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INTRODUCTION 

The Cold-Formed Steel (CFS) structures are able to ensure a good structural response in seismic 
areas. Among them, the stick-built constructions raise a considerable interest in recent studies. In 
these structures, the lateral load bearing systems are CFS stud walls, that are generally realized with  
a frame in CFS profiles that can be braced by light gauge steel straps installed in an X 
configuration. In this case, the "all steel" design methodology can be adopted and the lateral 
resisting system is assured by the CFS strap-braced stud walls. 
The unconventionality of CFS structures has motivated, in recent times, the experimental 
characterization carried out by many international research groups. The investigations included 
several aspects that affect the seismic behaviour of CFS strap-braced stud walls. In particular, the 
monotonic and cyclic response of these systems has been examined by Adham et al. [1], Serrette & 
Ogunfunmi [2], Gad et al. [3], Fulop & Dubina [4], Tian et al. [5], Al-Kharat & Rogers [6], Kim et 
al. [7], Casafont et al. [8], Moghimi & Ronagh [9] and Velchev et al. [10] which have observed a 
satisfactory experimental behaviour in terms of energy dissipation, stiffness, strength and 
deformation capacity. The contribution of the frame without bracing has been analyzed by many 
studies [2], [5] and [7]. Specifically, Tian et al. [5] estimated that a frame without any bracing 
system has a lateral strength 5% less than  the braced one. The frame-to-strap connections have 
been investigated in [3], [4], [6], [8] and [10]. These studies have concluded that the connection 
behaviour highly influences the failure load and mechanism of the tested walls. In particular, 
Casafont et al. [8] demonstrated that the screws are the preferable connection type in the seismic 
design, because their small diameter involves a net-section area greater than other fastener types. 
Moreover, taking into account that gypsum sheathing panels are usually adopted as wall finishing, 
the effect of those panels at varying of their thickness on the in-plane shear response of CFS strap-
braced stud walls has been evaluated in [1], [2], [3] and [9]. The results of these studies 
demonstrated a significant contribution to shear capacity provided by sheathing panels. In 
particular, Gad et al. [3] observed that the overall stiffness and strength of the system can be 
obtained as the sum of the individual contributions of plasterboard and strap braces. The effect of 
loading type (monotonic and cyclic) on the wall lateral behaviour has been investigated in [1], [3], 
[4], [5], [6], [8], [9] and [10]. These researches observed a highly non-linear behaviour and a cyclic 
response characterized by the phenomenon of “pinching” and, therefore, by a reduced energy 
dissipation capacity. Furthermore, the stiffness and strength degradation becomes larger as the 
number of cycles increases, as highlighted in [1] and [8].  
As an attempt to provide a contribution for the knowledge improvement of this system, a theoretical 
and experimental study has been carried out at University of Naples Federico II within the research 
project RELUIS-DPC 2010-2013. The research program has been articulated in two main phases. 
The experimental phase has been devoted to the evaluation of the local and global behaviour of 
CFS strap-braced stud walls by an experimental study. In the theoretical phase, seismic design 
criteria have been deeply investigated [11]. This paper mainly presents the results of the 
experimental phase. 



 

  

1 TEST PROGRAM 

The first phase of research program has been devoted to the development of study cases 
representative of typical seismic applications, in order to define the prototypes to be tested. With the 
purpose to investigate a large number of possible applications, three buildings located in different 
seismic area have been designed and for each of them the main lateral resisting system has been 
defined. In particular, these last are composed of CFS strap-braced stud walls that have been 
designed according to elastic or dissipative design approaches. Therefore, three configurations have 
been defined: elastic light (WLE), dissipative light (WLD) and heavy (WHD) walls. The WLE 
typology represents the seismic force resisting system of a single-story building in low-medium 
seismic area and all wall components have been designed according to an elastic approach. Instead, 
the dissipative wall configurations (WLD and WHD) have been designed and detailed by adopting 
capacity design principles, in such a way to ensure a ductile performance by promoting the brace 
yielding. The WLD system corresponds to the same conditions of WLE, while the WHD wall 
represents the lateral resisting system of three-story building in high-medium seismic area. The 
lateral response of these systems has been investigated by testing each of three selected 
configuration by two monotonic and two cyclic tests for a total of twelve tests on full-scale wall 
specimens in size of 2.4 m x 2.7 m. Moreover, taking into account that materials and components 
affect the wall seismic global response in terms of lateral resistance, stiffness and ductility, the 
component response has been investigated by means of 17 tests on materials, 8 shear tests on 
elementary connections between steel profiles and 28 shear tests on connections between gussets 
and strap-bracing. The experimental campaign has been carried out at the Department of Structures 
for Engineering and Architecture of the University of Naples Federico II. 

2 TESTS ON MATERIAL AND COMPONENTS 

The global lateral response of CFS strap-braced stud walls and the local behaviour of their 
components are strongly interrelated, therefore tests on materials, elementary connections and 
gussets - to - strap connections have been performed. 
The material coupons of straps and frame members have been subjected to conventional tension 
tests according to EN ISO 6892-1: 2009 [12]. In particular, tests have been performed on three 
specimen types S235-2.0, S350-1.5, S350-3.0, characterized by steel grades S235 with nominal 
yield stress fy= 235 MPa and ultimate stress ft = 360 MPa, S350GD + Z with fy = 350 MPa and ft = 
420 MPa and thicknesses 2.0 mm, 1.5 mm, 3.0 mm, respectively. In order to investigate the 
phenomenon of "strain-rate", tests at low rate (0.05 mm/s) and high rate (50 mm/s) have been 
carried out for each specimen type. The effects of “strain rate” have been assessed to observe how 
the behaviour can change by increasing the test rate. This last aspect has not been investigated in the 
quasi-static tests on wall specimens. Table 1 shows the average values of measured yield (fy,m) and 
ultimate stress (ft,m) for each test rate, the ratio between nominal and average values and the ratio 
between average values at low (L) and high (H) rate. As regard the tests at low rate, the 
experimental values of the yield stress are larger than the nominal values (28%, 2%, 4% for S235-
2.0, S350-1.5, S350-3.0, respectively), while the results in terms of ultimate stress record a 
moderate increase for S235-2.0 and S350-3.0 specimens (2% e 1%, respectively) and a reduction of 
3% for S350-1.5 specimens. The "strain-rate" effect produces an increment of the strength. In 
particular, the yield and ultimate stresses increases between 5% and 7%, respectively, as the test 
rate increases. 

Table 1. Tests results on material 

Type Steel grade 
Thickness. 

v = 0.05 mm/s v = 50 mm/s 
n. 

tests 
fy,m ft,m 

fy,m/fy ft,m/ft 
n. 

tests 
fy,m ft,m fy,m(H)/ 

fy,m(L) 
ft,m(H)/ 
ft,m(L) [mm] [MPa] [MPa] [MPa] [MPa] 

S235-2.0 S235 2.0 3 302 366 1.28 1.02 2 323 389 1.07 1.06 
S350-1.5 S350GD+Z 1.5 3 355 409 1.02 0.97 3 380 430 1.07 1.05 
S350-3.0 S350GD+Z 3.0 3 364 425 1.04 1.01 3 387 454 1.06 1.07 
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3.1 Monotonic tests 

In the monotonic loading regime, t
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WLE-M2 pull/push 65.9/63.7 

 
theoretical 62.0 
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NSF: net section failure of strap-bracing ; B
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57.6 - - 

 - - - 0.65 
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115.5 - - 

 - - - 0.52 

; BY: brace yielding  

 (a) 

cimen: load vs. Fig. 6. Monotonic tests on walls: a) n
WLE-M1; b) brace yielding f

 

g a loading protocol 
led and in the second 
nloading of the wall 
g protocol involved 
), maximum strength 
displacement (dmax), 
e maximum strength, 
tical predicted values 
ing the experimental 
p wall displacements 

ers, which are used to 
m strength contained 
astic stiffness records 
 of local damages of 
ions the collapse was 
and WHD specimens 
e maximum stroke of 
the experimental and 

 (ke,p) Failure 
mode kN/mm] 

3.5/2.7 NSF/NSF 
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3.2 Cyclic tests 
The cyclic tests have been carried out by adopting a loading protocol known as "CUREE ordinary 
ground motions reversed cyclic load protocol" developed for wood walls by Krawinkler et al. [14] 
and modified for CFS strap-braced stud walls by Velchev et al. [10]. The cyclic loading test 
protocol consists of a series of stepwise increasing deformation cycles. The displacement 
amplitudes have been defined starting from a reference deformation, that is Δ = 2.667Δy, where Δy is 
the displacement at the conventional elastic limit evaluated in the monotonic tests on wall 
specimens. The cyclic protocol involved displacements at a rate of 0.5 mm/s, for displacements up 
to 9.97 mm, 7.36 mm e 7.27 mm for WLE, WLD and WHD walls respectively, and of 2.0 mm/s for 
displacement greater than those mentioned above. The adopted test protocol for WLE specimens is 
shown in Fig. 7. Figure 8 provides the acting loads (H) versus the measured displacements (d) 
curve and the analyzed parameters for the WLD-C2 specimen. The results of the cyclic tests are 
shown in Table 6. The results show that the strength and stiffness recorded for the two loading 
directions have maximum differences of 4% and 15%, respectively, except a variation of 26% for 
the stiffness of WHD-C1 specimen. For all prototypes the observed collapse mode has been the net 
section failure of diagonal straps, except for WHD wall specimens, which have showed the brace 
yielding in the pushing phase. The results highlight variations up to 16% and 23% between the 
experimental and theoretical values for strengths and stiffness, respectively. The comparison 
between the monotonic and cyclic responses in terms of strength and stiffness is quantified with 
variations contained within 12% and 17%, respectively.  

Table 6. Test results of cyclic tests on full-scale walls 

Tipologia 
 Hy (Hy,p) Hmax (Hmax,p) dmax ke (ke,p) Failure mode 

[kN] [kN] [mm] [kN/mm] 
WLE-C1 pull/push 69.6/68.9 70.6/69.4 38.1/35.7 3.7/3.4 NSF/NSF 

WLE-C2 pull/push 68.0/69.9 68.3/70.5 26.5/31.3 4.0/4.7 NSF/NSF 

 
theoretical 62.0 61.4 - 4.4 NSF 

 
Exper./theor. - 1.11 ÷ 1.15 - 0.77 ÷  1.07 

 
WLD-C1 pull/push 58.7/59.8 63.1/64.4 176.2/165.5 3.8/4.0 NSF/NSF 

WLD-C2 pull/push 58.7/60.0 66.6/64.9 141.2/144.8 4.6/4.5 NSF/NSF 

 
theoretical 55.0 57.6 - 4.9 BY 

 
Exper./theor. - 1.10 ÷ 1.16 - 0.78 ÷  0.94 

 
WHD-C1 pull/push 116.7/116.0 124.0/124.2 197.0/221.0 5.7/7.7 NSF/BY 
WHD-C2 pull/push 112.9/111.6 118.9/124.2 67.5/221.8 7.5/6.7 NSF/BY 

 
theoretical 110.0 115.5 - 6.6 BY 

 
Exper./theor. - 1.03 ÷ 1.08 - 0.86 ÷  1.17 

 
NSF: net section failure of strap-bracing ; BY: brace yielding 
 

 

Fig. 7.  Cyclic protocol for WLE specimens 

 

Fig. 8. Cyclic test on WLD-C2 specimen: load vs. 
displacement curve 

 



 

  

4 CONCLUSIONS  

An experimental investigation for the evaluation of the seismic behaviour of CFS strap-braced stud 
walls has been presented and discussed in the current paper. The obtained results from the wall and 
connections tests show a satisfactory response in terms of strength, deformation capacity and 
stiffness. In particular, a good correspondence between wall experimental and theoretical predicted 
values is highlighted in terms of strength (maximum gap of 16%). These results can be considered 
as a reference for theoretical studies aimed at defining seismic design criteria for the investigated 
systems. 
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