the inputs are dropped for simplicity of notation). The
latent training function f can then be marginalised out form the posterior shown in Eqn. 4; this is
possible in closed form due to the Gaussian assumptions.

p (f ∗ |y,θ) = N
(

m∗ +K∗,f (Kf,f + νI)−1(y −m), K∗,∗ −K∗,f (Kf,f + νI)−1Kf,∗

)

(4)

A fully Bayesian analysis would then require marginalising out the hyperparameters θ, this is
possible for β and the signal variance σ2

f [19], but is intractable for the parameters ψ. If an MCMC
solution to the hyperparameters is used then this marginalisation provides valuable computational
savings. On the other hand if a maximum likelihood approach is used, the computational savings of
the marginalisation are minimal as this becomes the optimisation of a small number of parameters.
In this paper, a maximum likelihood approach is used due to it being a fast and efficient form of
inference with the only negative being that the posterior variance of the GP is slightly underestimated.
Inference of the hyperparameters using a maximum likelihood approach requires forming the marginal
likelihood, the integral of the prior multiplied by the likelihood, the log form of which is shown in
Eqn. 5.

log p (y |X,θ) = −
1

2
log |Kf,f + νI| −

1

2
(y −mf )

T (Kf,f + νI)−1 (y −mf )−
N

2
log 2π (5)

The problem with Eqn. 4 and Eqn. 5 is their dependence on inverting an N ×N matrix requiring
O(N3) operations [10–12]. If a computationally efficient algorithm is used, the prediction complex-
ity of Eqn. 4 is only O(N) with the variance being O(N2). In order to improve this computational
complexity sparse approximations are implemented. This paper will assume a zero mean function in
order to simplify notation, however, it is trivial to include a mean function. In keeping with the brevity
of this paper the reader is referred to [8, 9, 19] for more mathematical definitions and explanations of
GPs.
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Sparse GP Approximations

Sparse GP approximations seek to reduce the computational load involved in inverting Kf,f . The
simplest and most naive approach is to select a subset of data (SoD) of size Q from the full training
data set (of size N where Q ≪ N ) in order to scale down the time complexity to O(Q3) [10]. The
problem is difficult as it relies on a known redundancy within the original data set, which is often not
the case — especially in expensive evaluations of a simulator. This loss of information is generally
unacceptable in an emulation context, as any simulator runs are expected to have come at a large
computational cost. An alternative to SoD is the local GP approach [11]. A simple implementation of
local GPs is to divide a data set into equal block sizes of size B and fit a GP to each block; reducing
the computational complexity to O(NB2). An issue with the technique is that discontinuities will
occur between each data block, this is often unacceptable in emulators due to their primary use in
optimisation or calibration. A less naive implementation of the local GP approach is to use a clustering
algorithm to categorise the data into various subsets and fit GP models to each subset of data. As a
consequence, the computational complexity of the method will not only be dominated by the largest
subset, but will also incur the additional cost of the clustering algorithm. Both SoD and local GP
approaches are therefore not ideal for an emulator setting.

This paper explores two key ideas in the generation of sparse GP approximations; approximating
the model or the posterior. The techniques use inducing inputs [10] (originally referred to as ‘pseudo-
inputs’ [13]) Z = {zm}

M
n=1

, that have a latent function output u, known as inducing variables in order
to produce sparsity.

Model Approximation Approaches. Quiñonero-Candela and Rasmussen present a unified frame-
work for model approximations [10]. These approaches seek to modify the joint prior p (f∗,f) of
the GP (Eqn. 3) in order to replace the complexity of inverting Kf,f with a less expensive inversion.
This is performed by incorporating inducing points {Z,u} (where Z are a set of inducing inputs and
u are the corresponding latent function evaluations) into the joint prior p (f∗,f ,u) and marginalis-
ing the inducing variables, u, out of the posterior (although Z will affect the final solution). The key
assumption for these sparse methods is that the joint prior can be approximated by assuming condi-
tional independence between f ∗ and f given u. This means that f∗ and f are only linked through u;
demonstrated in Eqn. 6.

p (f∗,f) ≃ q (f∗,f) =

∫

p (f∗ |u)q (f |u)p (u)du (6)

Where p (u) = N (0, Ku,u) is the prior2 for the latent variablesu and the test conditional, p (f∗ |u),
is defined in Eqn. 7.

p (f∗ |u) = N
(

K∗,uK
−1

u,uu, K∗,∗ −Q∗,∗

)

(7)

It is noted that the notationQa,b = Ka,uK
−1

u,uKu,b is used in this paper. The two model approxima-
tion methods detailed in this paper differ in their assumption about the training conditional q (f |u),
whilst assuming the same prior for the inducing variables and likelihood.

The assumptions for the training conditional q (f |u), and the marginalised joint prior p (f∗,f),
for both a deterministic training conditional (DTC) and fully independent training conditional (FITC)
approximation are shown in Table 1. The main difference between DTC and FITC is clear in the
joint prior, presented in Table 1. The top left corner of the covariance is modified in FITC so that the

2It is common for a nugget, ϵI to be incorporated here [20] for the same reasons as outline for emulators previously,
i.e. increases the stability of the inversion of the covariance matrix. A nugget is used in this paper meaning
p (u) = N (0,Ku,u + ϵI).
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approximation includes the exact covariance on the diagonal. This transforms the training conditional
from deterministic to fully independent.

The posteriors q (f ∗ |y,θ) and log marginal likelihoods p (y |X) for the DTC and FITC approx-
imations can be unified into the analytical form outlined in Eqn. 8 and Eqn. 9. [12].

q (f ∗ |y,θ) = N
(

Q∗,fK̄
−1

f,fy, K∗,∗ −Q∗,fK̄
−1

f,fQf,∗

)

(8)

Table 1: DTC and FITC assumptions for the training conditional q (f |u) and the joint prior p (f∗,f)
(where diag [A] refers to the diagonal of matrix A). The joint prior p (f ,f∗) is calculated by substi-
tuting the training condition q (f |u) into Eqn. 6 and solving the integral which can be done in closed
form.

Method Training Conditional, q (f |u) Joint Prior, p (f∗,f)

DTC N
(

Kf,uK
−1

u,uu, 0
)

N

(

0,

[

Qf,f Qf,∗

Q∗,f K∗,∗

])

FITC N
(

Kf,uK
−1

u,uu, diag [Kf,f −Qf,f ]
)

N

(

0,

[

Qf,f − diag [Qf,f −Kf,f ] Qf,∗

Q∗,f K∗,∗

])

log p (y |X) = −
1

2
log |K̄f,f | −

1

2
yT K̄−1

f,fy −
N

2
log 2π (9)

Where K̄f,f = Qf,f + diag [α(Kf,f −Qf,f )] + νI . The marginal likelihood and posterior of the
two methods can be formulated by setting α to zero or one for the DTC and FITC approximations

Fig. 1: Predictions from a sparse DTC GP with 10 inducing points, against a full GP and training
simulator data for a numerical example. Shaded regions indicate ±3σ confidence levels.
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respectively. After setting α, the low rank structure of K̄f,f should be exploited using the Woodbury
inversion and determinant lemmas in order to improve the computational efficiency. These amend-
ments reduce the computational complexity for training toO(NM2) and for prediction toO(M) and
O(M2) for the mean and variance respectively [10–12].

The question remains of how to set the inducing inputs. One approach is to consider the inducing
inputs as a subset of the input data. This poses challenges when global prediction quality is required
as the selection of inducing inputs from a discrete set of data will involve some form of greedy or
combinatorial optimisation. In contrast, the inducing inputs can be considered to be drawn from any
point on the real line leading to a continuous optimisation problem [13]. This allows the inducing
inputs to be inferred via optimisation of the log marginal likelihood. When the inducing inputs are
equal to the training inputs, the marginal likelihood and the posterior are the same as the full GP
for both DTC and FITC. A key drawback of model approximation methods are that optimising via
the approximate marginal likelihood means treating the inducing inputs as parameters of the model,
adding all the problems of overfitting and optimisation that are evident in parametric models [12,14].
This view of the inducing points means the assumptions about the data and inference approximations
are coupled. Learning via the exact marginal likelihood of the approximate model also means that the
hyperparameters will be optimal for the approximate model and not necessarily the full GP.

Figure 1 and Fig. 2 present univariate numerical examples where the simulator output is a sample
from GP process (a random seed integer of 5 is used in MATLAB) with zero mean and a squared
exponential covariance; σ2

f = 1 and ψ = 8. The examples demonstrate the difference in the two
approaches when the hyperparameters θ and inducing inputs Z are learnt through optimising the log
marginal likelihood log p (y |X) (Eqn. 9). These illustrate a comparison of the two sparse GPmethods,
DTC and FITC, with a full GP solution and the training data, where the mean and ±3σ confidence
intervals are displayed for the full and sparse GPs (indicated by the shaded regions). It is shown that
FITC gives a better approximation of the variance than DTC, that tends to overestimate (due to the
deterministic assumption). Signs of overfitting are present in both methods. In Fig. 1 the variance
for DTC when X ≈ 0.9 reduces almost to zero, displaying overconfidence in the prediction when it
would be expected to increase from the last training point, as shown in the full GP solution. The FITC
approach in Fig. 2 visually fits the middle section of training data well, however the variance starts to
increase before the ends of the training data. This indicates that the inducing points have been placed
in locations that overfit the middle section of the training data, leading to poor generalisation at the
edges of the training data set.

Posterior Approximation Approaches.An alternative approach to model approximations is to apply
sparsity at the inference stage; this means approximating the posterior and marginal likelihood. Here
two approaches are consider; variation free energy (VFE) [14] and power expectation propagation
(PEP), where PEP has been shown to be a framework unifying both VFE and FITC [12].

VFE aims to approximate the true posterior by constructing a variational approximation maximis-
ing the evidence lower bound (which is a lower bound of the log marginal likelihood log p (y |X)).
VFE is a specific form of variational inference which can also be formulated in a more general sense
(with a uncollapsed form of the bound) [15]. VFE incorporates the inducing inputs as parameters of the
variational inference removing problems associated with treating them as model parameters. A varia-
tional posterior is proposed, augmented by the inducing variables, where q (f ,u) = p (f ,u)φ(u) and
φ(u) is defined as a ‘free’ Gaussian distribution with u depending on the ‘free’ inputs Z. The induc-
ing inputs Z and the ‘free’ distribution φ(u) can be specified by minimising the distance between the
variational distribution and the augmented true posterior distribution p (f ,u |y), using the Kullback–
Leibler (KL) divergence, KL(q (f ,u)||p (f ,u |y)). As stated, this is equivalent to maximising the
lower bound of the true log marginal likelihood as defined as in Eqn. 10.
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Fig. 2: Predictions from a sparse FITC GP with 10 inducing points, against a full GP and training
simulator data for a numerical example. Shaded regions indicate ±3σ confidence levels.

Fv(Z, φ) =

∫

p (f |u)φ(u) log
p (y |f)

✘
✘
✘
✘✘p (f |u)p (u)

✘
✘
✘
✘✘p (f |u)φ(u)

dfdu (10)

The optimal choice for the ‘free’ distribution φ(u) can be found analytically by using variational
calculus resulting in the Eqn. 11 [14].

Fv(Z) = −
1

2
log |Qf,f + νI| −

1

2
yT (Qf,f + νI)−1y −

N

2
log 2π −

1

2ν
Trace(Kf,f −Qf,f ) (11)

Equation 11 is equivalent to that of DTC with the inclusion of a trace regularisation term. This
means that the objective function in the optimisation is a true lower bound of the marginal likelihood.
Following the analysis through with the optimal ‘free’ distribution the approximate posterior is formed
as defined in Eqn. 12.

q (f ∗ |y,θ) = N
(

Q∗,fK̃
−1

f,fy, K∗,∗ −Q∗,fK̃
−1

f,fQf,∗

)

(12)

Where K̃f,f = Qf,f + νI . The approximate posterior is identical to that of DTC and therefore
VFE can be thought of as DTC but penalised by a term proportional to the summed variances. This
term protects against overfitting and forces the inducing inputs to better explain all the data, improving
their optimised locations. The approach remains non-parametric and because the inducing points be-
come variational parameters any additional inducing points will always increase the prediction quality,
which cannot be claimed for model approximation methods.
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An additional approach to approximating the posterior is to use a PEP framework [12]. Themethod
seeks to approximate the joint-distribution in the form of Eqn. 13.

p (f ∗,y |θ) = p (f ∗ |y,θ)p (y |θ) ≈ p (f ∗ |θ)
∏

n

tn(u) = qun (f ∗ |θ) (13)

Where (·)un indicates an unnormalised process. Eqn. 13 shows that only the likelihood term in the
exact posterior is approximated and by a factor tn(u) assumed to be Gaussian. PEP then iteratively
modifies the factors in order to capture the behaviour the true likelihood imposes on the posterior, i.e.
the best surrogate likelihood that approximates the posterior. The PEP algorithm involves three steps
in which a fraction α of the approximate likelihood function is incorporated iteratively for each factor
that needs to be approximated.

1. Deletion: a fraction of one approximate factor is removed in order to evaluated the cavity
distribution (this is an approximate leave-one out joint, where \n indicates leave-one out)3,
qun\n (f ∗,θ) ∝ qun(f ∗,θ)/t

α
n(u).

2. Projection: a tilted distribution is projected onto the posterior distribution using the
alpha-divergence for unnormalised densities. qun\n (f ∗,θ) ← argminDα(p̃(f ∗)||q

un
\n (f ∗,θ)).

The titled distribution is formulated by using the same fraction of the true likelihood as used
in creating the cavity distribution, p̃(f ∗) = qun\n (f ∗,θ)p

α(yn|fn).

3. Update: An updated factor is calculated by the inclusion of a new fraction of the approximate
factor, tn(u) = t1−α

n,old(u)t
α
n,new(u) where tαn,new(u) = qun(f ∗,θ)/q

un
\n (f ∗,θ).

As the GP model defined in this paper has a Gaussian likelihood, the PEP approach has a closed
form solution. This is because the approximate factors can be defined at convergence as stable fixed
points and the update step remains the same. This results in the approximate log marginal likelihood
logZPEP and posterior q (f ∗ |y,θ) defined in Eqn. 14 and Eqn. 8; where the posterior is equivalent to
the approximate model approach (for brevity of this paper see Bui et al. [12] for complete derivations).

logZPEP = −
1

2
log |K̄f,f | −

1

2
yT K̄−1

f,fy −
N

2
log 2π −

1− α

2α

∑

n

log(1 + αDfn,fn/νI) (14)

WhereDf,f = Kf,f −Qf,f . Interesting results occur when α = 1 and as α→ 0, the PEP posterior
and log marginal likelihood become equivalent to the FITC and VFE approach respectively. This
unifying view is helpful in understanding the effects of the parameter α. When α < 1 the last term
of the PEP log marginal likelihood 1−α

2α

∑

n log(1 + αDfn,fn/νI) will act as a regularising term and
making sure that the model generalises well to new outputs; the extreme of the penalty term being
the VFE trace term. Bauer et al. produced an overview of the differences between the FITC and VFE
approaches [20]. They state that FITC has several negative drawbacks, it can overestimate themarginal
likelihood, underestimate the noise/nugget, is not guaranteed to improve when more inducing points
are added and does not recover the true posterior. VFE in contrast, can overestimate the noise/nugget,
does improve with more inducing points and will recover the true posterior where possible whilst
providing a true lower bound of the marginal likelihood. When employing a posterior approximation
approach, the nugget term will need to be inferred as a hyperparameter, rather than a fixed term.
This is because the nugget now includes a measure of the uncertainty introduced by using a low rank
approximation when performing inference. It is noted that both VFE and PEP approximations results
in a computational complexity of O(NM2) for training with O(M) and O(M2) for the mean and
variance predictions [12, 14].

3p∗\n(f∗,θ) = p (f∗,y |θ)/p (yn | fn,θ) ≈ qun\n (f∗,θ) = qun(f∗)/tn(u)
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Fig. 3: Predictions from posterior approximation and FITC sparse GPs with 15 inducing points,
against a full GP and training simulator data for a numerical example. Shaded regions indicate ±3σ
confidence levels. Top left panel, VFE (α = 0); top right panel, FITC (α = 1); middle left panel, PEP
α = 0.25; middle right panel, PEP α = 0.5; and bottom panel PEP α = 0.75.
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Fig. 4: The effect of the number of inducing inputsM and α on the performance of the PEP formula-
tion of sparse GPs averaged over 25 repeats for the negative log marginal likelihood (NLML, left) and
the normalised mean squared error (NMSE, right). Shaded regions indicate ±σ confidence intervals.

Figure 3 and Fig. 4 demonstrate the effect of additional inducing points and the α parameter for
a different one-dimensional numerical example. Here the simulator output is a sample from a GP
(random seed integer of 5 is used in MATLAB) with zero mean and a squared exponential covariance
function; σ2

f = 1, ψ = 30. Sparse GPs models were created with α = 0, 0.25, 0.5, 0.75, 1 and are
compared to the full GP solution and training data in Fig. 3, where mean and±3σ confidence intervals
are presented. A stochastic optimisation method was utilised for inferring the hyperparameters with
25 repeats to quantify the variance in the inference, presented in Fig. 4 as ±σ confidence intervals. It
is demonstrated that the negative log marginal likelihoods (NLML) (− log p (y |X)) ≈ −Fv(Z) ≈
− logZPEP ) reduce as more inducing points are added, stating that the model better explains the
data given more inducing inputs. The NLML also increases with α, in contrast, the normalised mean
squared error (NMSE) (Eqn. 15) is high with larger variance for FITC, a clear indication that the
method has experienced overfitting. It is noted that there is significant overlap in NMSE results for
VFE and PEP when α = 0.25, 0.5, indicating their predictions are very similar.

NMSE =
100

Nσ2
y

∑

(f ∗ − y)2 (15)

Where f ∗ is the mean prediction of the GP emulator, y and σ2

y are a set of true simulator outputs
and their variance respectively. The NMSE formulation means that a score of zero indicates a mean
prediction without error and a score of 100 for scenarios where the prediction is no better than taking
the mean of the true values.

The PEP approach, when α = 0.25, 0.5 provides better predictions of the data when compared
to FITC and PEP at α = 0.75, demonstrated by low NLMLs that correspond to low NMSEs. FITC
and PEP when α = 0.75, although showing low NLMLs, have high NMSEs with large variance,
especially when the number of inducing points is low; which is a clear sign of overfitting. VFE tends
to have high NLML with comparable NMSE to PEP when α = 0.25, 0.5. Figure 3 demonstrates that
the variance of the VFE prediction is larger than the full GP solution, with the variance of both the
PEP formulations when α = 0.25, 0.5 visually matching the full GP more closely. For these reasons
it can be argued that PEP when α = 0.25, 0.5 preforms better in these examples. A close inspection
of the NMSE in Fig. 4 for PEP when α = 0.5, demonstrates lower values than any of the posterior
approximation methods. This leads to the conclusion that PEP with an α = 0.5 outperforms other α
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values (FITC and VFE included) which is consistent with the findings of Bui et al [12]. The question
still arises of how to choose the α parameter. Optimisation is not advised as a value of 1 will lead to
overfitting due to the FITC approximation. It is the experience of the authors that a value of 0.5 should
give satisfactory performance, in-keeping with the finding of Bui et al. [12].
Considerations for Sparse GP Emulators. There are two main reasons why a sparse GP approx-
imation can be useful in creating an emulator. Firstly, when a relatively large number of simulator
runs are available, a sparse approximation can make inference practical. This is achieved by reducing
the computational time complexity to O(NM2) per simulator observation and reducing the memory
requirement. Secondly, when predictions are required at a large number of test inputs a moderate com-
putational saving is made, O(M) and O(M2) per test point. Applications of when these reasons may
be applicable is presented in this section.

In the authors opinion, it is not commonplace that the simulator is run at a large number of param-
eter combinations. This problem mainly arises in a high dimensional parameter space where most of
the parameters actively and significantly effect the output. Here even a space-filled design will result
in a large number of simulator runs and a sparse GP approximation is applicable. Sparse GPs are more
useful in a Bayesian optimisation [4, 5] or Bayesian history matching setting [6, 7]. Both methods
often require predictions from the emulator for a large number of parameter combinations in order to
accurately assess the output space for optimal solutions. The moderate computational saving in the
prediction per test point means that a better exploration of the space can be performed. This becomes
more important in a sequential design process for adding additional simulator runs to the optimisation,
as used in an entropy search or information gain approach [4]. These methods often predict based on a
set grid size for the parameter space; reducing the computational load for prediction means a finer grid
can be set. Due to the approximate nature of sparse GPs their use is not always needed or favourable
for creating emulators. The approximation introduces a nugget term that cannot be fixed as it is a cou-
pling between a noise parameter for the data and an estimation of the error introduced by a low rank
approximation. This means that deterministic predictions at know simulator outputs are not possible,
as is the case with the full GP emulator. This has to be considered when the code uncertainty affects
the results of additional processes, as is the case with Bayesian optimisation and Bayesian history
matching.

Duffing Oscillator Case Study

A case study is presented showing emulation of a design parameter space for a duffing oscillator —
defined in Eqn. 16 — as motivation for the use of sparse GPs as emulators within an early design
context. The objective of this case study is to demonstrate the ability of a sparse GP, using the PEP
formulation with α = 0.5 (due to the reasoning from the previous section), to emulator a large design
space based. Specificity, the aim is to emulate a 5× 5 parameter grid of stiffness k and cubic stiffness
k3 terms that relate to a 512 point displacement time history y — the total space being 12800 points.
In order to predict across this design parameter space an emulator is trained on a five simulator evalu-
ations from a generalised Latin hypercube design where for each evaluation a 512 point displacement
history is generated.

F = mÿ + cẏ + ky + k3y
3 (16)

The duffing oscillator in this case study has a mass of m = 25kg and a damping ratio of ζ =
0.8 with which the damping coefficient c is calculated. The forcing F is a 512 point random-phase
multisine input [21] displayed in Fig. 5. The grid of stiffness and cubic stiffness coefficients used to
test the performance of the emulator are k = {600, 650, . . . , 800}N/m and k3 = {4 × 105, 5.25 ×
105, . . . , 9× 105}N/m.

The sparse GP emulator predictions, when trained using 250 inducing points on the 5 point Latin
hypercube design, produced predictions across the design parameter grid with a NMSE of 1.33 show-
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Fig. 5: Random-phase multisine force input for the duffing oscillator.

ing an very good fit to the data. Due to the large space being predicted a zoomed in example of the
prediction is presented in Fig. 6. The results show that sparse GPs can be used to capture large design
parameter spaces, and therefore could be implemented inside an uncertainty quantification or design
optimisation technique. The example also shows that the code uncertainty predicted by the emula-
tor reflects both the sparse assumption and the size of the training set. In an optimisation context, if
incorporated this uncertainty would ensure that parameter space is not excluded due to poor emulation.

Fig. 6: A zoomed in section of the sparse GP emulator (PEP with α = 0.5 and 250 inducing points)
for the duffing oscillator displacement output across the 5×5 design parameter grid of stiffness k and
cubic stiffness k3 values.
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Conclusions and Further Work

GP emulators are powerful tools for exploring outputs from an expensive simulator. The approach
can be especially useful in a Bayesian optimisation or Bayesian history matching settings. Here code
uncertainty can be informative as to where to sequentially add the next simulator runs. The problem
with GP models are that they are order O(N3) to train and are order O(N) and O(N2) for mean and
variance predictions per test point. In settings where the simulator is very expensive and the design
space is small a full GP solution is practical. However, some applications require a large number of
simulator runs if the parameter space is high dimensional and necessitates a combinatorial approach to
selecting inputs to understand the simulator output. In this scenario, sparse GP models are appropriate
as they reduce the computational load of training toO(NM2)where a prediction is of the orderO(M)
and O(M2) for the mean and variance respectively. Sparse GPs are also useful when a large number
of predictions are required, as is the case in Bayesian optimisation and Bayesian history matching,
where a moderate computational saving can be made.

There are twomain approaches to sparse GPs, model or posterior approximation approaches. It has
been demonstrated that model approximation methods will result in overfitting, due to the inducing
points being parameters of a parametric model. For this reason, both a DTC and FITC approach are
often not appropriate for sparse GP emulators. On the other hand, posterior approximations provide
a solution by treating the inducing points as part of the inference, keeping the model exact and the
method non-parametric. The two main approaches to posterior approximation methods are VFE and
PEP. It has been shown that VFE will often smooth through the data, due to the trace penalisation
term, resulting in predictions that overestimate the noise. PEP resolves these issues by reducing the
penalty and generally outperforming VFE (especially when α = 0.5). Therefore, it is recommended
that when sparse GPs are appropriate a PEP approximation should be used for generating emulators
as this provides satisfactory performance.

Further research should be conducted into creating local approximations whilst retaining a global
predictive quality. This could be achieved with a partially independent training conditional (PITC)
approach where inducing parameters are fixed at known training points where the simulator output is
of interest — for example where a maxima or minima is located. This would provide benefits in using
the computational savings of a sparse approach will producing full GP inference around local regions
of interest.
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