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Abstract8

Recent experimental work by the current authors has provided highly spatially and temporally resolved mea-9

surements of the loading imparted to, and the subsequent dynamic response of, structures subjected to near-field10

explosive loading [1]. In this article we validate finite element models of plates subjected to near-field blast loads11

and perform a parametric study into the relationship between imparted load and peak and residual plate defor-12

mation. The energy equivalent impulse is derived, based on the theory of upper bound kinetic energy uptake13

introduced herein, which accounts for the additional energy imparted to a structure from a spatially non-uniform14

blast load. Whilst plate deflection is weakly correlated to total impulse, there is shown to be a strong positive cor-15

relation between deflection and energy equivalent impulse. The strength of this correlation is insensitive to loading16

distribution and mode of response. The method developed in this article has clear applications for the generation17

of fast-running engineering tools for the prediction of structural response to near-field explosions.18

Keywords: Blast loading, Deformation, Energy equivalent impulse, Finite element analysis, Plates19

1. Introduction20

The provision of adequate blast protection systems requires a detailed understanding of the magnitude and dis-21

tribution of the imparted load, and the response of a structure subjected to this load. The blast protection community22

is equipped with well-established engineering tools, such as the Kingery and Bulmash semi-empirical method [2]23

which allows for rapid evaluation of blast wave parameters from a given explosive event, and the equivalent single-24

degree-of-freedom method [3] which can be used to calculate the response of idealised structures subjected to25

dynamic loads. Such engineering tools have been demonstrated to be accurate for geometrically simple scenarios26

(e.g. [4, 5]), however these methods are unsuitable when considering the highly complex, spatially non-uniform27
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loading conditions that arise from the detonation of an explosive located extremely close to a structure. This ‘near-28

field’ blast issue is of considerable importance, in issues ranging from protection against the effects of land-mines29

and small improvised explosive devices, to the design and evaluation of explosive storage facilities or critical in-30

frastructure. There is a pressing need for approaches which combine fundamental understanding of the qualitative31

mechanisms of loading and structural response with the ability to quantitatively predict these effects, leading to32

simple, but well-founded quick-running engineering models which can be used in risk assessment studies.33

Explicit finite element software can be used to model the detonation process, blast wave propagation and sub-34

sequent target response through fluid-structure interaction. Whilst this method can often produce results that are in35

excellent agreement with experimental observations [6, 7, 8, 9, 10, 11], the high computational cost associated with36

these analyses often limit the suitability of this approach for practical engineering decision-making. Furthermore,37

such numerical work is often conducted in the absence of detailed, well-controlled experimental data on blast loads38

and target deformation.39

An alternative method is to apply the load directly to the target using pre-defined point loads, taken from40

numerical model results, experimental recordings, or semi-analytical predictions [12, 13, 14, 15, 16]. Whilst41

this may result in significant computational savings by negating the need to account for analyses involving fluid-42

structure interaction, the accuracy of such models is highly dependent on the validity of the load model itself and43

existing models are unproven in near-field blast load scenarios.44

Previous work at the Blast Impact and Survivability Research Unit (BISRU) at the University of Cape Town45

(UCT), South Africa, into plate response from uniform impulsive loads has shown that a linear relationship exists46

between impulse and residual deflection [17, 18]. Whilst more recent studies into plate deformation under non-47

uniform blast loads have shown that a similar relationship can be derived if the distribution of loading is assumed48

[19, 20, 21, 22], there have, to date, been no studies where the loading distribution is known.49

The current authors have previously presented the results from a dual experimental programme conducted at the50

University of Sheffield (UoS), UK, and BISRU at UCT [1]. UoS tests were performed using the Characterisation51

of Blast Loading (CoBL) apparatus [23] to capture the spatial and temporal distribution of pressure and specific52

impulse resulting from the detonation of near-field free-air explosions. UCT tests were performed using a blast53

pendulum, recently modified to include stereo high speed video (HSV) capabilities [24]. Digital Image Correlation54

(DIC) [25] was used to measure the transient deformation along the centreline of blast loaded circular plates.55
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This paper presents a study into the specific impulse distribution, kinetic energy uptake, and resultant transient56

plate deformation arising from the interaction of a near-field explosive detonation with a target plate, using results57

from Ref. [1] to validate the following numerical modelling approaches:58

• Free-air blast load validation in an axi-symmetric Multi-Material Arbitrary Lagrangian-Eulerian (MMALE)59

simulation60

• Dynamic plate deformation using MMALE method61

• Dynamic plate deformation using Lagrangian method62

Initially the UoS experiments are simulated using an axi-symmetric model, and the resulting pressure and63

specific impulse distributions are compared to the experimentally measured values. Subsequently, 3D quarter-64

symmetric models of the UCT target plates are simulated using both a MMALE and Lagrangian formulations,65

and transient deformations are compared to the experiments. In the Lagrangian models, scaled UoS impulse66

distributions are applied directly to the plates as equivalent initial velocities, whereas in the MMALE models the67

explosion process is explicitly simulated and pressure loads are transferred to the structure through fluid-structure68

coupling.69

Finally, the energy equivalent uniform impulse load is derived, and a parametric study is conducted which70

investigates the relationship between plate deformation and energy equivalent impulse.71

2. Free-air blast load validation72

Prior to simulating the plate deformation experiments, a free-air blast validation exercise was performed using73

the LS-DYNA explicit solver (LSDYNA V971 R8.10) developed by Livermore Software Technology Corporation74

[26]. Reflected pressure and impulse acting on a rigid target were directly measured in high explosive tests con-75

ducted at the University of Sheffield [1], and serve as validation data in this section. Seven tests were conducted76

in total: three tests were performed using 100 g PE4 spheres detonated at 55.4 mm clear stand-off distance (SOD)77

from the target, and four tests were performed using 78 g PE4 cylinders with diameter:height ratio of 3:1 detonated78

at 168.0 mm clear SOD. Temporal features of the loading and spatial distributions are compared against LS-DYNA79

results.80
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The Multi-Material Arbitrary Lagrangian-Eulerian (MMALE) solver and van Leer half-index shift [27] advec-81

tion algorithm were specified. This enabled the air and explosive to be modelled as two distinct parts, with a full82

description of the air and the explosive given below.83

2.1. Geometric representation84

A 250×250 mm rectangular domain of 1 mm square axi-symmetric shell elements was used for both spherical85

and cylindrical charge configurations. The y-axis represented the axis of symmetry, and the top edge of the domain86

was constrained against normal translations to act as a rigid boundary. The two remaining domain edges were set87

as non-reflecting boundaries to allow the blast wave to freely propagate out of the domain. A preliminary mesh88

sensitivity study indicated that a 1 mm mesh was adequate to achieve impulse convergence, and that an increase or89

decrease in the default bulk viscosity parameters had little effect on the fidelity or accuracy of the results.90

All elements in the domain were initially assigned as air, and the *initial volume fraction geometry keyword91

was used to ‘fill’ the explosive volume. For the spherical charge validation, container type 6 (sphere) was selected,92

and a 24.6 mm radius sphere – centred on the axis of symmetry and 80 mm from the reflecting boundary – was93

specified. For the cylindrical charge validation, container type 5 (rectangular box) was selected, with one corner94

located on the axis of symmetry and 168 mm from the reflecting boundary, and the other corner located 28.6 mm95

from the axis of symmetry and 187 mm from the reflecting boundary. These geometries directly correspond to the96

UoS experimental setup detailed in Ref. [1], given a density of 1601 kg/m3 for PE4, and are shown in Figure 1.97
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Figure 1: Geometry of the spherical [left] and cylindrical [right] blast load validation models
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2.2. Material properties and equations of state98

The air was modelled using the mat nullmaterial model and eos linear polynomial equation of state (EOS), an99

arbitrary polynomial expression describing the relationship between pressure, density, and energy. The eos linear polynomial100

is given as:101

p = C0 +C1µ +C2µ
2 +C3µ

3 + (C4 +C5µ +C6µ
2)E (1)

where C0,C1,C2,C3,C4,C5,C6 are constants, µ = ρ/ρ0 −1, ρ and ρ0 are the current and initial densities of air, and102

E is the specific internal energy. If the variables C0, C1, C2, C3 and C6 are all set equal to 0, and C4 and C5 are103

set equal to γ − 1, i.e. 0.4, where γ is the ratio of specific heats (γ = 1.4 for air), the ideal gas equation of state is104

recovered:105

p = (γ − 1)Eρ/ρ0 (2)

An initial specific internal energy, E0 = 253.4 kPa, was used to set the atmospheric pressure to 101.36 kPa.106

The explosive was modelled using the mat high explosive burn material model and Jones-Wilkins-Lee (JWL)107

semi-empirical equation of state, eos jwl [28]. The density, ρ, detonation velocity, D, and Chapman-Jouguet108

pressure, PCJ , of the explosive are defined in the material model and control the programmed detonation of the109

explosive [29]. The relationship between pressure, volume, and energy of the post-detonation explosive products110

is given by the JWL EOS as111

p = A

(

1 −
ω

R1V

)

e−R1V + B

(

1 −
ω

R2V

)

e−R2V +
ωE

V
(3)

where A, B, R1, R2 and ω are constants, V is the volume and E is the specific internal energy as before.112

The material properties and EOS parameters for air and PE4 are given in Table 1. As PE4 is nominally identical113

to C4 [30], EOS parameters used in this study were taken as the C4 parameters published by Dobratz & Crawford114

[31].115
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*mat null *mat high explosive burn

Parameter Value Unit Parameter Value Unit

ρ0 1.225 kg/m3 ρ0 1601 kg/m3

D 8193 m/s

PCJ 28.00e9 Pa

*eos linear polynomial *eos jwl

Parameter Value Unit Parameter Value Unit

C0 0.0 Pa A 609.77e9 Pa

C1 0.0 Pa B 12.95e9 Pa

C2 0.0 Pa R1 4.50 –

C3 0.0 Pa R2 1.40 –

C4 0.4 – ω 0.25 –

C5 0.4 – E0 9.00e9 Pa

C6 0.0 –

E0 253.40e3 Pa

Table 1: Material model and equation of state parameters for air and PE4 [31]

2.3. Results and discussion116

Pressure results were output at 1 mm intervals along the rigid target surface using the *database tracer key-117

word. Ambient pressure (101.36 kPa) was subtracted from the results to give values in terms of overpressure, and118

cumulative trapezoidal numerical integration was used to determine impulse histories from the data.119

Figure 2 shows numerical and experimental pressure-time and specific impulse-time histories following the120

detonation of a 100 g PE4 sphere at 55.4 mm clear SOD from a rigid target. Numerical results are provided121

at 0, 25, 50, 75, and 100 mm from the target centre and are compared with experimental data from Test 1 in122

Ref. [1]. Figure 3 shows numerical and experimental pressure-time and specific impulse-time histories following123

the detonation of a 78 g PE4 3:1 cylinder at 168.0 mm clear SOD. Again, numerical results are given at 0, 25, 50,124

75, and 100 mm radial ordinate and compared here with experimental data from Test 5 in Ref. [1].125

Numerical and experimental peak specific impulse distributions, between 0–100 mm from the target centre,126

are shown for spherical charges in Figure 4a), and for cylindrical charges in Figure 4b). The experimental results127

for the spherical tests comprise three individual experiments with four Hopkinson pressure bars (HPBs) recording128

at each radial ordinate per experiment (twelve data points per radial ordinate), with the exception of the 0 mm129

radial ordinate where only one HPB per test was used (three data points at 0 mm). The experimental results for the130

cylindrical tests comprise four individual experiments, again with four HPBs per radial ordinate per test (sixteen131
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Figure 2: Numerical pressure-time and specific impulse-time histories (100 g PE4 sphere at 55.4 mm clear stand-off distance) compared with

data from Test 1 in Ref. [1]

data points per radial ordinate) with the exception of the central bar (four data points at 0 mm). Further details of the132

experimental setup are available in Part I [1]. Presenting the dataset as a whole, as opposed to a mean distribution,133

gives an indication of typical upper and lower bounds on the experimental data and facilitates comparison with the134

numerical model. The numerical specific distributions are taken directly from temporal integration of the pressure135

histories extracted from the model – at 1 mm spacing along the rigid boundary – and have not been curve-fitted or136

processed any further.137

Qualitatively, the general form of the spherical pressure-time and specific impulse-time histories (Figure 2)138

appear to be in good agreement, despite the experimental signals exhibiting some Pochhammer-Chree dispersion139
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Figure 3: Numerical pressure-time and specific impulse-time histories (78 g PE4 3:1 cylinder at 168.0 mm clear stand-off distance) compared

with data from Test 5 in Ref. [1]

effects [32]. This can be seen as a loss of definition of transient pressure features of durations <∼4 microseconds140

(for the current bar diameter [33]) and the presence of spurious oscillations following the head of the pulse. Ac-141

cordingly, it is inappropriate to compare peak pressures, however Pochhammer-Chree dispersion does not affect142

total impulse, and only marginally affects the temporal evolution of impulse. It can be seen that temporal devel-143

opment of the impulses (Figure 2), and peak impulse distributions (Figure 4a) are well captured by the numerical144

model for the spherical charges. The experimental and numerical arrival times also compare well.145

In contrast, the cylindrical experimental and numerical results compare less well. The peak pressures acting146

at locations between 0–50 mm from the plate centre are approximately five times greater than the experimentally147
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Figure 4: Numerical and experimental peak specific impulse distributions: a) 100 g sphere at 55.4 mm clear stand-off distance; b) 78 g 3:1

cylinder at 168.0 mm clear stand-off distance

recorded values (note the vertical axis values), and numerical positive phase durations are considerably lower148

than in the experiments (Figure 3). The numerical and experimental cylindrical specific impulse distributions149

(Figure 4b) appear to converge at ∼75 mm from the target centre, however closer to the centre the numerical model150

considerably over-predicts specific impulse. This over-prediction, however, may not have a significant influence151

on plate deformation owing to the relatively small area of the plate that it acts over.152

In summary, the validation exercise has demonstrated that LS-DYNA can simulate the impulse distribution153

from near-field blast waves to a reasonable degree of accuracy, particularly when considering the spatial distribu-154

tion of peak specific impulse.155
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3. Plate deformation model set up156

Plate deformations were simulated using two distinct methods:157

• 3D quarter-symmetric MMALE model, with detonation and blast wave propagation modelled directly and158

loading applied to the plate through fluid-structure-interaction159

• 3D quarter-symmetric Lagrangian model, with loading directly applied to each node as an initial velocity160

Each model was analysed under two loading conditions, namely from spherical and cylindrical explosive161

charges. In the experiments conducted at UCT, described in [1], 300 mm diameter, 3 mm thick Domex 355MC steel162

plates, fully clamped along the periphery (all displacements and rotations nominally constrained) were subjected163

to spherical and cylindrical near-field blasts. The test geometries were designed using Hopkinson-Cranz scaling164

[34, 35] to ensure the scaled distance and scaled geometry were the same as those in the UoS tests for each charge165

shape. Ten tests were conducted at UCT in total: five using 50 g spheres at 44.0 mm clear distance (63.5 mm to166

charge centre), and five using 50 g 3:1 (diameter:height) cylinders at 145.0 mm clear distance (153.3 mm to charge167

centre), and are used herein as validation data.168

3.1. Geometric representation169

The plates, clamp frames, and air domain and explosive (in the MMALE models only) were modelled in 3D170

quarter-symmetry, as can be seen in Figure 5. In both MMALE and Lagrangian models the plates were meshed171

with 2×2 mm, 4-noded fully integrated quadrilateral shell elements with 3 mm thickness and five through-thickness172

integration points, and a quarter of the plate (200×200 mm square) was modelled. The clamp frames were meshed173

with 8-noded tetrahedral solid elements with a typical side length of 4 mm, and were separated from the plate174

elements by ±1.5 mm to account for the plate thickness.175

In the spherical charge MMALE models, the plate and clamp frames were situated within a 200×200×200 mm176

air domain comprising 8-noded brick elements, again with 2 mm side length. Element sizes for all parts were177

based on the results from a previous mesh sensitivity study [36]. The domain was extended to 200 × 200 ×178

300 mm for the cylindrical charge MMALE model to account for the larger SOD. The air domains were over-179

sized by approximately 50 mm past the target plates to allow for fluid-structure interaction to be maintained180

whilst the plates were deforming. In both MMALE models, the explosive was again represented using the181
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*initial volume fraction geometry keyword. As with the axi-symmetric models, the 3D spherical charges were182

represented using container type 6 (sphere) with a 19.5 mm radius specified – centred on the x and y axes, 63.5 mm183

from the plate surface. The 3D cylindrical charges were represented using container type 4 (conical surface), with184

16.5 mm height and 24.5 mm top and bottom radii, centred on the x and y axes, 153.3 mm from the plate surface.185

Boundary conditions were imposed on all parts to enforce xz and yz symmetry conditions. All other surfaces186

of the air part were defined as free boundaries to permit flow out of the air domain. An additional rigid boundary187

condition was imposed on the rear clamp frame to represent the area where the clamp frame was mounted to the188

pendulum (the movement of the pendulum within the duration of loading was assumed to be negligible).189

b)a)

Figure 5: Quarter-symmetric representation of the spherical [left] and cylindrical [right] plate deformation models (note: explosive geometries

are shown in their full 3D representation for clarity)

3.2. Plate and clamp frame material properties190

In the MMALE models, the air and PE4 were modelled using the same material properties and equations of191

state as described above in the axi-symmetric load validation study (see Table 1). The 3 mm Domex 355MC steel192

plates were represented using the simplified Johnson-Cook material model, which relates the equivalent stress, σeq193

to the equivalent strain, ϵeq, and equivalent strain rate ϵ̇eq [37],194

σeq =
[

A + Bϵeq
n
]

[

1 +Cln
ϵ̇eq

ϵ̇0

]

(4)
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where A, B, n, and C are material constants. Thermal softening effects and damage are ignored in the sim-195

plified Johnson-Cook material model. No failure criterion was specified as the plates were not loaded to failure196

in the experiments. Johnson-Cook material parameters for the Domex 355MC steel plates were determined by197

Curry [38] using LS-OPT [39], a standalone optimisation package which interfaces with LS-DYNA. Static (A, B,198

n) material properties were calibrated using LS-OPT by minimising the error between numerical and experimental199

force-displacement curves determined from static tensile tests. Subsequently, the error between numerical and ex-200

perimental force-displacement curves, determined from dynamic split-Hopkinson bar experiments, was minimised201

in order to determine the dynamic material parameter, C. Johnson-Cook material properties are shown in Table 2,202

where ρ, E, and ν are density, Young’s Modulus, and Poisson’s ratio.203

*mat simplified johnson cook

Parameter Value Unit

ρ 7830 kg/m3

E 206.8e9 Pa

ν 0.3 –

A 362e6 Pa

B 642e6 Pa

n 0.5597 –

C 0.032 –

Table 2: Johnson-Cook material properties for Domex 355MC steel

The clamp frames were modelled as linear elastic with ρ=7850 kg/m3, E=205 GPa, and ν=0.29, as negligible204

deflections were expected to occur within the frame itself.205

3.3. Contact and fluid-structure coupling206

Coupling between the plate and clamp frames was achieved using automatic surface-to-surface penalty contact.207

A coefficient of static friction of µs = 0.17 was assigned to model the friction between the two surfaces, after208

Geretto [36]. The bolted connections between the plate and clamp frames were represented by linear spring209

elements, with spring stiffness and initial elongation specified to achieve an equivalent pre-stress of 240 MPa in210

the bolts. This method simplifies the modelling of the clamping force between the plate, and is an acceptable211

approach given that no noticeable pull-in or tearing was observed at the boundary during the experiments. Fluid-212

structure coupling in the MMALE models was achieved using the *constrained lagrange in solid keyword with213

compression penalty contact specified between the plate and a part set containing the air and explosive.214
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3.4. Representation of loading in Lagrangian model215

The applied load in the Lagrangian models was created using a bespoke MatLab script which imported the216

plate mesh and assigned each node with an initial velocity based on its position using the *initial velocity node217

keyword. As an imparted impulse results in an equivalent change in momentum, the initial velocity, v, at a distance218

x from the plate centre is given as219

v(x) =
i(x)

ρt
(5)

where i is specific impulse, and ρ and t are density and thickness of the plate, 7830 kg/m3 and 3.00 mm220

respectively. This approach has been used previously to assign impulsive loads in LS-DYNA [16, 40].221

Specific impulse distributions were directly measured for 100 g PE4 spheres and 78 g PE4 cylinders at UoS222

[1]. A spline interpolant was fitted to the data, passing through the mean value of all recordings at 0, 25, 50, 75223

and 100 mm for each charge configuration. The following conditions were applied to the spline interpolant: zero224

gradient at the plate centre; zero gradient and zero impulse at an arbitrary large radial offset from the plate centre;225

and non-negative peak specific impulse at any radial ordinate. These conditions ensured the spline interpolant was226

physically valid, i.e. radially symmetrical and monotonically decreasing with increasing distance from the plate227

centre [1]. The fitted specific impulse distributions from the UoS tests are shown in Figure 6.228

Given that the plate deformation tests at UCT, detailed in Ref. [1], used 50 g PE4 spheres and cylinders,229

Hopkinson-Cranz scaling [34, 35] has been used to express the UoS-recorded specific impulse distributions at230

UCT scale, i.e. specific impulses and distances (stand-off and radial ordinate) are divided by the cube-root of231

the relative charge masses: 3
√

100/50 = 1.26 for the spherical tests and 3
√

78/50 = 1.16 for the cylindrical tests232

respectively. The fitted distributions expressed at UCT scale are also shown in Figure 6.233

3.5. Simulation phases234

The MMALE models were run in three phases:235

1. Loading phase (0–0.5 ms)236

2. Deformation phase (0.5–10 ms)237

3. Damping phase (10–20 ms)238
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Figure 6: Specific impulse distributions from Ref. [1] for spherical and cylindrical explosive charges, expressed at UoS and UCT scales

In Phase 1, the loading was applied to the plate through fluid-structure coupling, following direct simulation of239

the detonation process, blast wave propagation, and target interaction. After 0.5 ms, the blast pressure was judged240

to have reached ambient (or near-ambient) conditions across the plate and the simulation was terminated. Phase 2241

was initiated using a ‘small restart’ file in LS-DYNA, where the air and explosive parts were deleted, fluid-structure242

coupling was removed, and the plate was free to deform and interact with the clamping frame. After 10 ms, the243

analysis was again terminated, and Phase 3 was initiated with a small restart file with added structural damping to244

allow the plate to reach its residual deflection profile.245

The Lagrangian models were run in two phases, since the loading was applied as an initial condition and,246

according to impulsive loading conditions, the ‘loading phase’ has zero duration:247
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1. Deformation phase (0–10 ms)248

2. Damping phase (10–20 ms)249

4. Plate deformation results250

4.1. Transient plate deformations251

Figure 7 shows experimental midpoint plate deflections [1], measured using digital image correlation, com-252

pared with results from MMALE and Lagrangian numerical models for 3 mm thick, 300 mm circular spanning253

Domex 355MC steel plates subjected to the blast load from a 50 g PE4 sphere at 44.0 mm clear SOD. Figure 8254

shows experimental and numerical midpoint plate deflections for 3 mm thick, 300 mm circular spanning Domex255

355MC steel plates subjected to the blast load from a 50 g PE4 cylinder (3:1 diameter:height) at 145.0 mm clear256

SOD. The time-base of the Lagrangian models has been shifted to account for the arrival time of the blast waves:257

the loading was applied as an initial velocity at t = 0, which corresponds the time of detonation in the experiments258

and MMALE models rather than the true time of arrival. Peak midpoint and residual midpoint deflections are259

summarised in Table 3 for spherical and cylindrical charge configurations. The experimental means are calculated260

from an average of three tests (peak) and five tests (residual) per charge configuration.261
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Figure 7: Transient midpoint deflections from experiments [1] and MMALE and Lagrangian numerical models: 50 g PE4 sphere at 44.0 mm

clear SOD

The MMALE and Lagrangian models are in excellent agreement with the experimental results, particularly for262

peak midpoint deflection where both MMALE models are within 2.6% of mean experimental value, and both La-263

grangian models are within 0.6% of the mean experimental value. This is a clear indication that, for near-impulsive264
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Figure 8: Transient midpoint deflections from experiments [1] and MMALE and Lagrangian numerical models: 50 g PE4 cylinder at 145.0 mm

clear SOD

Type Charge

configuration

Peak deflection

(mm)

% diff. from

experimental

mean

Residual

deflection

(mm)

% diff. from

experimental

mean

Experiment, mean Sphere 20.54 – 15.86 –

Experiment, max Sphere 21.27 3.6 16.31 2.9

Experiment, min Sphere 19.95 -2.9 15.39 -3.0

MMALE Sphere 20.00 -2.6 17.19 8.4

Lagrangian Sphere 20.52 -0.1 17.51 10.4

Experiment, mean Cylinder 21.96 – 17.91 –

Experiment, max Cylinder 23.48 6.9 19.17 7.0

Experiment, min Cylinder 19.01 -13.4 15.29 -14.6

MMALE Cylinder 21.69 -1.2 18.11 1.1

Lagrangian Cylinder 21.83 -0.6 19.27 7.6

Table 3: Peak midpoint and residual midpoint deflections from experiments [1] and MMALE and Lagrangian numerical models for spherical

and cylindrical charges

loading conditions, the load distribution measured from an experimental test series can be directly mapped onto a265

finite element model of a plate to accurately predict the transient and resultant deformation. The accuracy of the266

Lagrangian models is commensurate with the accuracy of the MMALE models, which is particularly noteworthy267

considering that the MMALE models took ∼20 hours in total to run on a desktop PC, whereas the Lagrangian268

models typically completed in ∼2 hours.269

The transient behaviour of the plates is well captured in the MMALE and Lagrangian numerical models, as270

seen in Figures 7 and 8. The Lagrangian models track the experimental displacements near-perfectly for the first271

few tens of microseconds of displacement, whereas the MMALE models exhibit a more gradual rise. It is suggested272
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that this is due to the rounding of the shock pressures in the MMALE model due to mesh effects, which results in a273

more gradual application of load. The post-peak behaviour of the plates is well captured in both models, with the274

presence of higher frequency (vibration period ∼0.3 ms) and lower frequency (vibration period ∼1.0 ms) modes of275

vibration apparent in the experimental and numerical deflection histories.276

Two observations become apparent: firstly, the numerical models appear to represent the average plate be-277

haviour well both in terms of peak deflection and transient behaviour; secondly, the cylindrical data has consider-278

ably more spread than the spherical data. It is interesting to note that for the spherical tests, the largest deviation279

in total applied impulse was 3.5% from the mean, and the largest deviation in peak deflection was 3.6% from than280

the mean (Table 3 in Ref. [1]). For the cylindrical tests, however, the largest deviation in total applied impulse was281

6.0% from the mean, and the largest deviation in peak deflection was 14.6% from the mean (Table 4 in Ref. [1]).282

This indicates that localised variations in specific impulse have more significant influence on plate deformation283

than on total impulse. Currently, the MMALE models cannot account for this localised variability in loading.284

However, a suitable approach for the Lagrangian models (although not performed as part of this work) would be285

to apply the loading distribution measured from each individual test, rather than the averaged values, in order to286

assess the sensitivity of plate displacements to changes in localised loading.287

4.2. Plate deflection profiles288

Figure 9 and Figure 10 show plate deformation profiles at select times for the spherical and cylindrical charge289

configurations respectively. Generally, the early-time behaviour of the Lagrangian models (t < 0.5 ms) appear to be290

in better agreement with the experiments than the MMALE models. In both spherical and cylindrical cases, at the291

approximate time of maximum displacement (t = 0.5 ms) the MMALE models appear to be in better agreement,292

however the residual plate profiles are again better matched by the Lagrangian models.293

These plots provide strong evidence to suggest that the strain energy distribution in the plates, which is dictated294

by the initial kinetic energy distribution and therefore the initial loading distribution, is better represented in the295

Lagrangian models. The difference between numerical and experimental applied loading (Figure 4) is not suffi-296

cient enough to cause significant differences in peak displacement, but is sufficient enough to cause differences in297

residual global plate response.298
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Figure 9: Plate deflection profiles from experiments [1] and MMALE and Lagrangian numerical models: 50 g PE4 sphere at 44.0 mm clear

SOD. Transient experimental profiles from DIC, residual experimental profiles (t = ∞) from post-test laser scans
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Figure 10: Plate deflection profiles from experiments [1] and MMALE and Lagrangian numerical models: 50 g PE4 cylinder at 145.0 mm clear

SOD. Transient experimental profiles from DIC, residual experimental profiles (t = ∞) from post-test laser scans
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5. Energy equivalent impulse299

5.1. Lower bound and upper bound kinetic energy300

Under impulsive loading conditions there is zero work done by the imparted load and zero initial internal301

energy, and hence the entire energy in the system at t = 0 is kinetic energy, Ek. Since a change in impulse is equal302

to a change in momentum, under a uniformly distributed impulsive load the kinetic energy is given as:303

Ek =
I2

2ρtA
(6)

where I is the total impulse acting over the plate, ρ and t are density and plate thickness as introduced previ-304

ously, and A is the plate area.305

Under a non-uniform impulse distribution, as in Figure 11(a), the kinetic energy uptake of the plate is dependent306

on its deformation profile. Consider the following assumptions:307

• A plate behaves as a series of discrete masses308

• Each mass is free to move independently of its neighbour309

• Each mass is joined to its neighbour by a spring element, which has an arbitrary resistance to shear defor-310

mation311

(a)

(b)

(c)

Figure 11: Initial distribution of specific impulse (a), and deformation modes associated with lower bound (b) and upper bound (c) kinetic

energy
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It follows that the ability of a discrete mass to share load with its neighbours is dependent on the shear resistance312

of the connecting spring elements. If these elements possess an infinite resistance to shear, then each mass would313

have the ability to instantaneously transfer load to its neighbours and the entire plate would respond as a rigid314

body, as in Figure 11(b). The velocity profile; kinetic energy uptake of each mass; and hence total kinetic energy,315

would be a function of the total impulse acting on the plate only. Since this response mode assumes infinite shear316

resistance, it represents a lower bound on the kinetic energy uptake of the plate, Ek,l. Given that I =
∫

A

i dA,317

substituting into equation (6) yields:318

Ek,l =





















∫

A

i dA





















2

2ρtA
(7)

Alternatively, if the masses were connected via elements with zero resistance to shear, then the initial velocity319

profile of the plate would be directly proportional to the impulse distribution, as in Figure 11(c). The kinetic energy320

of each mass, and therefore the total kinetic energy of the plate, would be dependent on the distribution of specific321

impulse acting on the plate. Since this response mode assumes zero shear resistance, it represents an upper bound322

on the kinetic energy uptake of the plate, Ek,u, given as the integral of the kinetic energy of each individual mass:323

Ek,u =
1

2ρt

∫

A

(i dA)2

dA
(8)

This suggests that, for spatially varying loads, knowledge of total impulse alone is not sufficient to allow for324

a complete description of the energy uptake of a blast loaded plate. Since the total impulse applied as a uniform325

load will result in a lower bound estimation of energy uptake (i.e. equation 7 is independent on the distribution of326

specific impulse), we can define a new term: energy equivalent impulse, IEk. Here, the energy equivalent impulse327

is defined as a fictitious uniform impulse load that, if applied to a plate, would result in the same energy uptake as328

the upper bound kinetic energy uptake of the distributed specific impulse load. Since experimental work in Ref. [1]329

demonstrated that the initial velocity uptake of a plate is directly proportional to the distributed specific impulse,330

we should expect the upper bound kinetic energy to be a good measure of the actual energy of the system, for thin331

plates and impulsive loads.332

We can also define a factor, Ki, termed the impulse enhancement factor, such that333
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IEk = KiI. (9)

Seeing as impulse is proportional to the square root of kinetic energy (equation 6), we can say that334

Ki =
IEk

I
=

√

Ek,u

Ek,l

=

√

√

√

√

√

√

√

√

√

√





















∫

A

(i dA)2

dA





















A

I2
(10)

and therefore335

IEk =

√

√

√

√

√





















∫

A

(i dA)2

dA





















A (11)

IEk can be thought of as the energy-averaged impulse, as opposed to the spatially-averaged impulse, I. The336

impulse enhancement factor, Ki, is effectively a measure of the uniformity of the distributed load: Ki = 1 indicates337

a perfectly uniform load, and Ki > 1 indicates a load that is spatially non-uniform. The greater the value, the338

greater the difference between upper and lower bound kinetic energies and hence the greater influence of loading339

non-uniformity on energy uptake.340

5.2. Parametric study: setup341

A parametric study was undertaken to investigate the influence of loading distribution on the deformation of342

blast loaded plates. Since the previous modelling in this article has highlighted the accuracy of the spherical343

Lagrangian model, this was adopted in the parametric study and adapted to account for a range of plate thicknesses344

and loading magnitudes/distributions. Hopkinson-Cranz scaling was used to modify the applied specific impulse345

distribution (Figure 6) to model different charge sizes, each detonated at the same scaled distance and acting over346

a 300 mm circular spanning Domex 355MC steel plate. The distributions used are shown in Figure 12(a), with the347

respective charge sizes indicated next to each distribution. Figure 12(b) shows the specific impulse distribution and348

associated average impulse and energy equivalent uniform impulse for the 50 g load curve. Figure 12(c) shows349

how impulse enhancement factors [left axis] and total impulse [right axis] vary with the charge masses used in350

the parametric study. As the charge mass increases, the actual stand-off distance increases (for a constant scaled351

distance), and, as the plates are the same span throughout, the stand-off increases relative to the span and the352
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loading becomes more uniform over the plate surface. Hence, the impulse enhancement factor can be seen to353

decrease with increasing impulse and increasing charge mass. The input parameters for the parametric study are354

summarised in Table 4.355

Charge mass, W (g

PE4)

Plate thickness, t

(mm)

Total impulse, I

(Ns)

Impulse enhance-

ment factor, Ki

(–)

Energy equivalent

impulse, IEk (Ns)

10 0.25–1.00 8.39 2.28 19.11

25 0.50–1.00 19.86 1.77 35.18

50 1.00–5.00 36.97 1.51 55.73

75 1.00–5.00 52.69 1.38 72.85

100 2.00–5.00 67.27 1.31 88.02

150 2.00–5.00 93.57 1.22 114.56

200 2.00–5.00 116.87 1.18 137.71

Table 4: Input parameters used in the parametric study

5.3. Parametric study: results356

The results from the parametric study are provided in full in Table 5. In Figure 13, peak deflection (solid line)357

and residual deflection (dashed line) are plotted against charge mass for the different plate thicknesses studied. It358

can be seen that each plate thickness forms a distinct grouping with deflections that increase with charge mass and359

decrease with plate thickness, as is expected.360

It has been shown experimentally that there exists a linear relationship between normalised impulse and nor-361

malised deflection of plates subjected to uniformly distributed blast loads [17]. Figure 14 shows the deflection362

results from this parametric study plotted against impulse per unit thickness. Here, the different markers refer to363

the two different methods for calculating impulse: I is defined as the integral of specific impulse over the plate364

area, and; IEk is defined the energy equivalent impulse, i.e. an equivalent uniform impulse that imparts a kinetic365

energy equal to the upper bound kinetic energy of the distributed load, as introduced in this article.366

Linear regressions were fit to the relationships between peak deflection and energy equivalent impulse, and367

residual deflection and energy equivalent impulse. Both regression lines show a strong positive correlation with368

an R2 value of 0.99 in each case. The relationship for peak deflection was set to cross at the origin, whereas the369

relationship for residual deflection was allowed to cross at a non-zero value to account for elastic strain recovery370

in the plates.371
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Charge

mass, W (g

PE4)

Plate

thickness,

t (mm)

Peak de-

flection

(mm)

Residual

deflection

(mm)

10 0.25 79.9 77.8

10 0.50 41.6 41.0

10 1.00 22.9 20.9

25 0.50 72.5 71.9

25 1.00 37.7 36.8

50 1.00 58.1 57.0

50 2.00 30.2 28.5

50 3.00 20.5 17.5

50 4.00 16.0 11.5

50 5.00 12.7 7.2

75 1.00 74.0 72.8

75 2.00 38.8 37.1

75 3.00 25.9 23.6

75 4.00 19.8 16.1

75 5.00 15.9 11.0

100 2.00 45.9 44.2

100 3.00 30.9 28.7

100 4.00 23.2 20.1

100 5.00 18.6 14.5

150 2.00 57.6 55.9

150 3.00 39.1 37.0

150 4.00 29.4 26.7

150 5.00 23.7 20.3

200 2.00 67.3 65.4

200 3.00 45.8 43.6

200 4.00 34.7 32.0

200 5.00 27.9 24.8

Table 5: Plate deflection results from the parametric study
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parametric study
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The results show that knowledge of the total impulse alone is not sufficient to predict the deflection of a plate372

subjected to a near-field blast load. Knowledge of the spatial distribution of loading, however, allows the total373

impulse to be transformed into an energy equivalent value using the impulse enhancement factor, Ki, and thus the374

peak and residual plate deformation can be predicted using a simple linear relationship. Whilst the parametric375

study in this article only considered 300 mm circular spanning Domex 355MC steel plates, the method of energy376

transformation has been shown to be valid for a wide range of impulsive loads and plate thicknesses. Similar377

relationships could be derived for different combinations of plate density, strength, and span, using the normalised378

relationships developed in Ref. [17].379

Further interrogation of Figure 14 and Table 5 suggests that the accuracy of the linear relationship between380

deflection and energy equivalent impulse appears to be independent of the value of the impulse enhancement381

factor, i.e. the level of non-uniformity of the applied load. Take the results for a 0.5 mm plate subjected to a 25 g382

blast, and a 1.0 mm plate subjected to a 75 g blast as two examples. For the 0.5 mm plate the total imparted impulse383

is 39.7 Ns per unit thickness, the impulse enhancement factor is 1.77, and therefore the energy equivalent impulse384

is 39.7 × 1.77 = 70.4 Ns per unit thickness. The residual deflection, determined from the parametric study, is385

71.9 mm. For the 1.00 mm plate, the total imparted impulse, enhancement factor, and energy equivalent impulse,386

are 52.7 Ns/mm, 1.38, and 72.9 Ns/mm respectively, and the peak deflection is 72.8 mm. The residual deflection387

profiles for both plates are shown in Figure 15.388
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Figure 15: Residual plate deflection profiles for 0.5 mm plate subjected to a 25 g blast (39.7 Ns/mm), and 1.0 mm plate subjected to a 75 g

blast (52.7 Ns/mm). Both plates have similar energy equivalent impulse per unit thickness: 70.4 Ns/mm and 72.9 Ns/mm respectively
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It can be seen that both plates respond in different modes: the 1.0 mm plate deforms largely in global bending,389

whereas the 0.5 mm plate exhibits significant epicentral dishing on account of the loading being highly focussed390

in the central region. That the plates deflect by a similar amount, despite the thicker plate being subjected to 33%391

more impulse than the thinner plate, suggests that the energy equivalent impulse approach is insensitive to the392

deformation mode of the plate, and can accurately predict the peak deflection for various response modes.393

6. Summary and conclusions394

This article presents a study into blast loading and dynamic response of structures subjected to blast loads.395

Direct measurements of reflected pressure arising from the detonation of spherical and cylindrical PE4 charges396

[1] were used to validate LS-DYNA’s MMALE capabilities, with the models showing reasonable agreement for397

specific impulse distribution, despite discrete pressure-time histories appearing to be in poor agreement for the398

cylindrical explosives.399

Additional experiments conducted in [1], where dynamic plate deformations were measured using digital image400

correlation, were used to validate two types of LS-DYNA models: MMALE models where detonation, blast wave401

propagation and reflection were simulated directly and blast loads were applied to the structure through fluid-402

structure interaction, and Lagrangian models where previously recorded specific impulse distributions [1] were403

applied directly to the structure as nodal-point initial velocities. The numerical models showed excellent agreement404

with the experimental results, in particular the Lagrangian models which predicted peak deflections to within 1%405

of the experimental recordings, and ran for considerably less time than the MMALE models.406

The Lagrangian models were used perform a parametric study of the deformation of plates with consistent407

span and material properties but varying thickness, subjected to the blast load from spheres of varying mass at the408

same scaled distance (i.e. the loading was scaled directly from the experimental measurements). Additionally, the409

energy equivalent impulse and impulse enhancement factor were derived, which can be used to account for the410

additional energy imparted to a plate from a non-uniform impulse load.411

The results from the parametric study show that there exists a linear relationship between plate deformation and412

energy equivalent impulse per unit thickness. The relationship was shown to be insensitive to changes in loading413

distribution and deformation mode. The energy equivalent impulse method has clear applications for the develop-414

ment of fast-running engineering tools for the prediction of structural response to near-field blast explosions.415
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