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Abstract

In recent years, parallel developments in disparate disciplines have focused on what
has come to be termed connectivity; a concept used in understanding and
describing complex systems. Conceptualisations and operationalisations of
connectivity have evolved largely within their disciplinary boundaries, yet similarities
in this concept and its application among disciplines are evident. However, any
implementation of the concept of connectivity carries with it both ontological and
epistemological constraints, which leads us to ask if there is one type or set of
approach(es) to connectivity that might be applied to all disciplines. In this review
we explore four ontological and epistemological challenges in using connectivity to
understand complex systems from the standpoint of widely different disciplines.
These are: (i) defining the fundamental unit for the study of connectivity; (ii) separating
structural connectivity from functional connectivity; (iii) understanding emergent
behaviour; and (iv) measuring connectivity. We draw upon discipline-specific insights
from Computational Neuroscience, Ecology, Geomorphology, Neuroscience, Social
Network Science and Systems Biology to explore the use of connectivity among these
disciplines. We evaluate how a connectivity-based approach has generated new
understanding of structural-functional relationships that characterise complex systems
and propose a ‘common toolbox’ underpinned by network-based approaches that can
advance connectivity studies by overcoming existing constraints.

Keywords: Connectivity Studies, Fundamental Unit, Emergent Behaviour, Structural
Connectivity, Functional Connectivity, Measuring Connectivity

Introduction

In recent years, parallel developments in disciplines as disparate as Systems Biology,

Neuroscience, Geomorphology, Ecology and Social Network Science have focused on

what has come to be termed connectivity. In its simplest form, connectivity is a de-

scription of the level of connectedness within a system, and corresponds to a struc-

tured set of relationships between spatially and/or temporally distinct entities (Kool et

al., 2013). In these disciplines connectivity has been a transformative concept in under-

standing and describing what are considered to be complex systems. Complex systems

often exhibit non-linear relations between constantly changing components that to-

gether form the behaviour of the whole (emergent behaviour) via dynamical relations

Applied Network Science

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Turnbull et al. Applied Network Science  (2018) 3:11 

https://doi.org/10.1007/s41109-018-0067-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-018-0067-2&domain=pdf
http://orcid.org/0000-0002-3307-1214
mailto:Laura.Turnbull@durham.ac.uk
mailto:Laura.Turnbull@durham.ac.uk
http://creativecommons.org/licenses/by/4.0/


across multiple levels of organization and scale (Bar Yam, 1997; Cummings and Collier,

2005; Manson, 2001; Wu, 1999), in contrast with simple, non-complex systems, which

tend to exhibit linear relations among components. There has been a wealth of research

into complex systems in recent decades, perhaps spurred on by the discovery that ap-

parently chaotic behaviour can be generated from simple ‘rules’ (e.g. May 1976).

Whilst conceptualisations and operationalisations of connectivity have evolved largely

within their disciplinary boundaries, similarities in the concept and its application

among disciplines are also evident. Existing approaches to the study of connectivity

used across different disciplines have been applied in different ways to understand sys-

tem properties that lead to behaviours characteristics of complex systems. We therefore

ask the question: Can the concept of connectivity provide insight into some of those

simple rules governing complex systems? We explore how approaches used to study

connectivity and system dynamics can be used to understand the ‘simple rules’ govern-

ing complex systems, and if a common set of approaches can be usefully applied to all

disciplines.

To address this question we drew together experts from Systems Biology, Neurosci-

ence, Computation Neuroscience, Geomorphology, Ecology and Social Network Sci-

ence in a face-to-face-workshop to discuss relationships between these disciplines and

connectivity studies, and how we can go about using and sharing connectivity tools

among disciplines. In this workshop we identified four common ontological and epis-

temological challenges in using connectivity to understand complex systems. These

challenges form the subject of this review (Table 1).

Four key challenges in using connectivity to understand complex systems

Defining the Fundamental Unit

A fundamental unit can be either a physical object or a concept that sustains its iden-

tity and participates in the interactions within a system for a sufficiently long time and

in sufficiently important ways to merit quantification. Explicit definition of the funda-

mental unit is required when studying connectivity. In cases where the fundamental

unit is defined based on a concept, a way of operationalising that concept is required. A

key challenge is defining the appropriate fundamental unit for a specific application,

and often depends on the [natural] scales at which it is conceptually robust to work for

a specific application. Hierarchical organization is a common feature of complex sys-

tems, and typically this refers to a nested, module-within-module structure. Each hier-

archical level may, in principle, enable us to make meaningful choices about the

fundamental unit for a given application. Each level of such a hierarchical structure

could be used to define the fundamental unit. For example, in neuroscience the funda-

mental unit could be an individual neuron, or a cortical area. However, within some

disciplines the scalar boundaries are often fuzzy and identification of clear hierarchical

structures is difficult.

Separating Structural Connectivity and Functional Connectivity

Approaches to the study of connectivity within complex systems have often addressed

structure (network architecture) and function (dynamical processes) separately. Struc-

tural connectivity (SC) measures of a system are used to quantify the level of
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Table 1 Summary of connectivity challenges across different disciplines. Extent to which
connectivity challenges are an issue: * do not present a challenge; ** presents a challenge but
progress has been made; *** presents a major challenge.

Fundamental Unit
(FU)

Separating Structural
Connectivity (SC) and
Functional
Connectivity (FC)

Understanding
Emergent Behaviour

Measuring
Connectivity

Systems
Biology

**
• FUs are biologically
well defined, based
on the biological
system rather than
measurement
process.

• A full inventory of
functional elements
is still missing; also
interdependences
between different
levels of cellular
organizations (i.e.
among fundamental
units from different
networks) are often
neglected.

**
• Generally, a clear
time scale
separation ensures a
distinction between
SC and FC.

• While FC is a
network
representation of
cellular states (e.g.
correlations
between metabolite
concentrations or
gene expression
levels), SC is shaped
by evolution on a
much slower time
scale.

**
• Concepts such as
modularity and
hierarchy may
provide a starting
point for addressing
emergent
behaviour within
the current
knowledge of SC
and FC, but a true
incorporation of the
many (spatial and
temporal) scales will
require novel
multiscale methods.

• Key challenge:
understanding the
relation of
regulatory
mechanisms and
emergent collective
behaviour.

**
• Explosive growth of
high-throughput
methods providing
access to many
facets of structural
and functional con-
nectivities, but has
led to a dramatic di-
versification of data-
bases, methods and
nomenclatures,
resulting in a strong
need of data and
method integration.

Neuroscience *
• Defining the
fundamental unit of
the brain is clear-cut
and depends on the
level (scale) at
which one is
working.

• The fundamental
unit is commonly
defined as being
the cortical area,
although is
alternatively defined
as the neuron.

**
• Different techniques
are used to
distinguish between
SC and FC, but FC is
defined (using
various techniques)
using indirect
correlates of brain
activity.

• Memory affects the
relation between SC
and FC through its
long-lasting ana-
tomical import on
the structure of the
network.

• Understanding the
effects of memory
remains a key
challenge because
of the diffuse nature
of the anatomical
imprint.

**
• Great progress has
been made in
understanding
concepts such as
attention and
emotion as
emergent
properties of neural
activity.

• The big challenge
today is to push
this understanding
to its limit and offer
a convincing
account of how
neural activity and
its organization in
the networks of the
brain eventually
leads to
consciousness.

**
• A range of
techniques exist to
measure
connectivity

• Due to differences
in spatial and
temporal resolution
between different
measurement
techniques, hybrid
approaches are
becoming popular
to overcome the
challenge of
measuring SC and
FC at appropriate
resolutions.

• The main challenge
with the
[premature] use of
hybrid methods is
that the final result
may be limited to
what the least
sensitive method
can provide.

• Measurements of
FC are inferred from
high-resolution
snapshots, rather
than being mea-
sured directly.

Computational
Neuroscience

*
• The fundamental
unit is typically
defined as being
individual neurons
or cortical areas and

**
• It is increasingly
common to directly
and quantitatively
compare SC and FC
(such separations

*
• Network-based ap-
proaches are used,
allowing for the
interplay of SC and
FC allow for the

*
• Measurements of
connectivity are
undertaken using a
wide range of
network-based
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Table 1 Summary of connectivity challenges across different disciplines. Extent to which
connectivity challenges are an issue: * do not present a challenge; ** presents a challenge but
progress has been made; *** presents a major challenge. (Continued)

Fundamental Unit
(FU)

Separating Structural
Connectivity (SC) and
Functional
Connectivity (FC)

Understanding
Emergent Behaviour

Measuring
Connectivity

form the nodes of a
network. Identifying
these fundamental
units is done using
anatomical means
and neurobiological
knowledge.

are readily
undertaken and
pose no major
challenges).

• A limitation is that
SC/FC correlations
only tend to look in
one direction only –
the effect of
structure on
function.

exploration of self-
organization and
pattern formation –

both important
characteristics of
emergent
behaviour.

descriptors of
connectivity.

Geomorphology ***
• No clear or
consistent definition
of the fundamental
unit (it is dependent
on the research
question).

***
• Separating SC and
FC in a meaningful
way is challenging
because of the
myriad of processes
operating over a
multitude of spatial
and temporal scales.

• Separating SC and
FC is compounded
by the imprint of
memory and
timescales over
which it affects
connectivity for a
meaningful
separation of SC
and FC.

***
• Tools to explore
how SC and FC
lead to emergent
behaviour are
lacking.

• Multi-method ap-
proaches focussing
on the interactions
of SC and FC over
relevant spatio-
temporal scales
may aide in under-
standing emergent
behaviour.

**
• Approaches to
measure SC are well
developed, and
make use of high-
resolution tech-
niques where
appropriate.

• No direct
measurement
techniques for FC
are available and
rely on inferring
connectivity from
snapshots of
information.

• Modelling is often
used as a surrogate
for direct
measurements of
FC.

Ecology **
• Conceptually the
fundamental unit is
defined as the
ecosystem.

• In operational
terms, defining the
FU is more difficult.

**
• Linking and
separating SC and
FC is common, but
made challenging
where there are
time lags in the
response of
ecological function
to changes in
ecological structure
and vice versa.

**
• Many attempts to
explain emergent
behavior (e.g. using
advection-diffusion
models) have pro-
duced realistic pat-
terns, but at the
expense of realistic
processes.

• A challenge is to
study emergent
behaviour using
model structures
that are not
inherently designed
to produce
patterns.

**
• A range of
techniques exist for
measuring SC based
on simple indices of
patch connectivity,
through to
network-based
approaches.

• Measuring FC poses
much more of a
challenge and
requires dealing
with complex
phenomena that
are difficult to
quantify and tend
to reply upon
inferring FC
connectivity based
on a series of
empirical
measurements
through time.

• Advances being
made in measuring
SC and FC through
the use of weighted
monopartite and
bipartite networks.
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configuration or arrangement of a network, whilst the functional connectivity (FC) of a

system describes dynamical processes operating within a structurally connected net-

work. SC thus derives from the system’s anatomy, whereas FC is inferred from the system’s

process dynamics which are represented by fluxes and transformations of energy, matter or

information between structural units. Structure always affects function (Strogatz, 2001), and

often (but not always) function affects structure, although the timescales of the reciprocity/

feedback may differ. Many connectivity-based approaches separate SC and FC in order to

simplify their study. However, this separation is challenging because the degree of connect-

ivity and feedbacks between SC and FC will depend on the spatial and/or temporal scale(s)

at which the system is studied: as spatial scale increases connectivity becomes an internal

process that cannot be represented or quantified explicitly. For example, in Ecology con-

nectivity amongst different patches cannot be explicitly represented when studying the sys-

tem at a higher level or organization. In many (if not most) systems, SC evolves over time.

For example, in Neuroscience, although the structure of the child’s brain appears similar to

that of the adult brain, its size, orientation within the cranium and details of the anatomical

connectivity changes appreciably over the next few years and some areas of the brain, espe-

cially in the frontal lobe, only mature after adolescence. Capturing this evolution is a funda-

mental advance provided by complexity-based approaches compared to more traditional

systems-based concepts. At different timescales the relation between SC and FC may look

very different. Thus, a key issue when separating SC and FC is determining the timescale at

which a change in SC becomes dynamic (i.e., functional), and this in turn may depend on

the fundamental unit. System memory – the imprint that function leaves on the structure

of a system or network – also affects the interplay of SC and FC, and therefore a further

consideration is how to incorporate memory into quantitative descriptions of the

structural-functional evolution of connectivity. The separation of SC from FC is artificial

Table 1 Summary of connectivity challenges across different disciplines. Extent to which
connectivity challenges are an issue: * do not present a challenge; ** presents a challenge but
progress has been made; *** presents a major challenge. (Continued)

Fundamental Unit
(FU)

Separating Structural
Connectivity (SC) and
Functional
Connectivity (FC)

Understanding
Emergent Behaviour

Measuring
Connectivity

Social Network
Science

*
• Traditionally the
fundamental unit is
defined as the
person, although
more recently the
definition has
become less certain
with some
researchers now
using the
interaction as the
unit of study.

***
• The focus tends to
be on the
connectivity of
structural networks.

• Approaches to look
at dynamics (FC) are
limited in terms of
analytical power.

• In social networks
culture is a type of
memory effect that
affects function (i.e.
the response of an
individual to social
interactions), and
the complexity that
an evolving mix of
cultures brings to
social networks is a
significant
challenge.

***
• The emergence of
the network
property is
conditional on
entire network
interactions, and
the challenge of
adopting models of
social behaviour
that recognise the
diversity of social
interactions across a
population
complicates matters
further.

***
• Measuring
connectivity is a
major challenge
due to ethical,
practical and
philosophical
constraints.
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and is thus subjective. A key challenge in separating SC and FC is weighing up the gains that

can be made by making these separations, versus the losses in our potential understanding of

the system that arise due to these separations. These gains and losses depend on the time-

scale of interest compared to the rate of evolution of system structure.

Understanding emergent behaviour

The structural-functional evolution of a system via structural-functional connectivity

may lead to emergent behaviour whereby local interactions lead to self-organised phe-

nomena observable at larger spatial scales that cannot be predicted (or at least they are

not obvious at the local level: what Bedau (1997) calls “weak emergence”). Emergent

behaviour is an important characteristic of complex systems that leads to the formation

of patterns; simple and complex patterns at the larger scale can be formed by very sim-

ple interactions at the local level. These simple interactions depend on the local con-

nectivity of entities within a system. However, deriving quantitative descriptions of

emergent behaviour is challenging. Theoretical tools to relate emergent behaviour to

structure and function are lacking, and by separating SC from FC we make it even

more difficult to analyse emergent behaviour. A key challenge is how to best use con-

cepts and operalizations of connectivity to develop quantitative descriptions of emer-

gence that will enable us to understand emergent behaviour better, and overcome the

aforementioned barriers to this goal.

Measuring connectivity

To apply the concept of connectivity to understand the behaviour of real-world com-

plex systems, it is necessary to quantify connectivity, yet this poses several challenges.

The level of connectivity observed within a system depends on the lens through which

one observes it. Due to the inability of existing tools to measure connectivity directly, it

is often necessary to infer connectivity from an alternative set of indirect measure-

ments. Indirect measurements can lead to subjectivity and uncertainty in our under-

standing of connectivity and dynamical feedbacks operating within a system, and

furthermore, can impede appropriate operational definitions of the fundamental unit.

There is also a timescale issue: at finer timescales measurements of connectivity may

tend towards descriptors of SC rather than FC. FC is more than just inferring what is

happening between snap-shots, but trying to determine the actual processes operating

to produce fluxes (Bracken et al., 2013). How many snapshots do we need of a system,

and how close in time do they need to be before we can be confident to capture the

“dynamic or functional” aspect of connectivity? A variety of tools for studying connect-

ivity exist: the challenge here is both to recognise the limitations that these tools place

on our understanding of connectivity, and to develop new tools where those limitations

significantly constrain our understanding.

Disciplinary perspectives

Within all the disciplines explored here, an abstraction of the system is required in

order to study connectivity. Most commonly, this abstraction involves representing the

system as a network. In recent years networks have emerged as an invaluable tool for

describing and quantifying complex systems, especially due to the ease with which
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networks can be used to represent hierarchical organization over multiple scales (Clau-

set et al., 2008). The representation of a system as a network provides the opportunity

– using network-based tools – to disentangle noise and stochasticity from non-random

patterns and mechanisms, in order to gain a better understanding of how these systems

function and evolve (Menichetti et al., 2014). Here, the network-based approach under-

pins our conceptual framework for connectivity studies due to its ubiquity.

The simplest network-based abstraction of a system is a graph consisting of nodes

and links. More detailed abstractions can be achieved through the use of weighted links

and directional links. In an unweighted network, links are binary entities, where they

are either present or not. In a weighted network links have associated weights that rec-

ord their strengths relative to one another (Newman, 2004a). In a directional network,

the flow of information or material is in one direction, from one node to another,

whereas in an undirected network, flow is in either direction between two nodes. A sys-

tem can also be represented as a bipartite network, in which two different classes of

nodes can be represented, and links between nodes are allowed across but not within

two classes (Daminelli et al., 2015), thus allowing identification of interactions between

distinct groups of nodes. Furthermore, whilst some disciplines can be represented using

non-spatial networks, space is critical in others.

A wide range of different types of systems can be represented as a network (Fig. 1),

which raises the possibility for a set of common tools and opportunity for the more

general, trans-disciplinary study of SC and FC using network-based approaches.

Systems Biology

Systems Biology strives to understand biological entities as complex systems through

analysis of the interdependencies of the components of these systems; i.e., via a system’s

connectivity. Over the past two decades, new high-throughput technologies have en-

abled mathematical modelling, statistical analysis and numerical simulation of bio-

logical systems with unprecedented detail for each level of description. At the core of

systems thinking in Biology is the concept of networks (see, e.g., Barabasi and Oltvai, 2004;

Barabasi et al., 2011; Cowen et al., 2017; Hütt, 2014). Together with Statistical Physics (e.g.,

Albert and Barabasi, 2002), Systems Biology has been one of the principal drivers behind

the development of a theory of complex networks and a rich set of methods for network

analysis (Barabasi and Oltvai, 2004).

Defining the Fundamental Unit

An important prerequisite for the success of networks in Systems Biology is that the

fundamental units are biologically well defined. Metabolic networks, for example, are a

compilation of biochemical knowledge (the set of chemical reactions catalyzed by en-

zymes) and the inventory of genes encoding enzymes derived from a carefully anno-

tated genome. The most prominent category of gene regulatory networks,

transcriptional regulatory networks, is obtained from genes in the genomes together

with the binding sites for transcription factors. As is often the case, many little issues

are hidden in the details underneath these general definitions. For example, it is well

known that a distinction between main metabolites and ’currency metabolites’, which

balance proteins, energy and other chemical factors, is decisive, when evaluating the
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statistical properties of metabolic networks (Ma and Zeng, 2003). Similarly regarding

gene regulatory networks, there is a multitude of other regulatory mechanisms in

addition to transcription factors. Thus, even in the comparatively simple case of bacter-

ial gene regulation, we cannot assume the transcriptional regulatory network to be a

Fig. 1 Network-based representation of structural and functional connectivity. Illustration of ways in
which structural and functional connectivity within a multitude of systems can be conceptualised using
a network-based approach across Systems Biology, Neuroscience/Computational Neuroscience,
Geomorphology, Ecology, and Social Network Science
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complete representation of the regulatory apparatus (see for example the debate in

Marr et al., 2008; Sobetzko et al., 2012). Even though the networks compiled at the

gene-regulatory, metabolic or protein interaction level can be thought of as vast compi-

lations of biological information, it should be noted that the underlying databases will

drift with time: more biological knowledge is accumulated, but also the biological cat-

egories used to derive suitable network representations of the system will be refined

and altered. As a consequence, the network properties will drift as well (Beber et al.,

2016). Additionally, the diversity of databases, data formats, models and computational

tools and the lack of standards on these levels is currently an enormous barrier to pro-

gress in the field (Chavan et al., 2011). Thus, when adopting a network representation

many details are necessarily omitted, and decisions about these details can have a se-

vere effect on network structures.

Separating SC and FC

With the availability of high-throughput (often called ‘omics’) data, attention in the life

sciences has shifted from individual components (single molecules, proteins or genes)

to system-level descriptions. The challenge for Systems Biology is to derive and inter-

pret detailed ‘multi-omics’ representations of biological systems (Bauer et al., 2016). A

key strategy in addressing this challenge is to separate the interdependencies of system

components (i.e. SC) from correlations among dynamical observations such as gene ac-

tivities or metabolite concentrations (i.e. FC). For a wide range of organisms in all do-

mains of life, the genome (i.e., the DNA sequence of one or several representatives of a

species) is now available. Typical examples of omics data are transcriptome profiles

(the simultaneous measurements of the expression levels of many genes in a cell),

proteome profiles (the simultaneous measurements of many/all proteins in a cell),

metabolomics profile (the measurement of many metabolite concentrations in a cell) or

epigenetic patterns (a genome-wide assessment of methylations and/or histone modifi-

cations, which are the most common forms of epigenetic signals).

The richness of biology in terms of molecular components and interactions has for a

long time prevented the development of systems-level descriptions. For a long time the

detailed mathematical modelling of small subsystems (e.g., metabolic pathways or the

interaction of a small number of genes) has been the method of choice for the step from

components to (small) systems. This is the defining feature of Theoretical Biology. The

abstraction of biological systems in terms of nodes and links has paved the way for more

qualitative approaches, which, however, allow us to address the scale of a whole cell.

These network approaches have become one of the cornerstones of Systems Biology.

One of the reasons for the success of the network view in Systems Biology is that

structural properties and snapshots of biological function are typically measured in in-

dependent ways: transcriptome profiles as activity states of gene regulatory networks

(which are compiled from information on transcription factors and binding sites),

metabolic fluxes or metabolite concentrations as activity states of metabolic networks

(which are compiled from known biochemical reactions and the enzymes identified in

the genome). For a particular observation of biological activity – for example a tran-

scriptome profile – the effective networks, representing the currently active part of a

biological system, can be viewed as a representation of FC.
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Comparisons of SC and FC provide relationships either between network representa-

tions of global biological knowledge and high throughput ’omics’ data or between differ-

ent categories of ’omics’ data, each represented by a network. A rich set of relationships

between SC and FC has been established in Systems Biology. Examples include the pre-

dictive power of elementary flux modes in metabolism (Stelling et al., 2002), the relation-

ship between hierarchy level and gene essentiality in gene regulatory networks (Yu and

Gerstein, 2006), the relationship between node degree and essentiality in protein inter-

action networks (Jeong et al., 2001), the power law distribution of metabolic fluxes

(Almaas et al., 2004, see also above), the network interpretation of gene-enzyme scaling

relationships (Maslov et al., 2009), the importance of a spatial embedding of regulatory

networks in bacterial gene regulation (Hacker et al., 2017; Marr et al., 2008), the interplay

of gene regulation and metabolism as an example of interdependent networks (Klosik et

al., 2017; Sonnenschein et al., 2011) and the predictability of likely environments from

metabolic networks (Borenstein et al., 2008).

As mentioned above, the independence of data resources behind SC and FC are

of high relevance to the success of network approaches in Systems Biology. Never-

theless, the possibility of predicting a link (i.e., an element contributing to SC)

from (dynamical) data (and hence from information associated with FC) has also

been pursued in diverse ways in Systems Biology. Examples of such link prediction

or network inference approaches include the inference of gene regulatory networks

from gene expression patterns (Marbach et al., 2012) and the inference of micro-

bial interaction networks from species abundances, particularly in the context of

(human) microbiomes (Faust and Raes, 2012; Claussen et al., 2017). In the litera-

ture on network inference, e.g., in the context of gene expression, methods fall into

the following categories (e.g., Le Novere 2015): correlation analysis, methods from

information theory, Bayesian inference, and explicit modelling (e.g., using differen-

tial equations). In Claussen et al. (2017) an example of an information-theoretical

approach is described, where interactions are defined via the entropy shift, when

combining binarized abundance vectors using Boolean operations. One should also

emphasise that all these methods have been designed for data-rich situations and

do not necessarily yield convincing results (see, e.g., the detailed comparison in

Marbach et al. (2012) for the case of gene regulatory networks).

In Systems Biology, memory effects in the classical sense of learning and adaptive

networks are highly reduced, because the relevant time scales of dynamical behav-

iour and network adaptation (i.e., cellular function and evolution) are clearly sepa-

rated. Still, we can expect the networks to be shaped by evolution to optimize or

enhance certain functional properties. The precise ’objective function’, however, is

not known in detail. In a broader sense, memory effects can be viewed as the pres-

ence of slow and fast time scales in a system’s dynamics. Network architecture can

facilitate the spread of time scales contributing to a certain biological function,

which is seen on the scale of few nodes (e.g., interlinked feedback loops, (Brand-

man et al., 2005; Brandman and Meyer, 2008)), as well as in the ubiquity of hier-

archical and modular network architectures on the metabolic and gene regulatory

level (see, e.g., Ravasz et al., 2002; Guimera and Amaral, 2005; Yu and Gerstein,

2006). In Kashtan and Alon (2005) the relationship between modularity and time

scales is investigated in more detail.
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Understanding emergent behaviour

Emergent behaviour is a key concept from the theory of complex systems. In his defin-

ing paper on Computational Systems Biology, Hiroaki Kitano emphasized that:

“A popular notion of complex systems is of very large numbers of simple and identi-

cal elements interacting to produce ’complex’ behaviours. [In Biology] large numbers of

functionally diverse, and frequently multifunctional, sets of elements interact selectively

and nonlinearly to produce coherent rather than complex behaviours” (Kitano, 2002).

With this remark, Kitano emphasizes the danger of building up Systems Biology directly

from the toolbox of complex systems (see also the more general remark by Keller, 2007).

Nevertheless, many examples of self-organised patterns – and thus of emergent behaviour

– come from biology, both on the intracellular level (e.g., calcium waves (Falcke, 2004) or

the interplay of Min proteins in the E. coli cell division (Loose et al., 2008)) and on the

multicellular level (e.g., spiral waves and aggregation streams in Dictyostelium discoideum

(Kessler and Levine, 1993; Palsson et al., 1997)). Networks can play an important role on

this level as well. A prominent example is the food foraging network formed by the slime

mould Physarum polycephalum, which connects spatially distributed food sources in an

efficient network layout (Tero et al., 2010). This example points to an important differ-

ence between patterns in Physics and Chemistry on the one hand and patterns in Biology

on the other. In Physics and Chemistry, patterns are often a by-product of the nonlinear

interactions of system components. In Biology patterns often have undergone a clear evo-

lutionary tuning and this might serve a system-level function (such as the network con-

necting food sources in the case of Physarum, the aggregation of cells as a step to a

multicellular organism in the case of Dictyostelium or the spatial organization of cell div-

ision in E. coli). The regulatory components must therefore have evolved to yield stable

functional patterns and we can thus expect a deep relationship between regulatory com-

ponents and properties of spatiotemporal patterns. An example is strong and

non-monotonous dependence of the density of spiral waves (which regulates the size of

the later-stage multicellular aggregates) on the intracellular feedback loop regulating the

production of the main signalling substance, cAMP (Sawai et al., 2005). Understanding

the relationship of regulatory mechanisms and emergent, collective behaviours is an im-

portant future challenge in Systems Biology (Grace and Hütt, 2015).

Measuring connectivity

Generally speaking, in Systems Biology the (structural) networks come from two main

sources: (1) they are obtained from repositories of accumulated biological information;

(2) they are derived from high-throughput data. In the first case, the networks are de-

fined via ‘knowledge accumulation’, rather than by ‘measuring’ connectivity.

As in most other disciplines discussed here, it is highly instructive to discriminate be-

tween the cases, where the system properties define the units (i.e., the nodes and links

in the network representations of the systems), and the cases, where the measurement

technique defines these units. Typically, for networks extracted from accumulated bio-

logical information the fundamental units are not dictated by the measurement process,

but rather by the biological system itself. As outlined above, metabolic networks can be

seen as an example of this category. Protein interaction networks, on the other hand,

are an example of the other type of SC: There, a link (the physical binding of two

Turnbull et al. Applied Network Science  (2018) 3:11 Page 11 of 49



proteins) has originally become a fundamental unit due to its accessibility via

high-throughput measurements. The biological relevance of such protein-protein inter-

actions is not the defining criterion. In fact, a link between two proteins might be part

of the network, even though the two proteins are located in different cellular compart-

ments and therefore will never actually have a chance of interacting.

Functional connectivity, which is a representation of the current state of, for example, a

biological cell, is typically measured via the high-throughput technologies discussed above.

Such as state can be an activity pattern of all genes or a list of concentrations of metabolites

available in the cell at a certain moment in time. Correlations between states and ‘effective

networks’ (subnetworks derived from structural networks by only considering active/high--

concentration components and their connections) are a typical method for deriving FC

from high-throughput data.

Neuroscience

Neuroscience is the study of the nervous system and is centred on the brain. Connect-

ivity in neuroscience is mainly studied using networks, with a range of networks being

studied, depending on what is adopted as the network components. The techniques

used by neuroscientists range from molecular and cellular studies of individual nerve

cells to imaging of sensory and motor tasks in the brain. These techniques have enabled

researchers to investigate the nervous system more fully, including how it is struc-

tured, how it works, how it develops, how it malfunctions, and how it can be

changed. For the sake of brevity, here we focus on an intermediate level descrip-

tion where the nodes of the network are well circumscribed areas that are bounded

by borders that are sharply defined by changes in both structure (anatomically de-

finable changes in the local architecture) and function (e.g. the way some property

in the mapping of the external visual field varies smoothly within it and sharply

changes as the boundary is crossed).

Defining the Fundamental Unit

Within Neuroscience, it is usual to focus on a level of description that is charac-

teristic of the structural organization of the brain and the functions it performs,

and for didactic purposes and for practical reasons, it is usual to focus on a net-

work description that has neither too few nor too many elements. There are

roughly 100 billion neurons in a brain, so a network description based on individ-

ual neurons or sub-cellular entities like synapses will lead to a network of too

many components (to be of practical use). When one studies quantitatively the

way the constituent neurons are arranged in space with respect to each other (the

cytoarchitecture) and what neurotransmitters they express (receptor density distri-

bution) a clear pattern emerges: the brain is divided into a few hundred areas

(about 200 to 300 areas for the cortical mantle)1. Within each one of these areas

the cytoarchitecture and receptor density distributions are fairly uniform with only

relatively slow and gradual variation. In contrast, at the borders between these

areas there is a rapid transition, so identifying either the rapid changes in cyto-

architecture or receptor density properties allows an accurate and objective identi-

fication of the borders and hence an accurate delineation of these areas (Zilles et

Turnbull et al. Applied Network Science  (2018) 3:11 Page 12 of 49



al., 2002), simply denoted as cytoarchitectonic areas of the brain. For the purposes

of the following discussion, the cytoarchitectonic areas are the fundamental unit

for neuroscience, at least at the level of nodes for the networks focused on here.

Separating SC and FC

The investigation of structural and functional networks of the brain is at the heart

of many initiatives in neuroscience; it is an essential component of the Human

Brain Project (https://www.humanbrainproject.eu/en/) and it is the primary goal of

the Human Connectome Project (http://www.humanconnectomeproject.org/). Func-

tional connectivity per se is defined in terms of quantitative measures of linked ac-

tivity, computed from time series of regional brain activations. Indirect correlates

of brain activity are mediated by metabolic changes as these can be traced from

the regional consumption of radioactively labelled glucose in Positron Emission

Tomography (PET) or the Blood Oxygenated level Dependent (BOLD) functional

Magnetic Resonance Imaging (fMRI). Both methods provide indirect correlates of

brain activity with time constants of many minutes for PET and a few seconds for

fMRI. These changes are slow – orders of magnitude slower than the few millisec-

ond transit time for the activity between areas. With improvements in the accuracy

of these methods, it has become clearer that the foci of brain activity coincides

with the cytoarchitectonic areas, with initial demonstrations emphasizing responses

to well defined stimuli as these excite the early cytoarchitectonic areas in each sen-

sory hierarchy.

As used in the study of complex systems, the term ‘memory’ derives from Neuroscience.

Within Neuroscience, memory comes under different forms, each characterised by a dif-

ferent temporal scale. Modality specific (sensory) memory allows continuity in perception

and it typically decays within a second. Short-term memory allows us, possibly through

rehearsal, to remember recent events and has a characteristic decay time around a mi-

nute. Short-term memory is very likely based on FC reverberations of patterns of activity

that maintain resemblance to the original pattern for only a short time before they

become indistinguishable from the background neural activity leaving no perman-

ent trace. In general, references to memory that are applicable to connectivity are

about long-term memory, which allows us to recall events over longer time pe-

riods. The process of establishing long term memories is facilitated by the transfer

of memory related activity from a temporal store centred around the hippocampus

to a more permanent storage in the cortex (Bontempi et al., 1999) with active con-

solidation going on during sleep (Stickgold, 2005). The consolidated memory must

be associated with a change in SC of the network, but its long-lasting anatomical

imprint is diffusely stamped in many nodes of the anatomical network. These dif-

fused changes are however organised so that spatiotemporal patterns of electrical

activity in the network (re-)construct the experience as and when needed in nor-

mal life or as a persistent and inescapable replay of dramatic events in pathology.

Understanding memory is a challenge for neuroscience because of the diffuse na-

ture of its anatomical imprint and the labile nature of the electrical activity associ-

ated with its recollection; currently, it is difficult to capture in its totality by any

one or a combination of the different neuroimaging modalities.
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Understanding emergent behaviour

Detailed analysis of connectivity patterns of the network can be used to identify

sub-networks that correspond to individual sensory and other networks. These

sub-networks can be derived from the anatomical structure and the SC (e.g. derived

from cytoarchitectonic areas, cortical thickness, receptor density for the delineation of

areas and anatomical tracing or white matter density quantification from diffusion ten-

sor imaging for the SC). Large-scale organization also emerges from a decomposition

of the full network derived from the FC of resting state fMRI (van den Heuvel et al.,

2010), electroencephalography (EEG) (Boersma et al., 2011) and magnetoencephalogra-

phy (MEG) (de Pascquale et al., 2010) data. Analyses of these data reveal a natural de-

composition of the full network into distinct sub-networks. The role of each

sub-network is evident from the known specialization of its component nodes. The de-

composition based on the resting activity reveals sub-networks for each sensory modal-

ity; networks that are known to be critical for the implementation of supramodal

cognitive functions including attention, working memory and the default mode network

(a network that becomes more active when the subject is not occupied with a specific

task or monitoring the external environment). It therefore appears that properties of

the mind are correlated with emergent behaviour of the functional networks, and are

consistent with the properties of the physical brain, as these were determined by wet

brain anatomy and electrophysiology.

At this point in time neuroscience has achieved a fair understanding of how elements

necessary for complex purposeful behaviour such as attention and memory are imple-

mented, yet it remains a mystery how these are combined to give rise to consciousness

which can be considered as the most significant emergent property of all. Understand-

ing how consciousness emerges, from the activity of neurons and the organization and

function of the networks they form, constitutes the Holy Grail of modern neuroscience

and perhaps of science of the 21st century. A recent synthesis of results from many

neuroimaging studies provides a tentative step in this direction within a unified

framework that explains how memory and attention are managed in awake state

and sleep states and how they help maintain what appears to be a neural represen-

tation of self (Ioannides 2018).

Measuring connectivity

Anatomical connectivity relates to the number of connections linking two anatomical

nodes, i.e. the whole or specific parts of two cytoarchitectonic areas. Quantifying FC re-

quires methods that can separate the contributions from individual cytoarchitectonic

areas at temporal resolutions that are typical of the processing time within and the

transfer between areas. The distance between neighbouring cytoarchitectonic areas is

typically a few millimetres and the typical transfer time between two areas is of the

order of 10 milliseconds.

Indirect approaches to measuring FC between cytoarchitectonic areas involve using

classical “wet brain” fibre tracing methods (Zeki 1993) or the more recent non-invasive

in-vivo white matter tracing using diffusion tensor imaging. The resulting networks are

purely structural, and when they are analyzed, e.g. using clustering based on properties

of the nodes (e.g. cortical thickness, neurotransmitter density) and/or links (e.g. white
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matter density and patterns), functional properties of the underlying networks can be

deduced, including predictions about the FC patterns (Honey et al., 2009).

Direct measures of brain activity rely on electrophysiology. The EEG records the elec-

trical potential (difference) on the scalp and the MEG records the magnetic field just

outside the head. They are both generated by electrical activity in a very large number

of neurons that are activated synchronously and they are arranged in a similar way in

space, so that the resulting effect summates constructively. The functional networks of

the brain can be constructed from the regional brain activations extracted from the

EEG and especially MEG data using similar mathematical processes as the ones used

for PET and fMRI. While in principle the EEG and MEG records carry similar informa-

tion, the analysis of MEG signals requires less detailed modelling of the conductivity

profile of the head to identify the generators accurately compared with the EEG ana-

lysis. The main difference between the networks derived from metabolic and electro-

physiological measures is in the timing: minutes or many seconds for PET and fMRI

and milliseconds for MEG and EEG.

It is widely believed that techniques relying on slow blood flow have the required

spatial resolution but fail on the temporal resolution, while MEG and EEG follow

changes in brain activity fast enough but do not have the required spatial resolution.

Hybrid approaches are becoming popular in an attempt to bring together the higher

temporal resolution of electrophysiology with the perceived more robust localization

ability of hemodynamic methods (Babiloni et al., 2004). These hybrid methods rely on

simultaneous recording of fMRI and EEG and use EEG to identify periods of specific

types of activity and use this to label the corresponding fMRI periods. However, prema-

ture integration across different methods and modalities can not only fail to add new

information to what the best methods can offer, but can very easily destroy information

by limiting the final result to what the least sensitive method can provide. The final de-

scription may miss detail (or even fundamental aspects of the organization) that may

be available when one or few modalities are pushed to their limits. Magnetic field tom-

ography (Ioannides et al., 1990; Taylor et al., 1999) is a computationally intensive

method for extracting accurate estimates of brain activity from MEG data that has been

consistently used to push MEG to finer temporal and spatial resolution (Moradi et al.,

2003; Poghosyan and Ioannides 2007) so that regional activity (Ioannides 2006) can be

studied in great detail and with spatial resolution that allows activity from different

cytoarchitectonic areas to be separated. The capability of delineating contributions

within distinct cytoarchitectonic areas leads to more refined analysis as in the example

shown in Fig. 2 from the first demonstration that spatial attention first influences cor-

tical processing with the first entry of the stimulus induced activity in the primary vis-

ual cortex (Poghosyan and Ioannides 2008).

No matter how regional time series are derived, mathematical methods must then be

employed to extract from each pair of time series a quantitative measure of the func-

tional link between two brain areas, usually in two stages. First, one must define an ap-

propriate measure of linked activity. For example using time-delayed mutual

information as a non-linear measure enables identification and quantification of link-

ages between areas in real time (for example in relation to an external stimulus or

event) and enables assessment of reactive delays. The second stage of addressing the

connectivity problem is the technical problem of using graph theory tools to put
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together the pair-wise links into a more global network. Specific problems can be tack-

led using a subset of the entire network through judicious choice of what cytoarchitec-

tonic area to include and careful design of experiments.

Computational Neuroscience

While empirical Neuroscience (section Neuroscience) deals with measuring and func-

tionally interpreting connectivity on many scales, the aspects of Computational Neuro-

science, which we address here, deal with structure-function relationships on a more

abstract, aggregated level. Generic models of network topology, as well as simple ab-

stract models of the dynamical units, play an important role. In Computational Neuro-

science the idea of relating network architecture with dynamics and, consequently,

function has long been explored (e.g., Bullmore and Sporns 2009, 2012; Damicelli et al.,

2017; Deco et al., 2011). On the level of network architecture, a particularly fruitful ap-

proach has been to compare empirically observed networks with random graphs. The

field of statistical graph theory where properties of random graphs are explored, is funda-

mentally linked to the Erdös-Rényi model of the late 1950s (Erdös and Rényi, 1959). The

field was revolutionized in the late 1990s by the publication of two further models of ran-

dom graphs: a model of small-world graphs (Watts and Strogatz, 1998) (uniting high local

clustering with short average distances between nodes) and a model of random graphs

with a broad (power-law shaped) degree distribution (Barabasi and Albert, 1999).

Defining the FU

Within Computational Neuroscience, the fundamental unit is typically defined as being

individual neurons (Vladimirov et al., 2012) or on the level of cortical areas (Honey et

al., 2009). The discussion below focusses on the latter case. In contrast to the

Fig. 2 Coincidence in spatial location and timing of activations in the brain. The demonstration of the
coincidence in spatial location and timing of the earliest visually evoked (top) and spatial attention
(bottom) related activations (responses to images presented in the left visual field). The green lines here
indicate the V1/V2 borders (representation of vertical meridian) with the schematic views on the right
showing how the activations look on a flat representation of the local cortex, showing clearly the early
visual cortex and their boundaries
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discussion in (section Neuroscience) the fundamental unit is not necessarily identified

with the cortical areas, but is more flexible, allowing aggregates of cortical areas or even

abstract ones derived from the raw data (from fMRI) to be the fundamental units that

constitute the nodes of a network. Such cortical areas can also be defined by anatomical

means and neurobiological knowledge (as for example in the cortical areas of the cor-

tical areas network of the cat or the macaque; see Hilgetag et al. (2000)) or as parcella-

tions in terms of ‘regions of interest’ (as for example for the human connectome, see

Hagmann et al. (2008)).

Separating SC and FC

In Computational Neuroscience, SC refers to brain network connectivity derived from

anatomical (and other) data, at the level of the fundamental unit. The large-scale archi-

tectural properties (the ‘topology’) of a network resulting from SC may determine im-

portant dynamical and functional features of the system. FC refers to relationships

among nodes inferred from the dynamics. Typical observables for FC are co-activations

or sequential activations of nodes.

A striking example of network topology (SC) shaping dynamics (FC) is the following

model (discussed in Müller-Linow et al. (2006)) which considers excitations propagat-

ing on a graph. A node can be excited (active), refractory (resting) and susceptible,

waiting for an excitation in the neighbourhood. Upon the presence of such a neigh-

bouring excitation, a susceptible node changes to the active state for a single time step,

then goes into the refractory state, from which it moves to the susceptible state with a

probability p at each time step. Furthermore, spontaneous excitations are possible with

a small probability f. Running these dynamics on a graph with hubs and sparsely con-

nected nodes (like the graphs from Barabasi and Albert (1999)), self-organised waves of

excitations can be identified around the hubs (Müller-Linow et al., 2008). A broader

perspective on such global, collective patterns formed by dynamics on graphs is pro-

vided in Hütt et al. (2014).

Within Computational Neuroscience, an important rather novel trend is to compare

directly and quantitatively the relationship between SC and FC (SC/FC correlations).

Here, correlations of structural brain connectivity with FC derived from the BOLD sig-

nal in fMRI studies show high correlation values in the range of 0.6–0.8 in simulations

and around 0.3 in experimental data ( Honey et al. (2009); Garcia et al. (2012); Goni et

al. (2014); Messé et al. (2015)). Such SC/FC correlations compare structural and FC

only in one direction: network structure serves as a ’template’ for the self-organization

of dynamical processes, resulting in a set of patterns characterised as FC. A more global

perspective includes learning, i.e. the change of SC under the persistent action of FC.

In its simplest form, such a co-evolution of structural and FC is given by Hebbian

learning rules (Hebb, 1949), where – qualitatively speaking – frequently used network

links persist, while rarely used links are degraded.

Understanding emergent behaviour

The co-evolution of SC and FC offers an interesting possibility for the overarching per-

spective of self-organization and emergent behaviours, as the system now can, in

principle, tune itself towards phase transition points, maximizing its flexibility and its
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pattern formation capacities. This concept is called self-organised criticality and goes

back to the pioneering work by Bak et al. (1987) (e.g., Chialvo, 2010; Moretti and

Munoz, 2013; Hilgetag and Hütt, 2014). Phase transition points of a dynamical system

are choices of parameters, which position the system precisely at the boundary between

two dynamical regimes (e.g., steady states and oscillations). At such points a small

change of the parameter value can induce drastic changes in system behaviour.

As already suggested with the example of waves around hubs, the concepts of self-

organization and pattern formation may provide a useful theoretical framework for de-

scribing the interplay of SC and FC. Self-organization means that a set of elements

under the influence of local inter-actions (described by ’control parameters’) creates

long-range and frequently very complex structures (’patterns’), which cannot be de-

scribed by the degrees of freedom of the individual elements but need to be assessed

on the scale of the entire system (see, Hütt (2006) for more details and further refer-

ences). The fact that such patterns emerge spontaneously, when critical values of the

control parameters are passed, deeply links the concept of self-organization to phase

transitions in dynamical systems Distinguishing between contributions to FC, which

can be understood (and compared to SC) on the level of individual links, and contribu-

tions to FC, which are collective, global patterns on the graph (Hütt et al. 2014; see also

the strategy from Morone et al., 2017), is a current challenge in understanding emer-

gent behaviour.

Measuring connectivity

Returning to network topology, a wide range of descriptors of connectivity is used in

Computational Neuroscience (and other disciplines). The term ’connectivity’ typically

refers to the density of links in a graph (i.e., the number of links divided by the number

of all possible links). Another common quantifier of connectivity is the average degree

(i.e., the number of links divided by the number of nodes). Beyond these simple quanti-

fiers, the connection pattern in a graph can be characterized in a multitude of ways, for

instance via clustering coefficients (Watts and Strogatz, 1998), centrality measures

(Newman, 2005) and the matching index or topological overlap (Ravasz et al., 2002;

Goni et al., 2014), which evaluates the number of common neighbours of each pair of

nodes. More global characterizations refer to the graph’s modular organization (New-

man, 2006), possible hierarchies (Ravasz et al., 2002) and its composition of small

sub-graphs (network ’motifs’; Alon, 2007).

Geomorphology

Geomorphologists study the origin and evolution of landforms. Geomorphic surface

processes comprise the action of different geomorphic agents or transporting media,

such as water, wind and ice which move sediment from one part of the landscape to

another thereby changing the shape of the Earth. Therefore, looking at potential sedi-

ment pathways (connections) and transport processes has always been one of the core

tasks in Geomorphology. “Connectivity thinking” and related concepts have a long his-

tory in Geomorphology (e.g. Chorley and Kennedy, 1971; Brunsden and Thornes,

1979). However, since the beginning of the 21st century connectivity research experi-

enced a huge boom as geomorphologists started to develop new concepts on
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connectivity to understand better the complexity of geomorphic systems and system re-

sponse to change. It is widely recognised that investigating connectivity in geomorphic sys-

tems provides an important opportunity to improve our understanding of how physical

linkages govern geomorphic processes (Van Oost et al., 2000; Wainwright et al., 2011). Con-

nectivity further reflects the feedbacks and interactions within the different system compo-

nents under changing conditions (Beuselinck et al., 2000) and determines the propagation

of the effects of change as flow pathways are modified and the structure of the landscape is

transformed (Harvey, 2007; Lexartza-Artza and Wainwright, 2011). However, to date most -

if not all - of the existing connectivity concepts in geomorphology represent a palimpsest of

traditional system thinking based on general systems theory (e.g. von Bertalanffy 1968) ra-

ther than applying complex systems theory and related approaches that potentially provide

the appropriate toolbox to study geomorphic system complexity.

Defining the FU

Landforms are the product of a myriad of processes operating at different spatial and tem-

poral scales: defining a fundamental unit for the study of connectivity is therefore particu-

larly difficult. Geomorphologists have traditionally drawn structural boundaries between the

units of study which are often obvious by visible sharp gradients in the landscape, for ex-

ample channel-hillslope or field boundaries. This imposition of structural boundaries has

led to the separate consideration of these landscape compartments, rather than looking at

the interlinkages between them, which results in an incomplete picture when it comes to

explain large-scale geomorphic landscape evolution. Bracken et al. (2015) proposed a frame-

work for understanding sediment transfer at multiple scales considering sediment connect-

ivity as being “[…] the integrated transfer of sediment across all possible sources to all

potential sinks over the continuum of detachment, transport and deposition […]” (Bracken

et al., 2015; p. 179). However, this framework provides no insight into how the fundamental

unit may be defined. Its size and demarcation is highly dependent on (i) the processes in-

volved and (ii) the spatial and temporal scale of study (i.e. the timescale that constitutes a

relevant event (cf. Bracken et al., 2015)). If, for example, the temporal scale of analysis is

considerably greater than the frequency of key processes (i.e. a timescale that is sufficiently

long to encompass sediment cascades in which all components of a catchment will be con-

nected) then sediment connectivity will be perceived to be exceptionally high. Alternatively,

if the temporal scale over which sediment connectivity is evaluated is less than the fre-

quency at which key sediment-transport-related processes within the study domain operate,

then sediment connectivity will be perceived to be lower (Bracken et al., 2015). The size of a

fundamental unit in Geomorphology is thus dependent on the underlying research question

and may range from plot- (e.g. single erosion rills) to mega-scale (e.g. landscape belts) (Slay-

maker et al., 2009). However, geomorphic processes tend to vary between spatial scales,

which leads to one of the key problems in geomorphology, i.e. scaling up processes mea-

sured at small spatial and temporal scales to explain large-scale geomorphic patterns and

processes (cf. Bracken et al., 2015), for example, how to understand catchment-scale evolu-

tion from plot-scale erosion measurements.

Consideration of how fundamental units make up landscapes has a long history in

geomorphology. Wooldridge (1932), for example, characterised topography as compris-

ing facets of flats and slopes, while a richer characterization of a landscape fundamental
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unit is the “land element”, variously defined but always incorporating the notion of an

area where the climate, parent material, topography, soil and vegetation are uniform

within the limits significant for a particular application (for a more comprehensive

overview see Mabbutt (1968) or Poeppl and Parsons (2017)). Most recently, based on

the “land element” concept and by further integrating analogies from cell biology,

Poeppl and Parsons (2017) defined so-called geomorphic cells as the fundamental unit

of study in geomorphic connectivity studies. They conceptualise a geomorphic cell as

being a three-dimensional body of the geomorphosphere, which is delimited from

neighbouring cells and neighbouring spheres by different types of boundary, and

types of connection called “connecteins”. Vertically, the upper boundary of a geo-

morphic cell is defined by the atmosphere, while the lower boundary is generally

formed by the bedrock layer of the lithosphere. Laterally, geomorphic cells are

delimited from neighbouring cells with a change in environmental characteristics

that determine hydro-geomorphic boundary conditions (e.g. geology, soils, topog-

raphy and/or vegetation).

Separating SC and FC

In Geomorphology, SC describes the extent to which landscape units (however defined)

are physically linked to one another (With et al., 1997; Tischendorf and Fahrig, 2000a,

b; Turnbull et al., 2008; Wainwright et al., 2011) whereas FC accounts for the way in

which interactions between multiple structural characteristics affect the flow of material

(Turnbull et al., 2008; Wainwright et al., 2011; Bracken et al. 2015). An early consider-

ation of functional interlinkages between system compartments (i.e. hillslopes and river

channels) was introduced by Brunsden and Thornes (1979) within their “landscape sen-

sitivity” concept. However, besides a general notion of the importance of coupling be-

tween system components for landscape evolution the authors did not provide any

further information on how to define and quantify these relationships. In Geomorph-

ology it is becoming increasingly accepted that SC and FC cannot be separated from

each other in a meaningful way due to inherent feedbacks between them (Fig. 3) (Turn-

bull et al., 2008; Wainwright et al., 2011; Bracken et al. 2015), and a conceptualization

focussing on the linkages between process and (land)form has profound implications

for the philosophy and methodology in Geomorphology.

Landscapes can be perceived as systems exhibiting a distinct type of memory, i.e. the

imprint that geomorphic processes leave on structure which in turn governs future

landscape processes, further acting on different spatial and temporal scales. Thus, a

critical issue when separating SC and FC is determining the timescale at which a

change in SC becomes dynamic (i.e., functional). Past geologic, anthropogenic and cli-

matic controls upon sediment availability, for example, influence contemporary

process-form relationships in many environments (Brierley, 2010) such as embayments

(e.g. Hine et al., 1988; Phillips and Slattery, 2008) or human-impacted fluvial systems

(e.g. Poeppl et al., 2017) on different spatial and temporal scales. In most geomorphic

systems the imprint of memory and the timescales over which feedbacks affect con-

nectivity are too strong for a separation of SC and FC. However, this philosophical pos-

ition has not yet made its way into approaches to measuring connectivity. A challenge

when developing quantitative descriptions of the structural-functional evolution of
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Fig. 3 Geomorphic feedbacks between structural and functional connectivity. Schematic diagram of
feedbacks between structural and functional connectivity (source: Wainwright et al., 2011). The relative
locations of values of different variables which control SC may initially (t = 1) be quite discrete, leading to
functional disconnections which are only connected during events of specific types or magnitudes, which
in turn can create structural feedbacks by reorganizing landscape elements (e.g. vegetation, soil types).
Through time (t = 2, …, n), these feedbacks may be reinforced so that structural and functional
connectivity follow similar patterns, and the system become difficult to reverse (see Turnbull et al., 2008)
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connectivity in geomorphic systems is thus how to incorporate memory effects. Fur-

thermore, when distinguishing between SC and FC, the challenge is to achieve the bal-

ance between scientific gains and losses, further depending on the spatio-temporal

scale of interest and the applied methodology.

Understanding emergent behaviour

The conceptualization of landforms as the outcome of the interactions of structure,

function and memory implies that landscapes are organised in a hierarchical manner as

they are seen as complex macroscopic features that emerge from myriad (microscopic)

factors (processes) which form them at different spatio-temporal scales (Harrison,

2001). For example, river meander development (e.g. Church, 1996) or dune formation

(e.g. Baas, 2002) can be seen as emergent properties of geomorphic systems that are

governed by manifold microscale processes (e.g. microscale sediment transport events).

In Geomorphology, emergence thus becomes the basis on which qualitative structures

(landforms) arise from the (self-)organisation of quantitative phenomena (processes)

(Harrison, 2001) operating at a range of different spatial and temporal scales. Due to

conceptual and methodical constraints prediction and/or reconstruction of large-scale

and long-term landscape evolution is difficult (i.e. the problem of up- and downscaling

in geomorphology). In order to get a grasp on emergent behaviour of geomorphic sys-

tems recent advances in Geomorphology are based on chaos theory and quantitative

tools of complex systems research (e.g. modelling approaches: e.g. Coco and Murray,

2007; combined approaches: e.g. D’Alpaos et al., 2007). Combining numerical models

with new data-collection strategies and other techniques (as also discussed in 3.4.4), are

assumed to represent a viable strategy to cope with the challenges as addressed above

(cf. Murray et al., 2007). Nevertheless, the central question that arises is: “How far (if at

all) are connectivity concepts and related methods useful when it comes to better

understand emergent system behaviour?” It is hypothesized that multi-methodical ap-

proaches focussing on the interactions of SC and FC on different spatio-temporal

scales might play a key role to understand better emergent behaviour of geo-

morphic systems. However, to date this hypothesis remains untested and is being

subject to further inquiry. Yet, the potential appears to exist that connectivity may

help to understand how geospatial processes produce a range of fluxes that come

together to produce landscape form.

Measuring connectivity

In Geomorphology, it is only possible to measure (i) the morphology of the landscape

itself from which SC is quantified or (ii) fluxes of material that are a result of FC and

event magnitude. Few standard methods exist to quantify FC directly (Bracken et al.

2013). One of the key challenges to measure connectivity is to define the spatial and

temporal scales over which connectivity should be assessed, which may depend on how

the fundamental unit is defined. Another key challenge which also mainly arises from

the geomorphic “scale problem” (see section Defining the FU) is the lack of standard-

ized protocols for field-based quantitative appraisal of connectivity (Larsen et al. 2012;

Okin et al. 2015) that would allow data comparison at multiple temporal and spatial
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scales. Furthermore, data comparability is often constrained by the measurement design

(including the types of technical equipment involved).

Changes in SC can be quantified at high spatial and temporal resolutions using sev-

eral novel methods that have been developed or improved over the past years.

Structure-from-Motion (SfM) photogrammetry and laser scanning are techniques that

create high-resolution, three-dimensional digital representations of the landscape. Sedi-

ment transport processes (FC) are traditionally measured using erosion plots for

small-scale measurements to water sampling for suspended sediment and bedload traps

in streams and rivers for large-scale measurements (e.g. Cerdà, 1997; García-Fayos,

1997; Wainwright et al., 2000; Boix-Fayos et al., 2006).

Recently, new techniques have been developed to trace and track sediment with higher

spatial and temporal resolution. Sediment tracers, which can either occur naturally in the

soil or be applied to the soil, have been increasingly used to quantify erosion and depos-

ition of sediments. With these tracers, erosion and deposition can be determined at high

spatial resolution at reasonably high accuracy (Guzmán et al., 2013; Parsons et al., 2014).

Furthermore, laboratory experiments allow sediment tracking in high detail by using a

combination of multiple high-speed cameras, trajectories and velocities of individual sand

particles under varying conditions (Long et al., 2014). However, it is highly questionable if

measuring water and sediment fluxes provides sufficient information to infer adequately

FC, since these data solely represent snapshots of fluxes instead of reflecting system dy-

namics (incl. structure-function relationships) over long time scales.

Besides measuring landscape structure and sediment fluxes to infer connectivity, dif-

ferent types of indices and models are used. Connectivity indices mainly use a combin-

ation of topography and vegetation characteristics to determine connectivity (Borselli et

al., 2008; Cavalli et al., 2013). These indices are static representations of SC, which are

useful for determining areas of high and low SC within the study areas. Because indices

are static, they do not provide information about fluxes. Different types of models (e.g.

e.g. cellular automata: Baartman et al., 2013; Masselink et al., 2016a; process-based

modelling: Mueller et al., 2007; statistical models: Poeppl et al., 2012; GIS approaches

based on network theory: Heckmann and Schwanghart, 2013; Masselink et al., 2016b),

on the other hand, do provide information on (potential) fluxes and can be powerful

tools in determining how SC relates to sediment transport.

Ecology

Landscapes are composed of interconnected ecosystems that mediate ecological pro-

cesses and functions – such as material fluxes and food web dynamics, and control spe-

cies composition, diversity and evolution. The importance of connectivity within

ecology has been recognised for decades (e.g. Mac Arthur and Wilson, 1967), with the

term “connectivity” being used to refer to the interaction between landscape structure

and ecological function (e.g. organisms movement, transfer and transformation path-

ways of energy and matter) (Merriam, 1984) and the degree to which the landscape fa-

cilitates or impedes movement, transfer and transformation processes among patches

or ecosystems (Taylor et al., 1993). Connectivity is now recognised to be an important

determinant of many ecological processes (Kadoya, 2009) including population move-

ment (Hanski, 1999), changes in species diversity (Cadotte, 2006), metacommunity
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dynamics (Koelle and Vandermeer, 2005) and nutrient and organic matter cycling (Lau-

don et al. 2011). For example, in marine ecology, identifying and quantifying the scale

of connectivity of larval dispersal among local populations (i.e. the rate, scale, and

spatial structure of successful exchange) is a fundamental challenge, since this drives

population replenishment and therefore has profound implications for population dy-

namics, diversity and evolution of marine organisms (Cowen et al., 2006). However,

since its initial use, the term ‘connectivity’ has been inconsistently defined (Calabrese

and Fagan, 2004), with metapopulation ecologists seeking a habitat patch-level defin-

ition of connectivity, while landscape ecologists view connectivity as being a

landscape-scale property (Merriam 1984; Taylor et al. 1993; Tischendorf and Fahrig

2000a, b; Moilanen and Hanski 2001). Regardless of the scale at which connectivity is

defined within Ecology, there is nonetheless consensus that connectivity affects most

population, community, and ecosystem processes (Wiens 1997; Moilanen and Hanski

2001).

Defining the Fundamental Unit

In Ecology higher levels of organization incorporate and constrain behaviour at lower

levels (O’Neill et al., 1989). Hierarchy theory provides a clear tool for dealing with

spatial scale, and suggests that all scales are equally deserving of study (Cadenasso et

al., 2006). It is therefore critical that the fundamental unit be defined clearly as well as

relationships that cross scales (Ascher, 2001). The fundamental unit is typically defined

as being the ecosystem – a complex of living organisms, their physical environment,

and their interrelationships in a particular unit of space (Weathers et al. 2013). In this

respect, an ecosystem can be a single gravel bar, a whole river section, or the entire

catchment, or an ecosystem can be a plant, a vegetation patch, or a mosaic of patches,

depending on the spatiotemporal context and the specific questions. Hence, the ecosys-

tem concept offers a unique opportunity in bridging scales and systems (e.g. aquatic

and terrestrial, above- and belowground systems). Notably, this definition of the funda-

mental unit is scale-free; therefore identifying the fundamental unit will emerge natur-

ally out of the ecosystem(s) in question. Whilst an appropriate definition of the

fundamental unit is critical in Ecology, this does not present a challenge, as the ecosys-

tem provides a clear-cut definition that is applied ubiquitously.

Separating SC and FC

Ecology has long been concerned with structure–function relationships (Watt, 1947),

and connectivity now tends to be viewed structurally and functionally (Goodwin, 2003),

taking both structure and function into account (often referred to as landscape con-

nectivity; Belisle, 2005). Structural connectivity refers to the architecture and compos-

ition of a system (Noss and Cooperrider, 1994) (e.g. the size, shape, location and spatial

arrangement patches; Calabrese and Fagan, 2004) and the physical relationships among

these patches (Kadoya, 2009). Measurements of SC are sometimes used to provide a

backdrop against which complex behaviour can be measured (Cadenasso et al., 2006).

Functional connectivity depends not only on the structure of the landscape, but on the

behaviour of and interactions between particular species, or the transfer and transform-

ation of matter, and the landscapes in which these species and processes occur
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(Schumaker 1996; Wiens 1997; Tischendorf and Fahrig 2000b; Moilanen and Hanski

2001). Moreover, it is concerned with the degree and direction of movement of organ-

isms or flow of matter through the landscape (Kadoya, 2009), describing the linkages

between different landscape elements (Calabrese and Fagan, 2004). In terms of animals,

the FC of a depends on how an organism perceives and responds to landscape structure

within a hierarchy of spatial scales (Belisle, 2005), which will depend on their state and

their motivation which in turn will dictate their needs and how much they are willing

to risk to fulfil those needs (Belisle, 2005). Thus, the FC of a landscape is likely to be

context and species-dependent (e.g. Pither and Taylor, 1998).

Linking and separating SC and FC is challenging. For example terrestrial and aquatic

ecosystems are structurally and functionally linked through coupled biogeochemical cy-

cles, and also through mechanisms related to behaviour and/or complex life cycles, as

shown by many insect or amphibian species with life-history stages in both aquatic and

terrestrial habitats. Furthermore, riverine assemblages are governed by a combination of

local (e.g. habitat conditions) and regional (e.g. dispersal) processes. There is empirical

evidence that the position within the river network (i.e. stream size) drives the compos-

ition and diversity of riparian plants, aquatic invertebrates and fishes. For example, in

looking at the interacting effects of habitat suitability (patch quality), dispersal ability of

fishes, and migration barriers on the distribution of fish species within a river network, it

has been found that whilst dispersal is most important in explaining species occurrence

on short time scales, habitat suitability is fundamental over longer time-scales (Radinger

and Wolter, 2015). Hence, ignoring network geometry and the role of spatial connectivity

may lead to major failure in conservation and restoration planning. Time lags may also

persist in SC-FC relations, and may be due to ecological memory, or “legacy effects”, a

term used in Ecology to describe the impacts of a species on abiotic or biotic features of a

system that persist for a long time after the species has ceased activity, and which have an

effect on other species (Cuddington, 2011; Lindborg and Eriksson, 2004; Volker and Van

Allen, 2017). These legacy effects may consist of information (e.g. species life-history

traits) or material (e.g. seeds or nutrients) (Johnstone et al. 2016). These time lags in the

functional response to changes in system structure can confound the ability to make

meaningful separations between structure and function.

Understanding emergent behaviour

Emergent behaviour in Ecology is evident by the scale-free nature of ecosystems. Be-

cause ecosystems can be defined at any scale (usually spatial rather than temporal), in-

teractions across different hierarchical levels lead to emergent behaviour at a different

scale too. A striking example of such emergent behaviour is the existence of patterns in

vegetation, for example Tiger Bush (MacFadyen 1950, Clos-Arceduc 1956). However,

although attempts to explain this phenomenon using advection-diffusion models (e.g.

Klausmeier 1999, Couteron and Lejeune 2001, Hille-RisLambers et al. 2001) have suc-

cessfully produced reasonably realistic (if somewhat idealised) patterns, they are often

at the expense of realistic vegetation dynamics. A more extensive critique of such ap-

proaches is given in Stewart et al. (2014) who argued that rather than using model

structures inherently designed to produce patterns in order to explain the existence of

patterns, a connectivity-based process understanding is likely to produce greater insight
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into the emergence of vegetation patterns. Based upon the argument that spatial pat-

terns emerge in response to interactions between landscape structure and biophysical

processes (e.g. Turnbull et al. 2008), Stewart et al. (2014) used local, detailed process

information to drive a connectivity-based model for vegetation patterns in the Ameri-

can Southwest.

Evolutionary impacts of past processes, such as glaciations also shape emergent be-

haviour in Ecology, through separations and reconnection of larger areas (even conti-

nents). Increases in physical connectivity of landscape patches also facilitate the

invasion of non-native species which in turn may trigger long-term evolutionary pro-

cesses for both native and non-native species (e.g. Mooney and Cleland, 2001). The

challenge in Ecology is to overcome the highlighted methodological constrains to

studying emergent behavior and develop approaches that truly allow for explorations of

emergent behavior.

Measuring connectivity

Measuring SC tends to be based on simple indices of patch (or ecosystem) connectivity.

Patch proximity indices are widely used (e.g. Bender et al., 2003), and are often calcu-

lated using remotely sensed imagery or ground-based measurements. Other structural

approaches to looking at ecological corridors include landscape genetics, telemetry,

least-cost models, raster-, vector- and network-based models, among many other

methods, which offer unique opportunities to quantify connectivity (see Cushmann et

al. 2013). Most metacommunity and metaecosystem studies apply lattice-like grids as

landscape approximations, where dispersal is random in direction, and distance varies

with species. However, many natural systems, including river networks, mountain

ranges or cave networks have a dentritic structure. These systems are not only hier-

archically organised but topology and physical flow dictate distance and directionality

of dispersal and movement (Altermatt 2013, references therein). Larsen et al. (2012)

proposed a directional connectivity index, which is a graph-based, multi-scale metric

generalizable to different SC and FC applications. In a graph-based approach, patches

(or habitats or ecosystems) are considered as nodes, which link pathways between these

nodes. Most work in Ecology has focused on unweighted, one-mode (monopartite) net-

works (Dormann and Strauss, 2014).

Measuring FC requires dealing with complex phenomena that are difficult to sample,

experiment on and describe synthetically (Belisle, 2005). Approaches to measuring FC

have the greatest data requirements, and include connectivity measures based on or-

ganism movement, such as dispersal success and immigration rate, with, for example, a

high immigration rate indicating a high level of FC. In a study on seven Forest Atlantic

bird species, the SC-FC relation was explored using a range of empirical survey tech-

niques (Uezu et al., 2005). Quantitative analysis of landscape structure was carried out

using a suite of SC measures. Functional connectivity measures were derived from bird

surveys and playback techniques, carried out at snapshots in time and at discrete loca-

tions. Whilst these empirical measures allow insight to SC-FC relations, they nonethe-

less go hand-in-hand with a series of assumptions that allow the level of FC to be

inferred. Similarly, data on dispersal distances (a proxy for FC) also tends to be rela-

tively sparse. For example, they have been collected for a small number of marine
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species (Cowen et al., 2006), and typically only for those species that have short larval

durations (hours to days) and short distance dispersal (e.g. Sammarco and Andrews,

1989; Shanks et al., 2003).

An ongoing challenge associated with empirically-based studies for assessing FC in

Ecology is that they provide only a snapshot of dispersal or migration, representing only

one possible movement scenario. It is generally accepted that it is impossible to meas-

ure empirically the full range of spatial and temporal variability in FC (Cowen et al.,

2006). Modelling approaches are being used increasingly to overcome the limitations of

empirically-based approaches to measuring FC. However, these modelling approaches

are still limited by a paucity of available empirical data to verify the results of modelling

experiments. The limitations of patch-based or landscape-based approaches to studying

connectivity, and the prevalence of ecological research being carried out at increasingly

larger scales has driven research in the direction of using network-based approaches

(e.g. Urban and Keitt, 2001), often drawing on the concept of modularity from Social

Network Science, Physics and Biology, and using network-based tools from Statistical

Physics that account for weighted (non-binary), directed network data (e.g. Fletcher et

al., 2013). Progress has been made in developing network-based tools for analyzing

weighted monopartite networks (e.g. Clauset et al., 2008), and more recently, weighted

and two-mode (bipartite) networks have been used to study connectivity between dif-

ferent species. In weighted networks, the links between two species may be quantified

in terms of their functional connectivity; i.e. the number of interactions observed, or

the strength of interactions between different species (but not within the same species)

inferred from collected data (Newman, 2004b; Dormann and Strauss, 2014). For ex-

ample, in pollinator-visitation networks, pollinators interact with flowers, but pollina-

tors do not interact among themselves (Vazquez et al., 2009). A major challenge in

using weighted bipartite networks in Ecology is that many of the analytical tools avail-

able require one-mode projections of weighted bipartite networks (e.g. Martin Gonzalez

et al., 2012), or unweighted (binary) bipartite networks (e.g. Guillaume and Latapy,

2004), meaning that potentially useful information of ecological connectivity is lost.

However, tools are being developed to analyze weighted bipartite networks (e.g. Dor-

mann and Strauss, 2014). Multi-layer networks are increasingly being used in Ecology

with the advantage over simpler networks that they allow for analysis of inter-habitat

connectivity of species and processes spanning multiple spatial and temporal scales,

contributing to the FC of ecosystems (Timoteo et al., 2018). Advances are being made

in the analysis of multi-layer ecological networks, with the recent developments in the

analysis of modular structure of ecological networks (i.e. the extent to which a network

is organised into cohesive groups (modules) of species that interact more strongly with

each other than with other species Pilosof et al., 2017). A recent study, for the first time

looked at modular structure (seed dispersal modules; i.e. communities of tightly inter-

acting plants and their dispersers) across different habitats to look at the strength of

connectivity between habitats (Timoteo et al., 2018). A strength of using multi-layer

networks in the analysis of ecological systems is that it allows differentiation of

intra-layer and inter-layer connectivity within the multi-layer network (Pilosof et al.,

2017). Whilst multi-layer networks are potentially a valuable tool for measuring con-

nectivity in ecological systems, the application of such tools is often limited by the

amount of system complexity that can be sampled and analyzed, potentially leading to
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an over-simplification of real ecological networks (Kivela et al., 2014; Pilosof et al.,

2017).

Social Network Science

Social network scientists study the social behaviour of society including the relation-

ships among individuals and groups. There is a long history of social network theory

which views social relationships in terms of individual actors (nodes) and relationships

(links) which together constitute a network. This history dates back to the development

of the sociogram describing the relations among people by Jacob Moreno (1934). Later

work by Leavit (1950), White (2008), Freeman (1979), Everett (1982), Borgatti (2005),

and Wasserman and Faust (1994) created a foundation of social theory frameworks

based on network analysis. In many cases the theory that was developed in understand-

ing social systems was subsequently applied in fields such as ecology. One famous case

is the ‘small world’ phenomenon noted by Stanley Milgram (1967) which later was used

to describe information transfer in insects (Watts and Strogatz 1998). Social scientists

have continued to lead the development in key areas with the statistical analysis of mo-

tifs (small building blocks found in networks) (Robins et al. 2007) and the evaluation of

networks within a philosophical framework such as structuralism (Assiter 1984). In re-

cent times the incorporation of ecological and social theory to facilitate

socio-ecological analysis has expanded the social networks to include ecological sys-

tems (Janssen et al. 2006; Ekstrom and Young 2009). The focus on sustainability and

resilience within these multifaceted networks continues to spawn novel solutions and

advanced techniques (Bodin and Tengo, 2012; Kininmonth et al. 2015).

Defining the Fundamental Unit

Given that social network theory is often centred on the micro interaction of people

there can be a convincing argument that the fundamental unit is the person (Wasser-

man and Faust 1994). Certainly many published networks in sociology are based on the

interaction history of people within a small group (Sampson 1968; Zachary 1977).

However with the advent of technology such as mobile phones, the internet, online

gaming and social web pages (i.e. Facebook) this definition of the fundamental unit is

less certain and some researchers now use the interaction itself as the unit of study

(Garton et al. 1999). Ideas and behaviours that spread through a society (known as

memes (Dawkins 1986)) or the use of textual analysis (Treml et al. 2015) have created

networks that are abstracted from the individual. From a network perspective the indi-

vidual human is not represented by a single node in these cases but instead might have

temporary links to the ideas and behaviours that are in circulation. For example we are

aware of the spread of technology, such as pottery styles across continents, but we re-

main unaware of the individuals involved. For many researchers the meso-scale focus

on populations facilitates the analysis of organisational structures and their interactions

(Ostrom 2009). This hierarchical nature of social interactions has resulted in an in-

creased emphasis on organisational culture as a defining influence on the social net-

work (Sayles and Baggio 2017a). Utilizing multi-layer networks to explore complex

social theory promotes the conceptual possibility of combining fundamental units

(Bodin 2017). For example the management of natural resources across a region
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requires a functioning social network within the management agencies (Bodin and

Crona 2009; Kininmonth et al. 2015). However analysis of multi-layer networks that

combine the fundamental units of organisation (often with cultural attributes) and indi-

viduals has demanded new methodological advances particularly in the interpretation

of decision-making and engagement between the actors embedded within the associ-

ated organisation (Sayles and Baggio 2017a). In this regard the analysis of the diverse

suite of roles that actors and organisations portray is highly topical in understanding

the long- and short-term dynamics of social systems.

Separating SC and FC

The development of social networks has primarily been based on observed interactions

between members of a group and these interactions have been used to generate struc-

tural networks. These networks have then been used to determine the basis for subse-

quent events, such as a split in the group, based solely on the distribution of links

(Sampson 1968; Zachary 1977). For simple networks and simple events this approach

appears to have merit, but when the networks become complex or highly dynamic this

method is limited in terms of analytical power. To bridge the link to a more functional

approach requires understanding the processes happening at the individual level such

that the links have meaning at a functional level. One solution here is to understand

the functional meaning of simple network structures (i.e. a triangle of 3 nodes and 3

links representing friends of friends; commonly referred to as motifs) found in the net-

work. The powerful component is to try to recreate the larger network from the de-

scribed frequency of specified motifs (Robins et al. 2007; Wang et al. 2013). This

approach has significant statistical power rather than just qualitative comparisons and

can be useful for many research objectives (Fig. 4). An alternative approach is to con-

duct experiments that seek to evaluate the individual’s response to a situation given

variations in interaction structures (Baird et al. 2015). The difficulty with this method

is translating the human response in an experimental setting, rather than real life,

where the consequences are often of high impact. Otherwise the use of very large data

sets, such as the phone calling patterns of millions of people, are providing insights into

the dynamics of the network structures that function to respond to a given event (Bara-

bási 2005). A more abstract approach is the use of cellular automata to describe the

rules of local engagement and then observe the network responses in an artificial mod-

elling environment (Wijermans and Schlüter 2014). Phenomena such as Small World

topology has highlighted the widespread effect of structure and function on the larger

network dynamics (Travers and Milgram 1969). Link prediction is also becoming

widely used in social network studies to predict future interactions and the evolution of

a network from the network topology alone (e.g. Liben-Nowell and Kleinberg, 2007).

Complicating the conceptual link between structure and function for social networks

is the influence of culture. In particular, cultural norms are a strong influence on the

responsiveness of social network structures such that different cultures are likely to

generate different responses to identical network structures (Malone 2009; Stephanson

and Mascia 2014). Key to this influence is the human propensity for diverse communi-

cation methods that have inflated the effect of memory on the function of interaction

networks. This memory effect is also likely to affect the individual response following a
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repeat of the social interactions. Members of society will respond and interpret particu-

lar interactions differently based on their age group and background and this is evident

in the expansion in computer-assisted social networks often binding diverse community

groups (Garton et al. 1999). The complexity that an evolving mix of cultures brings to

the analysis of social networks is a significant challenge to providing a general set of

rules of social engagement across the planet.

Understanding emergent behaviour

The emergent behaviours observed within social networks has spawned many sig-

nificant publications from the splitting of monks at an abbey (Sampson 1968) to

the smoking habits of the general population derived from friendship clusters

(Bewley et al. 1974; Christakis and Fowler 2008). The structure is observed and

then the application of networking analysis tools, such as clustering, is used to de-

termine the functional response (Barabási et al. 2002; Barabási 2005; Palla et al.

2007) (Fig. 5). The resilience of social systems is now seen as a direct response to

the topological structure such as small world or scale free (Holling 2001). The

translation of the resilience concept from a structural perspective involves maintaining

the integrity of the network, despite this being difficult to predict or measure. Methods

that impose a process on the nodes and links such as Susceptibility-Infection-Resistance

for disease propagation can be highly dependent on density and centrality measures. The

emergence of the network property such as resilience or effectiveness is conditional on

the entire network interactions. To complicate matters further, the challenge of adopting

models of social behaviour that recognise the diversity of social interactions across a

population remains elusive.

Fig. 4 The relationship within the common resource pool motif subset display across effective-complexity
space. This shows the various combinations of social interactions (white) that govern connected natural
resources such as wetlands (grey). From Kininmonth et al. (2015)
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Measuring connectivity

From the early research efforts of Moreno (1934) came the visual analysis of social net-

works using the depiction of people and interactions as nodes joined by links. Grad-

ually the application of mathematics defined the various patterns observed. In

particular, the work by Harary (1953) set up the foundation of structural analysis of so-

cial networks. The advent of fast computing was necessary to enable more dynamic

analysis including the evaluation of networks against non-random networks. Centrality

and link density measures formed the basis of many actor-level analytical tools (Garton

et al. 1999) including cluster scrutiny but more sophisticated statistical approaches

such as latent space (Hoff et al. 2002) were also applied in attempts to extricate the

structure and function. The topological configurations that influence network function

were incorporated into the analytical framework. Small world configurations, scale free

systems and planar networks were found in many social systems (Barabási 2005, 2009).

Motif analysis (Robins et al. 2007), especially the multivariate distribution of motifs,

established their role through the use of Exponential Random Graph Models. This

technique is still restricted in the configurations able to be utilised for analysis. The

greatest challenge in the field of social network analysis is the extension of the analyt-

ical techniques to encompass the postulations of the socioecological paradigm. Under-

standing the links between natural resources and the corresponding social governance

structures is critical for humanity’s management of depleted resources yet models

remain simplistic and limited (Bodin et al. 2014). Understanding the heterogeneous

networks across hierarchical systems within dynamic structures remains a subject of

rapid development (Leenhardt et al. 2015).

Measuring connectivity in the social sciences is difficult due to ethical, practical and

philosophical issues. These influences are found when collecting the data that describes

Fig. 5 Network diagram of the interaction of fishers with people who buy fish. Black = single trade
relationship, grey = multiple traders and white = traders. This network diagram highlights the emerging
property of organised fishing businesses that are dependent on the access to capital. From Kininmonth et
al. (2017)
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the connectivity (Garton et al. 1999). Questionnaires that seek to record a range of so-

cial interactions are hampered by privacy (i.e. the identification of individuals), which is

a frustration since individuals are pivotal to interpreting an observed change. Ethical

considerations mean the use of publically collected data must remain anonymous and

limited to the case in question. Tricking individuals to react through the use of physio-

logical experiments can be fraught with danger as Stanley Milgram demonstrated. An-

other complication is the practical issue of who (and the organisation they represent)

can conduct the interviews since people will respond differently to the type of person

asking the questions based on their past interaction history or interview context (Gar-

ton et al. 1999). The alternative is collecting large data volumes on connecting behav-

iour such as mobile phones but this is limited to the numerical ID of the caller rather

than a fully described demographic suite. In some cases the use of synthetic popula-

tions (Namazi-Rad et al. 2014), where the individual members of a theoretical society

are constructed from a multifaceted demographic data, is one-way planners can cir-

cumvent the privacy issue. Philosophical considerations are required to understand the

complex human responses to simple observations of connections. Applying a Marxist

rather than a Durkheimian perspective will lead to different interpretations of the ob-

served changes in social network structure (Calhoun 2002). However caching the net-

work analysis in a particular school of thought is a powerful mechanism to reduce the

vagueness of fundamental descriptions.

Synthesis of key challenges

There are a number of important similarities in the way that the concept of connectiv-

ity is approached and the tools that are used within the disciplines explored. Notably

though, there are also significant differences, which provides an opportunity for

cross-fertilization of ideas to further the application of connectivity studies to improve

understanding of complex systems. This section (i) evaluates the key challenges by

drawing upon differences in the ways they are approached across the different disci-

plines (Table 1), enabling (ii) identification of opportunities for cross-fertilization of

ideas and development of a unified approach in connectivity studies via the develop-

ment of a common toolbox. We then (iii) outline potential future avenues for research

in exploring SC-FC relations.

Evaluating the key challenges

Defining the fundamental unit

Within all the disciplines explored the fundamental unit employed in any connectivity

analysis depends on the spatio-temporal context of the study and the specific research

question – this applies even where a clear fundamental unit might be self-evident (e.g.,

the individual in social network science, or the individual neuron or cortical area in

neuroscience). The spatial and temporal scale of the fundamental unit may span orders

of magnitude within a single discipline, and may thus have to be redefined for each par-

ticular study. For example, whilst for some applications in Neuroscience it is appropri-

ate to adopt the neuron as the fundamental unit, for others the cortical area (many

orders of magnitude larger in size) may be more appropriate – notably in cases where

it becomes challenging to address adequately the connectivity of neurons due to
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computational limitations. This issue is also present in Geomorphology where adopting

individual sediment particles as the fundamental unit would become too computation-

ally demanding. In this sense, there are parallels between connectivity and the field of

numerical taxonomy (Sneath and Sokal, 1973) where, despite the obvious taxonomic

unit being the individual organism, an arbitrary taxonomic unit (termed an operational

taxonomic unit) was employed. The exception to this general statement is the field of

Ecology, where the ecosystem provides a conceptual unit that can be applied at any

spatial scale. The concept of the ecosystem was introduced by Tansley (1935) and has

been subject to much debate since. Despite the shortcomings of the ecosystem concept,

within connectivity studies it is nonetheless useful to have an overarching concept that

can be employed at any scale. The ecosystem concept is particularly useful when the in-

teractions (connectivity) between different organizational levels are of interest, with an

ecosystem at a lower hierarchical level forming a sub-unit of an ecosystem at a higher

hierarchical level. Many systems are hierarchically organised, and therefore a key ques-

tion for other disciplines is whether identifying something theoretically similar to the

ecosystem concept may be useful. For many applications in connectivity studies, ap-

propriate conceptualisation and operationalisation of the fundamental unit will de-

pend on the purpose of investigations. For example where interventions within a

system have the goal of managing or repairing a property of that system, the scale

of the fundamental unit may be specified, to work within the certain system

boundaries for a particular purpose. But as noted in the case of Ecology (section

Defining the Fundamental Unit) it is critical that whilst defining the FU, relation-

ships that cross scales are also defined clearly.

Although in most disciplines the fundamental unit corresponds to some physical en-

tity, in Social Network Science for example, it may be more abstract, i.e. a unit of inter-

action. More abstract conceptualisations of the fundamental unit may be fruitful in

other disciplines where the definition of a fundamental unit as a physical entity has

proved difficult (e.g. Geomorphology), or in modelling approaches to examining con-

nectivity (e.g. random graph models). Furthermore, the notion (in Systems Biology) that

the fundamental unit is a concept dependent upon the current state of knowledge of

the system under study is a valuable point that merits wider consideration.

Separating SC and FC

There is general consensus that SC is derived from network topology whilst FC is con-

cerned with how processes operate over the network. In all the disciplines considered,

the separation of SC from FC is commonplace, due to the ease with which they can be

studied separately – especially in terms of measuring and quantifying connectivity. The

success separating SC and FC in Systems Biology has been attributed to the fact that

the structural properties and snapshots of biological function are typically measured in

independent ways, whereas elsewhere it is common for FC to be inferred from mea-

surements of SC. Whilst structural-functional feedbacks are widely recognised, the ex-

tent to which these feedbacks are explored/accounted for varies considerably, in

accordance with factors such as how advanced the discipline is, and the sophistication

of available tools within that discipline. Separating SC and FC, of course, imposes se-

vere limitations on one’s ability to address these feedbacks. For example, in
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Geomorphology it is well established that structural-functional feedbacks drive system

evolution and emergent behaviour, and whilst it is common in some applications to ex-

plore these feedbacks (e.g., landscape evolution models), there are still many applica-

tions where it remains common to look at relations between SC and FC in one

direction only (i.e., the effect of structure on function). There is a similar tendency in

Neuroscience to focus on structural-functional interactions rather than the full suite of

reciprocal feedbacks between structure and function. However the increasing recogni-

tion within Geomorphology and Neuroscience of reciprocal feedbacks is heightening

the need for additional tools that will allow the evolution of SC and FC and the devel-

opment of emergent behaviour to be understood more fully. The importance of such

feedbacks is highlighted in Computational Neuroscience, in the case where frequently

used networks persist, whilst rarely used links are degraded leading to the development

of network topology over time. Nevertheless, separating SC and FC does permit in-

sights into the behaviour of systems insofar as it permits predictive models of function

from structure that are amenable to experimental testing.

The ease and meaningfulness with which SC and FC can be separated will also de-

pend on the timescale over which feedbacks occur within a system. Structural connect-

ivity can only be usefully studied independently of FC if the timescale of the feedbacks

is large compared to the timescale of the observation of SC. Any description of SC is

merely a snapshot of the system. For that snapshot to be useful it needs to have a rela-

tively long-term validity. Thus, for meaningful separations of SC and FC to be made, it

is paramount to know how feedbacks work, the timescales over which they operate,

and how connectivity helps us to understand these feedbacks. There are striking

examples from several of the disciplines explored here of the ways in which feed-

backs between SC and FC can lead to the co-evolution of systems towards a phase

transition point – this is seen in Computational Neuroscience, and in Ecology and

Geomorphology where system-intrinsic SC-FC feedbacks shift a system to an alter-

nate stable state.

Linked to SC-FC relations and the validity of separating the two is the concept of

memory. Memory is about the coexistence of fast and slow timescales. Qualitatively

speaking, the length of distribution cycles in a graph can be viewed as (being related

to) a distribution of time scales. Changes to SC in response to functional relationships

imprint memory within a system. Thus, key questions are: How far back does the

memory of a system go? Is memory cumulative? In systems subject to perturbations

(possibly true for all discipline studied here) which perturbations control memory and

its erasure? What are the timescales of learning in response to memory? In Neurosci-

ence, the discipline which gives us the term ‘memory’, it is argued that the final imprint

of memory is diffuse across the brain, and consequently difficult to assess. Other disci-

plines have similarly struggled to comprehend the instantaneous non-linear behaviour

of their systems in terms of memory. In Ecology, ‘legacy effects’ make empirical ap-

proaches to the study of ecological interactions across space and time challenging (van

der Putten et al., 2009). In Social Network Science it is possible to speak of culture,

which raises the notion of a hierarchy of memory effects on connectivity: one that has

not yet been explored. In Geomorphology memory is related to feedbacks and/or

thresholds – thus, exploring the coexistence of fast and slow timescales of processes

and mechanisms is a potential avenue for future research. Of all the key challenges
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facing the use of connectivity, memory appears to be one which no discipline has yet

resolved.

Understanding emergent behaviour

Emergence is a characteristic of complex systems, and is intimately tied to the relation-

ship between SC and FC. The choice of fundamental unit will have implications for

one’s ability to understand emergent behaviour, since connectivity at larger spatial

scales emerges from connectivity at smaller spatial scales, and thus, microscopic units

produce macroscopic behaviour through emergent properties. In this sense, a funda-

mental unit is an emergent property of microscopic descriptions.

An important question is how far does the analysis of connectivity help understand

emergence? As noted in (section Understanding emergent behaviour), the co-evolution

of SC and FC offers an interesting possibility for the overarching perspective of

self-organization and emergent behaviours, as the system now can, in principle, tune it-

self towards phase transition points. Thus, by separating SC and FC in our analyses of

connectivity, we remove the opportunity to understand and to quantify emergence – to

understand how a system tunes itself towards phase transition points (and the role of

external drivers). Without tools that can deal with SC and FC simultaneously, it is chal-

lenging to see how connectivity can be used to improve understanding of emergent be-

haviour. However, some suitable tools do exist. For example, adaptive networks that

allow for a coevolution of dynamics on the network in addition to dynamical changes

of the network (Gross and Blasius, 2008) provide a powerful tool that have potential to

drive forward our understanding of how connectivity shapes the evolution of complex

systems. Approaches are used in Computational Neuroscience that look at the propaga-

tion of excitation through a graph showing waves of self-organization around hubs,

thus allowing exploration of conditions that lead to self-organised behaviour. However,

even in this example, there is still great demand for new ideas that will more easily ac-

commodate the study of memory effects (in all its various guises) and emergent proper-

ties. In Geomorphology and Ecology, key studies demonstrate how incorporating SC

and FC into studies of system dynamics allows for the development of emergent behav-

iour (e.g. Stewart et al., 2014). However, such examples are relatively rare, which high-

lights the scope for trans-disciplinary learning which may help to drive forward our

understanding of emergent behaviour.

Link prediction is a potentially useful tool that has been applied for example in Systems

Biology and Social Network analysis. It can be used to test our understanding of how con-

nectivity drives network structure and function (Wang et al. 2012; Zhang et al. 2013), and

our understanding of emergent behaviour. If a comprehensive understanding of a system

has been derived of the SC and FC of a network and their interactions, then we should be

able to predict missing links (Lu et al., 2015). Lu et al. (2015) hypothesize that missing

links are difficult to predict if their addition causes huge structural changes, and therefore

the network is highly predictable if the removal or addition of a set of randomly selected

links does not significantly change the networks structural features. Thus, prediction and

network inference – even though blurring the distinction between SC and FC (see section

Neuroscience) – can be used to identify the most important links in a network – i.e.

where SC, FC and their interactions are most important.
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Measuring connectivity

In view of the widespread adoption of the concept of connectivity it may seem surpris-

ing that actually measuring connectivity remains a key challenge. However, such is the

case. Because connectivity is an abstract concept, operationalizing models into some-

thing measurable is not straightforward. The imperative here is to consider SC and FC

separately. For the former, some disciplines (e.g. Geomorphology, Ecology) have devel-

oped indices of connectivity (e.g., Bender et al., 2003; Borselli et al., 2008; Cavalli et al.,

2013). Such indices measure only SC, and their usefulness is a function of the time-

scales of the interaction of SC and FC. Furthermore, there is a concern as to what is

the usefulness of such indices, other than as descriptions of SC: as might equally be

said of clustering coefficients and centrality measures. To what extent can/do they en-

hance our understanding? Systems Biology, on the other hand, does not attempt to

measure SC per se, but infers SC based on knowledge accumulation of the system. In

that sense, connectivity may be seen as a means of describing current understanding.

Neuroscience, in contrast again, measures connectivity directly through experimenta-

tion. How far such an approach could be applied in other disciplines raises the issue of

ethics, as discussed in 3.6.4. Only in the case of Computational Neuroscience, which

deals with analysed entities (the properties of which are defined a priori) is measuring

SC straightforward.

Of the two, FC poses the greater measuring problem. In network terminology, FC

may be thought of as the links in the network that are active, and is thus easier to de-

rive if a network description of the system’s SC exists. Without such a description, FC

can be derived from fluxes (e.g. movement of animals), but the measurement of fluxes

may present its own difficulties (e.g., in Geomorphology).

Link prediction is also a potentially useful tool in deriving a network-based abstrac-

tion of a system where it is infeasible to collect data on SC and FC required to param-

eterise all links, or where links, by their very nature, are not detectable (Cannistraci et

al., 2013). This problem of observability is inherent in Systems Biology where link types

can be very diverse and it has already been noted that databases will drift in time.

Therefore, the topological prediction of novel interactions in Systems Biology is par-

ticularly useful (Cannistraci et al., 2013). The use of link prediction also raises the pos-

sibility that data can be collected to represent the subset of a network (therefore

reducing data collection requirements), and link prediction be used to estimate the rest

of the network (Lu et al., 2015).

Separate, but directly linked to measuring connectivity, is analysis of the measure-

ments. The most commonly applied approach is the use of graph theory. This powerful

mathematical tool has yielded significant insights in fields as diverse as Social Network

Science, Systems Biology, Neuroscience, Ecology, and Geomorphology. However, in

many applications of network-based approaches simply knowing if a link is present or

absent (i.e. a binary approach) is too basic or artificial, and characterising the capacity

of a link or the relative significance of a link within a network is important. This issue

can be dealt with by providing a more detailed representation of the network using

weighted or directional links. The use of weighted links is common within network sci-

ence (see for example Barratt et al., 2004), and is likely to be of particular importance

when, for example, applying network-based approaches to hydrology where the capacity

of flow pathway (channel) is an important structural element of links within the
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hydrological network (e.g. Masselink et al., 2016b). Using a weighted network can pro-

vide an additional layer of information to the characterisation of a network that carries

with it advantages for specific applications, and to ignore such information is to throw

out data that could potentially help us to understand these systems better (Newman,

2004a); hence, the importance of using measures that incorporate the weights of links

(Opsahl and Panzarasa, 2009). More recently, further advances have been made in

network-based abstractions of systems, for example, in Ecology, multi-layer networks

are being increasingly used, which overcome the limitations of mono-layer networks, to

allow the study of connections between different types (or layers) of networks, or inter-

actions across different time steps. Similarly, bipartite networks have been used to pro-

vide a more detailed representation of different types of nodes in a network. These

more complex network-based approaches carry with them advantages that a more de-

tailed assessment of connectivity within and between different entities can be assessed.

However, whilst there are many advantages in using more complex network-based ab-

stractions of a system (weighted, bipartite and multi-layer networks), there are also in-

herent limitations as many of the standard tools of statistical network analysis

applicable to binary networks are no longer available.

In the case of weighted networks, even the possibility of defining and categorizing a

degree distribution on a weighted network is lost. In some cases there are ways to mod-

ify these tools for application to weighted networks, but one loses the comparability to

the vast inventory of analysed natural and technical networks available. A further prob-

lem of assigning weights to network links is that it requires greatly increased param-

eterisation of network properties, which may in turn start to drive the outcome of

using the network to help characterise SC and FC and may influence any emergence

we might have otherwise seen. However, in recognition of not throwing away important

information associated with the weights of links, there are increasingly tools available

to deal with weighted links, including: the revised clustering coefficient (Opsahl and

Panzarasa, 2009); node strength (the sum of weights attached to links belonging to a

node) (Barratt et al., 2004); average node strength (the average strength, s, of nodes of

degree k, i.e. s = s(k), which describes how weights are distributed in the network)

(Menichetti et al., 2014); and the inverse participation ratio (the average inverse partici-

pation ratio of the weights of the links incident upon nodes of degree k, i.e. Y = Y(k),

which describes how weights are distributed across the links incident upon nodes of

degree k) (Menichetti et al., 2014).

As already discussed in the case of Ecology, a limitation of bipartite networks is that

to analyze these networks, a one-mode (monopartite) projection of the network is re-

quired, as many of the tools available for monopartite networks are not so well devel-

oped for bipartite networks. An important issue when analyzing bipartite networks is

therefore devising a way to obtain a projection of the layer of interest without generat-

ing a dense network whose topological structure is almost trivial (Saracco et al., 2017).

Potential solutions to this issue include projecting a bipartite network into a weighted

monopartite network (Neal, 2014) and only retaining links in the monopartite projec-

tion by only linking nodes belonging to the same layer that are significantly similar

(Saracco et al., 2017). A further issue is that it is often not possible to recover the bi-

partite graph from which the classical form has been derived (Guillaume and Latapy,

2006). Developments are being made in our ability to analyze bipartite networks
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directly; for example, progress has been made in developing link-prediction algorithms

applicable to bipartite networks (e.g. Cannistracti et al., 2013).

Similarly, to apply standard network techniques to multi-layer networks requires ag-

gregating data from different layers of a multi-layer network to a mono-layer network

(De Dominico et al., 2013) which can result in a lot of valuable information being dis-

carded (Kivela et al., 2014), although approaches are being developed to reduce the

amount of information loss (De Dominico et al., 2014).

Careful consideration of the most appropriate tools is thus required when measuring

connectivity using a network-based abstraction. Key questions are: Is it practical/doable

to collect the data required to parameterise the network-based model of the system?

Can a sensible projection of a bipartite network be derived, to facilitate analysis of the

network? Is it possible to derive a monoplex abstraction of a multiplex network without

losing too much information?

A unified approach in connectivity studies: Development of a ‘common toolbox’

From this review it clear that the persistence of the four key challenges identified de-

pends on the availability of different types of tools and their varied applications across

the disciplines (Table 1). Notably, disciplines that are more advanced in their applica-

tion of network-based approaches appear to be less limited by the four key challenges.

The conceptual similarities in SC and FC observed between the disciplines discussed

here, in which a wide range of different types of systems can be represented as nodes

and links (Fig. 1) presents the ubiquitous possibility for the more general study of SC

and FC using network-based approaches, even in disciplines where such an approach is

not commonplace.

To pave the way forward in research into complex systems using connectivity ap-

proaches, we propose that a ‘common toolbox’ be compiled that can be applied across

different disciplines to understand better the dynamics and characteristics of complex

systems and the emergence of whole-system behaviour (Fig. 6). This common toolbox

can be employed across the different disciplines to solve a set of common problems.

Network-based approaches drawing upon the tools of Graph Theory and Network Sci-

ence reside at the core of this common toolbox as they have been applied in disciplines

where the key challenges pose less of a problem. In combination with network-based

approaches, high resolution imaging/measurements of system dynamics (structural/

functional developments), common standards for measuring connectivity, and contin-

ued knowledge accumulation, and the use of independent approaches to characterise

SC and FC also reside at the centre of this common toolbox and assist with the devel-

opment of suitable network-based representations of SC and FC.

A common toolbox requires that tools are readily accessible. The widespread uptake

of the tools of Graph Theory has been facilitated by the implementation and dissemin-

ation of various graph theoretical models. Facilitating this uptake is the freely available

stand-alone open source packages or enhanced parts of more general data analysis

packages, all of which are becoming more sophisticated with time. A common toolbox

can draw upon many existing freely available tools. One example is the Brain Connect-

ivity Toolbox (Rubinov and Sporns, 2010) which was developed for complex-network

analysis of structural and functional brain-connectivity data sets using the approaches
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of graph theory. More recently this toolbox has been used to investigate braided river

networks (Marra et al., 2013), as well as channel networks within lava flows (Dietterich

and Cashman, 2014). Similarly, other freely available connectivity metric tools from

neuroscience have been used to assess structural and functional hydrologic connectiv-

ity, although further challenges have been noted, including issues concerning results in-

terpretation including the occurrence of ‘false’ FC in the absence of SC, a strong

dependence of results on chosen interpretation thresholds and the choice of appropri-

ate length and sampling frequency of input data time series (related to scale issues) (see

Rinderer et al. 2018).

Core foundations of the common toolbox upon which tools can be applied/abstrac-

tions can be made to facilitate suitable measurements are:

(1) Continued knowledge accumulation. This enables the fundamental unit to be

defined based on the system in question, which is then represented within the

network as a node. To deal with multi-scale dynamics within a system, groups of

nodes at one level of organization can form a fundamental unit at a higher level of

organization.

(2) Network-based approaches. These are well suited to the separation of SC and FC

through the topological representation of system structure (SC) and through

identifying parts of the network that are dynamic (FC). The spatial embeddedness

of many networks is an essential feature, whereby the location of nodes and their

spatial proximity is an important feature of the system, and it is necessary that this

a b
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Fig. 6 Network-centred common toolbox. Diagram showing how a network-centred common toolbox
implicitly addresses the four (inextricably linked) key challenges: defining the fundamental unit, separating
SC and FC, understanding emergent behaviour and measuring connectivity. A. Groups of nodes form
fundamental units at higher levels of organization (denoted by grey dashed lines); B. Topological
representation of system structure (spatially embedded depending in the system in question); C. Identifying
parts of the network that are dynamic (functionally connected); D. Adaptive network where the evolution
of topology depends on the dynamics of nodes (source: Gross and Blasius; 2008). Network adaptation at
multiple (cross scale) levels of organization shapes emergent behaviour; E. FC may have an emergent
aspect (self-organised, collective patterns on the structural network) that is independent of network
adaptation; F. The fundamental unit should dictate the measurement approach; G. Measurements of SC
and FC should be used to parameterise and test network-based representations; H. How we measure
connectivity determines our ability to detect how connectivity leads to emergent behaviour
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be accounted for. Further, the position of nodes within a network or node

characteristics may alter the relative weighting of links.

(3) Accounting for network adaptation. In recognition that SC-FC relations evolve

(potentially leading to emergent behaviour), accounting for network adaption,

where the evolution of network topology depends on node dynamics, is essential

(Gross and Blasius, 2008). Only by dealing with network adaptation can SC-FC

feedbacks and interactions be dealt with. Also important for understanding emer-

gent behaviour is the capacity for fundamental units to be represented at multiple

levels of organization, since this is critical where emergent behaviour is the result

of cross-scale interactions and feedbacks.

Whilst connectivity research in complex systems should not be restricted to the

use of a single tool or approach, there are clearly advances that can be made in

connectivity studies by merging tools used within different disciplines into a com-

mon toolbox approach and learning from examples from different disciplines

where certain challenges have already been overcome. It is important to recognise

that not all the tools of the common toolbox will be applicable to all applications

in all disciplines, and that some disciplines will only require a subset of ap-

proaches. Furthermore, it is important not to overcomplicate analyses, for in-

stance through the use of spatially embedded networks where space is not an

important network characteristic, or through the use of weighted links in cases

where this is not critical to the representation of a system. Overcomplicating net-

work representation reduces the scope for some network-based metrics to be

used to quantify connectivity (e.g. you lose the capability of being able to define

a degree distribution in a weighted network).

To operationalise this common toolbox, what is required now is a transdisciplin-

ary endeavour that brings together leading scholars and practitioners to explore ap-

plications of connectivity-based tools across different fields with the goal of

understanding and managing complex systems. Examples include: (i) determining

how critical nodes shape the evolution of a system and how they can be manipu-

lated or managed to alter system dynamics; (ii) deriving minimal models of SC and

FC to capture their relations and identify the most relevant properties of dynamical

processes, and (iii) to explore how shifts in network topology result in novel sys-

tems. Key to fulfilling this goal will be: synthesising theoretical knowledge about

structure-function connectivity (SC-FC) relationships in networks; exploring the

ranges of validity of SC-FC relationships and reformulating them for usage in the

application projects; deriving suitable (minimal) abstractions of specific systems,

such that the tools within the common methodology become applicable. Also im-

portant will be the synthesis of distinct methods that are similar in terms of the

theoretical basis and share common ways of quantitatively describing specific as-

pects of connectivity. An important task will be to test the applicability, compati-

bility and enhancement of consistent methods in the common toolbox from one

discipline to the other. Then, using the common toolbox, it will become possible

to explore and understand commonalities in the structure and dynamics of a range

of complex systems and hence of the respective concepts that have been developed

across scientific disciplines.
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Future avenues for research in exploring SC-FC relations

In addition to these findings, other areas that may yield novel insights into SC-FC rela-

tions and assist in understanding commonalities in the structure and dynamics of a

range of complex systems can be highlighted. That some of these specific areas have

already been explored in some disciplines, but not all, presents an opportunity to inves-

tigate if they are evident across complex systems more generally, and provide oppor-

tunity to build upon the core foundations of the common toolbox outlined in (section

A unified approach in connectivity studies: Development of a ‘common toolbox’). Ex-

amples include:

(1) Estimating the importance of certain network components using the

elementary flux mode concept. The importance of certain network components

has been demonstrated in Systems Biology, but there are opportunities for all

disciplines using network-based approaches to identify which parts of systems (net-

works) are particularly important. In Systems Biology elementary mode analysis is

used to decompose complex metabolic networks into simpler units that perform a

coherent function (Stelling et al., 2002), for example, the minimal set of enzymes

that can support steady-state operation of cellular metabolism. Thus, there is op-

portunity to extend the concept of elementary mode analysis to other disciplines to

predict key aspects of network functionality.

(2) Exploring short-range versus long-range connectivity in spatially embedded

networks. Short range versus long range connectivity has been highlighted as

being important in many real networks, with the lengths of links characterised by a

power-law distribution (Daquing et al., 2011). As seen in the case of Social Net-

work Science, Social-Ecological Studies and Geomorphology, there are striking situ-

ations in which the proximity of structurally connected nodes influences the FC of

the network. For example, geographic proximity facilitates the creation and main-

tenance of social networks (e.g. Preciado et al., 2012; Meyners et al., 2017) due to

the reduced effort required to maintain social ties, although communication tech-

nologies and social networking platforms are changing the effect that geographic

proximity has on social relations (e.g. Koban and Kruger 2018). Geomorphic land-

scape units tend to be more frequently connected by fluxes of materials the closer

they are. In social-ecological systems, the underlying environmental system should

not be divorced from its social context (i.e. networks of people and organizations),

although often there is the issue of a spatial-scale mismatch between resource

management structures and environmental systems (Sayles and Baggio, 2017b).

Thus, the spatial dimension of networks plays a role in determining the functioning

of the network and importantly, the systems’ behaviour especially near a critical

point (i.e. threshold) (Daquing et al., 2011). Whilst the spatial characteristics of net-

works are widely recognised as being important, in some disciplines, they are still

often not accounted for in network-based approaches. For example in the brain

where cortical wiring is to some extent distance dependent (Kalisman et al., 2003),

the spatial properties of the network are likely to be important since cortical net-

works have a spatial dimension (Voges et al., 2007). However, within Neuroscience

many studies assume a random graph approach with completely random wiring

(Brunel, 2000) which disregards the spatial dimension. Thus, in systems where the
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spatial characteristics of connectivity are important, accounting for short- and

long-range connectivity and spatial characteristics of the network may be critical to

understanding the behaviour of the system, and may yield important insights to

understanding threshold dynamics. Selecting the appropriate network analysis tools

when space is important is thus essential.

(3) Exploring power law relations of SC and FC. In Systems Biology power law

degree distributions of metabolic networks have been observed to match a power

law degree distribution of metabolic fluxes. However other disciplines have not

explored if law degree distributions in measures of SC correspond to power law

degree distributions in FC; doing so may yield insights into SC-FC relations that

might improve understanding of the evolution of network topology and system dy-

namics, and may help understand emergent behaviour.

(4) Identifying hump-shaped SC-FC relations: There are examples in Ecology,

Geomorphology and Systems Biology where SC-FC relations are hump-shaped. For

example in Ecology connectivity-diversity relationships are often hump shaped,

with floodplain biodiversity peaking in areas with an intermediate degree of hydro-

logical connectivity (Ward et al., 1999). Identifying systems or networks that have

a hump-shaped structure-function relationship could yield important insights into

SC-FC feedbacks and threshold dynamics (i.e. reverse changes in FC once a struc-

tural threshold has been passed).

Although it is fairly common to borrow and adapt tools and concepts from one dis-

cipline to another, it is important to establish which methods are best suited to a par-

ticular discipline. It is important to consider which element or aspect of connectivity is

transferable between disciplines – is it methods used to deal with SC and FC in con-

nectivity analysis, or tools used to measure connectivity, or something more substantive

in theoretical terms? For example, there may be issues when using concepts from ecol-

ogy to explain human sub-systems, as humans are self-reflective and anticipatory. Fur-

thermore, there may be issues, for example when transferring theories and concepts

relating to patterns in Physics and Chemistry to patterns in Biology which have often

undergone a clear evolutionary tuning and might serve a system level function, un-

like patterns in Physics and Chemistry which are often just a by-product of nonlin-

ear interactions of system components (see section Understanding emergent

behaviour). Nevertheless, there is certainly great possibility to transfer tools and

concepts between disciplines, as long as care is taken to ensure the suitability and

applicability of such transfers.

Summary

Across a range of disciplines connectivity has been a transformative concept in under-

standing and describing what are considered to be complex systems. Although concep-

tualisations and operationalisations of connectivity have evolved largely within their

disciplinary boundaries, we have shown both that similarities in the concept of con-

nectivity and its application among disciplines are also evident, and that common prob-

lems in using connectivity science are present.

In some disciplines there are standard practices for understanding, measuring, moni-

toring and modelling connectivity. It is clear, therefore, that progress can be made
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across all disciplines by learning from each other to advance the use of connectivity to

understand our specific topics. This learning from each other can be facilitated through

the use of the common toolbox, which will facilitated a greater degree of co-operation

and cross-fertilization among these disciples, particularly in terms of developing com-

mon tools to analyse connectivity.

Endnotes
1Karl Zilles, private communication
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