

This is a repository copy of *Cylindrical smoothed particle hydrodynamics simulations of water entry*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/141859/

Version: Supplemental Material

Article:

Gong, K., Shao, S., Liu, H. et al. (2 more authors) (2019) Cylindrical smoothed particle hydrodynamics simulations of water entry. Journal of Fluids Engineering, 141 (7). 071303. ISSN 0098-2202

https://doi.org/10.1115/1.4042369

© 2019 ASME. This is an author produced version of a paper subsequently published in Journal of Fluids Engineering. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

*VOR (version of record)

American Society of Mechanical Engineers

ASME Accepted Manuscript Repository

Institutional Repository Cover Sheet First Last ASME Paper Title: Simulation of Cogeneration-Combined Cycle Plant Flexibilization by Thermochemical Energy Storage Authors: Michael Angerer, Michael Djukow, Karsten Riedl, Stephan Gleis and Hartmut Spliethoff ASME Journal Title: Energy Resources Technology Volume/Issue 140 / 2 Date of Publication (VOR* Online) Jan 23, 2018 ASME Digital Collection URL: http://energyresources.asmedigitalcollection.asme.org/article.aspx?articleid=2666104 DOI: 10.1115/1.4038666