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Abstract Shallow water tables protect northern peatlands and their important carbon stocks from
aerobic decomposition. Hydraulic conductivity, K, is a key control on water tables. The controls on K,
particularly in degraded and restored peatlands, remain a subject of ongoing research. We took 29 shallow
(~50 cm) peat cores from an estuarine raised bog in Wales, UK. Parts of the bog are in close-to-natural
condition, while other areas have undergone shallow peat cutting for fuel and drainage, followed by
restoration through ditch blocking. In the laboratory we measured horizontal (K},) and vertical (K,,)
hydraulic conductivity. We fitted linear multiple regression models to describe log;o-transformed K}, and K,
on the basis of simple, easy-to-measure predictors. Dry bulk density and degree of decomposition were

the strongest predictors of K}, and K,,. Perhaps surprisingly, the independent effect of hummocks was to
produce higher-K, peat than in lawns; while the independent effect of restored diggings was to produce
higher-K peat than in uncut locations. Our models offer high explanatory power for K, (adjusted r* = 0.740)
and K, (adjusted * = 0.787). Our findings indicate that generalizable predictive models of peat K, similar to
pedotransfer functions for mineral soils, may be attainable. K, and K, possess subtly different controls
that are consistent with the contrasting roles of these two properties in peatland water budgets. Our
near-surface samples show no evidence for the low-K marginal peat previously observed in deeper layers at
the same site, indicating that such structures may be less important than previously believed.

1. Introduction
1.1. Background

Northern peatlands are organic-rich wetlands that are thought to store up to a third of all global soil carbon
(Gorham, 1991; Yu, 2011). The persistence and gradual accumulation of peat owes much to shallow water
tables that limit the rate of microbial respiration, thereby preserving plant detritus. Peatland carbon and
water budgets are intrinsically linked, and depth to water table is a first-order control on peatland plant
productivity and ecosystem respiration (Belyea & Clymo, 2001; Moore & Dalva, 1993; Roulet et al., 2007).
Peat hydraulic properties govern water retention through a variety of mechanisms (Ingram, 1982;
Waddington et al., 2015) and are therefore of central importance to the maintenance of these valuable
ecosystems. One of the most commonly measured peat hydraulic properties is saturated hydraulic
conductivity, K (dimensions of L/T; throughout, we use the terms permeability and hydraulic
conductivity interchangeably).

Peat hydraulic properties sometimes exhibit strong vertical gradients. Previous studies have observed that K
can decline by several orders of magnitude from fresh, open peat at the surface, to highly decomposed, barely
permeable material just a few tens of centimeters below (e.g., Clymo, 2004; Fraser et al., 2001; Kneale, 1987
Moore et al., 2015; Waddington & Roulet, 1997). However, some studies have reported no consistent depth
variation in K (Chason & Siegel, 1986). Strong relationships have also been reported between K and degree of
decomposition (e.g., Grover & Baldock, 2013; Ivanov, 1981), dry bulk density (e.g., Boelter, 1969), and
various combinations of these predictors (e.g., Branham & Strack, 2014; Morris et al., 2015; Pdivinen,
1973). Human modification of peatlands, particularly drainage, can lead to increased aeration and
decomposition in near-surface layers, causing a constriction of pore spaces and so reduced K (e.g., Silins &
Rothwell, 1998); while long-term flooding through the construction of dams and berms can lead to
increasingly buoyant peat with more open, conductive pore structures (Moore et al., 2015).

Strong horizontal gradients in K have been reported at a range of scales. Modeling (Lapen et al., 2005) and
observational (Baird et al., 2008) studies suggest the possibility of a low-K margin in raised bogs, while Lewis
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Figure 1. Details of the study site, Cors Fochno, showing: (a) location

within British Isles; and (b) site-scale aerial photography overlain with

sampling locations. Aerial photography and map data shown in Figure 1:
Google, Bluesky, Infoterra Ltd & COWI A/S, DigitalGlobe, Getmapping plc,

Landsat/Copernicus.

et al. (2011) observed a similar phenomenon in blanket peat. Such struc-
tures may act as barriers to lateral flow and thus help to retain water, with
feedbacks to peat decomposition and accumulation. However, Morris
et al. (2015) found no evidence for any such low-K margin in shallower
layers (< 0.5-m depth) of a Swedish bog, so it remains unclear whether
such marginal structures are common features. At smaller spatial scales
of a few meters, K can sometimes vary by more than an order of magni-
tude between adjacent plant microhabitat types such as hummocks,
lawns, and hollows (e.g., Baird et al., 2016; Ivanov, 1981). However, the
evidence for strong lateral variability in K at such small spatial scales is
mixed. For example, Branham and Strack (2014) found differences in K
between microhabitat types to be secondary to depth variation across a
range of Canadian sites; while Baird et al. (2016) found that strong hori-
zontal gradients in K at depths of 0.5 m were much less evident at depths
of 0.9 m.

As well as governing rates of shallow groundwater flow, peat K also
defines the upper limit for unsaturated hydraulic conductivity, Kypgai- K
plays an important role in determining the supply of water from the satu-
rated zone and through the vadose zone to meet surface evaporative
demand, and thus the resistance of peatland ecosystems to drought
(Kettridge et al., 2016). Peat K can be highly anisotropic, with measure-
ments in horizontal (K},) and vertical (K,,) dimensions sometimes differing
by more than three orders of magnitude for the same sample (Beckwith
et al., 2003). Given the low hydraulic gradients usually seen in peatlands,
K}, is most relevant to shallow groundwater flow, where horizontal fluxes
dominate (Ingram, 1982). In contrast, K, appears more relevant to describ-
ing surface-atmosphere fluxes, such as evapotranspiration and infiltration
(Kettridge et al., 2016), and interactions between peat and underlying
groundwater systems (Devito et al., 1997; Reeve et al., 2000). However,
the two components of K are rarely reported together, and it is unclear
if they possess similar controls.

1.2. Aim and Objectives

We sought to establish the controls on shallow peat hydraulic conductiv-
ity at the same study site where Baird et al. (2008) previously characterized
deeper hydraulic structures. We addressed the following specific
questions:

1. Does the low-K margin found by Baird et al. (2008) in deep peat also exist in near-surface layers?

2. Can a combination of simple, easily measured descriptors adequately characterize peat K and provide the
basis for a reliable and generalizable predictive model?

3. Do the controls on K}, and K, differ in ways that reflect these two properties’ contrasting ecohydrological

roles?

2. Materials and Methods
2.1. Study Site and Field Sampling

Cors Fochno, also known as Borth Bog, is a mostly intact estuarine raised bog in Ceredigion, west Wales
(52.500°N, 4.020°W, up to 5 m above mean sea level; Figure 1a). The main dome of the bog covers approxi-
mately 440 ha and is bounded to the north by saltmarshes of the Dyfi Estuary, to the west by the canalized
Afon Leri, and to the south and east by farmland and bedrock hills. Some of the bog's margins have been
modified through shallow peat cutting for fuel (diggings < ~0.6-m deep) and ditch drainage since
Victorian times. The peat in the center of the bog dome is 7-m thick (Hughes & Schulz, 2001) and is uncut
and in a near-natural condition. Vegetation in this intact central area comprises a mosaic of hummocks,
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lawns, and hollows. The hummock vegetation comprises mostly Calluna vulgaris, Eriophorum vaginatum,
and Sphagnum capillifolium, with some Eriophorum angustifolium and Mpyrica gale. Hollow vegetation
is dominated by Sphagnum pulchrum, Rhynchospora alba, and E. angustifolium, with occasional Erica
tetralix and M. gale plants. Lawns tend to have a similar vegetation to the hollows but with Sphagnum
papillosum and Sphagnum magellanicum instead of S. pulchrum and a lower cover of R. alba. Marginal areas
of the bog have similar vegetation to the hummocks, except the bases of former peat cuttings where the
vegetation is more like that of lawns and hollows. Since 1976 the peatland has been protected as part of
the Dyfi UNESCO Biosphere Reserve and is administered by Natural Resources Wales (formerly the
Countryside Council for Wales) who have undertaken extensive remedial works to promote surface
wetting and peat accumulation through ditch damming. Annual average temperature at the nearby
Trawscoed weather station is 9.8 °C, and annual average precipitation is 1,195 mm/year (averaging period
2005 to 2015).

We collected shallow core samples from 29 locations across the site, including at 16 of the 27 locations stu-
died by Baird et al. (2008). We collected 20 cores from the intact center of the bog dome (intact center,
Figure 1b), where Baird et al. (2008) found K in deeper layers to be significantly higher than in marginal
areas. We collected four cores from the northern margin of the dome (intact margin, Figure 1b), which is still
relatively intact and, unlike most of the site's other margins, retains its original mosaic of hummocks, lawns,
and hollows. In both the intact central and marginal areas we sampled hummock and lawn microhabitats
only; peat in hollows was usually too loose and open to take intact cores from. We collected a further five
cores from the heavily modified southwest margin of the bog (modified margin, Figure 1b), where the origi-
nal vegetation habitats and their associated microtopographies have been replaced by a high density of for-
mer diggings, many of which have been dammed and have begun to revegetate and infill with new peat. In
this modified marginal area we sampled two revegetating cuttings and three drier, uncut ridges, known as
balks, in between cuttings. See Figure 1b for sampling locations.

At each coring location we used square-section polyvinyl chloride (PVC) guttering downpipe with a
0.12 X 0.12 m cross section to extract shallow peat cores of at least 0.4-m depth. We employed the scissor-
cut method described by Green and Baird (2012) to insert the PVC pipe, before digging out each core—pro-
tected by the pipe—with a spade. The scissor-cut method and the use of the PVC sleeve minimized damage
to the samples. We transported the cores in their PVC sleeves to the laboratory, where they were stored
upright and refrigerated until analysis.

2.2. Hydraulic Conductivity

In the laboratory we removed the PVC sleeves and used highly sharpened, nonserrated blades to remove the
top 0.03 to 0.05 m of material from each core, which we determined to be the growing surface. The growing
surface consisted of living plant material and loose, poorly decomposed peat that would be unlikely to
remain structurally intact during preparation for K tests. The top few centimeters of cores from the intact
central and marginal areas comprised a layer of living Sphagnum that transitioned gradually into fresh,
poorly decomposed, Sphagnum peat. The tops of cores from the modified marginal area exhibited a much
sharper transition from new peat that represents regrowth in response to restoration efforts, to a dense,
fibrous, well decomposed peat a few centimeters below. Although some of this regrowth was removed as part
of the growing surface, a portion of it was retained in all cores from the modified margin. Henceforth, we
report all depths relative to the base of the growing surface.

We subsampled the remaining peat at depth intervals of 0.1 m and trimmed each subsample into a
0.1 X 0.1 X 0.1 m cube. We dabbed the cubes dry using paper towel before dipping each face repeatedly in
molten paraffin wax to build up a wax coating of at least 0.005 m on all sides, keeping note of the original
vertical orientation (Surridge et al., 2005). We measured K, and K, for each cube using the modified cube
method described by Beckwith et al. (2003; see also Surridge et al., 2005). We used a scalpel to remove oppos-
ing faces of wax from either the top and bottom faces (for K, tests) or from two sides (K}), which served to
remove fine debris and unclog pore ends (Surridge et al., 2005). Prior to the K measurements, we submerged
each cube overnight in a water bath. We established a constant head gradient across each sample to generate
steady state flow and calculated K using the method given by Beckwith et al. (2003). In most cases we main-
tained a constant head gradient of unity, but for the most permeable samples we reduced the gradient to 0.35
or 0.30 so as to reduce flow rates. We measured water temperature in each test and standardized K

MORRIS ET AL.

1533



Water Resources Research 10.1029/2018WR024566

measurements to 20 °C using the method of Klute (1965). In between K, and K}, tests we resealed the exposed
sides with wax, exposed alternative faces, and resaturated the cubes.

2.3. Degree of Decomposition and Dry Bulk Density

After measuring K, and K, we removed all wax and determined the degree of decomposition in all samples
according to the von Post classification system (Ekono, 1981). Upon visual inspection, some samples exhib-
ited obvious horizontal banding of peat color or texture, indicating different levels of decomposition within
the sample, which might have an anisotropic effect upon flow. For example, a thin, contiguous, horizontal
layer of highly decomposed, low-permeability peat through a sample would be relatively unimportant to Kj,,
because preferential horizontal flow would occur through the less decomposed, more permeable peat above
and/or below. However, the same low-K horizontal layer would present a more important barrier across the
entire width of vertical flow through that sample and would likely reduce K. To allow for any such aniso-
tropic effect of degree of decomposition upon K, we recorded two von Post scores: one that relates to horizon-
tal flow and one that relates to vertical flow. Where distinct banding was apparent in a sample, we made
separate von Post determinations for all horizontally contiguous layers and treated the highest of these
scores (i.e., the most decomposed layer) as the most relevant to vertical flow. Our approach here is somewhat
similar to calculating a harmonic mean (appropriate to flow through resistors in series). When considering
horizontal flow we used the von Post score of all layers within a subsample to estimate a composite score
akin to an arithmetic mean (parallel resistors). Where this led to a value in-between von Post classes we
rounded up to the higher class. In samples that exhibited no clear horizontal banding, we assumed the effect
of degree of decomposition upon K to be isotropic and made a single von Post determination for the entire
0.1 X 0.1 X 0.1-m cube that we applied to both the horizontal and vertical models (see below). Finally, we
calculated peat dry bulk density by oven drying each 0.1 X 0.1 X 0.1-m sample at 80 °C to constant weight.

2.4. Data Analysis

2.4.1. Variables and Transformations

We fitted linear models to describe horizontal and vertical K from three continuous independent variables:
depth, dry bulk density, and von Post score (see below for discussion of von Post score as a continuous vari-
able); and two categorical variables: area (intact center, intact margin, and modified margin) and microha-
bitat (hummock, lawn, balk, and cutting). Our measured K, and K, vary across more than 5 orders of
magnitude and exhibit highly nonlinear, heteroscedastic relationships with the three continuous indepen-
dent variables (linear regression assumes homoscedasticity or homogenous variance of the response variable
across the model domain; heteroscedasticity is the violation of this assumption, meaning that the model per-
forms better in some parts of its domain than in others). Like Morris et al. (2015), we transformed the K, and
K, data by taking their logarithms (base 10), which yielded linear, homoscedastic relationships, with nor-
mally distributed, unstructured residuals.

2.4.2. Interactions and Random Effects

Taking measurements at multiple depths in each core raised the possibility of a hierarchical structure in our
data set, manifest as greater similarity of measurements within cores than between cores. Such a situation
would violate the assumption of independent measurements required by standard multiple regression.
Again like Morris et al. (2015), we fitted linear mixed effects models to both log;o(K},) and log;(K,,) to test
for any such core-specific artifacts, grouping our measurements according to coring location (the subject
variable). To begin with, we fitted all main effects (depth, dry bulk density, von Post, area, and habitat)
simultaneously, without using any stepwise model building procedure. We then added interaction terms
in a stepwise manner, followed by random effects individually and in combination, and at each stage tested
whether any of these alterations led to a significant improvement in model performance compared to the
first model, which contained fixed main effects only. No combination of random slopes and random inter-
cept led to any significant improvements in our models' fits to either the log;o(K},) or the logio(K,) data,
according to the corrected Akaike Information Criterion (AICc; change in AICc treated as y* statistic with
degrees of freedom equal to change in number of model parameters; p > 0.05 in all cases). The grouping of
measurements by core therefore introduced no discernible artifact, so the assumption of independence
appeared reasonable and we proceeded with linear multiple regression modeling. Unlike Branham and
Strack’s (2014) analysis of variance, our linear mixed effects models indicate no significant interactions
between independent variables, so hereafter we consider main effects only.
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2.4.3. Von Post Score as a Continuous Variable

Von Post scores occupy an ordinal scale, with 10 discrete categories across the range H1 (fresh, undecom-
posed peat) to H10 (entirely amorphous, highly decomposed peat). The distribution of these categories
along any continuous dimension of peat decomposition is unclear, meaning that von Post scores are
usually incorporated into analyses as a categorical, rather than continuous, variable. However, multiple
regression is largely insensitive to uneven spacing of ordinal predictors, and it is rare for ordinal variables
with a large number of categories to exhibit substantial nonlinearity (Pasta, 2009). We tested whether a
continuous representation of von Post scores could be reliably incorporated into multiple regression mod-
els of logy(K,,) and log;o(Ky). We fitted preliminary models that incorporated all five main effects: depth,
dry bulk density, vegetation microhabitat, area, and either horizontal or vertical von Post score, depend-
ing on the response variable (log;o[Kp] or logo[K,]). We compared models in which we coded von Post
scores into dummy binary variables (thus treating von Post as a categorical variable) to equivalent models
in which we treated von Post score as a single continuous variable. For both log;¢(K}) and log;(K,,), con-
tinuous von Post led to models with significantly greater power (AICc; change in AIC treated as y* sta-
tistic; p < 0.001), and greater standard and adjusted 7%, than the categorical models. Both log;o(K}) and
log10(K,,) respond linearly to continuous representations of von Post, regardless of any uneven spacing.
Residuals in the continuous models were normally distributed and displayed no relationship to von
Post score. A continuous representation of von Post score therefore satisfies the assumptions of multiple
linear regression, so we proceeded with the continuous models. Doing so greatly reduced the number of
independent variables and yielded a simpler, more intuitive model that is easier to interpret, while the
reduction in degrees of freedom greatly increased statistical power for any given sample size. We would
encourage other researchers to consider treating von Post scores as a continuous variable in
similar situations.

2.4.4. Final Model Selection

The final models, the results of which we report below, are linear multiple regression models that describe
either log;o(K}) or logio(K,,) from depth, dry bulk density, a continuous representation of directional von
Post, and categorical representations of area and microhabitat type. Neither model represents any interac-
tion between independent variables or any core-specific random effects. We entered all five independent
variables simultaneously because we wished to test the significance of each, with no a priori assumption
about their relative importance (Studenmund & Cassidy, 1987).

2.4.5. Analysis of Variance

In addition to the multiple regression models described above, we used the Kruskal-Wallis H test (one-way
analysis of variance on ranks) to examine between-sample differences in log;o(Kj) and log;o(K;) when
grouped by microhabitat type and area. Where the multiple regression models (above) illustrate the indepen-
dent effects of these categorical variables, Kruskal-Wallis shows the overall effect of a single independent
variable across all levels of all other independent variables.

3. Results
3.1. Horizontal Hydraulic Conductivity

Measured values of K}, range between 5.00 X 107% and 9.78 x 10> m/s. The best-preserved samples with hor-
izontal von Post scores of H1 had such open, well-connected pores that constant hydraulic head gradients
could not be maintained, even when reduced to 0.3. Horizontal hydraulic conductivity therefore could not
be measured for samples with horizontal von Post scores of H1, and only samples with horizontal von
Post scores > H2 are included in the remainder of our analysis. Nonetheless, high K}, in these poorly decom-
posed samples agrees with the negative relationship between horizontal von Post scores and log;¢(K},) that
was fitted to the rest of the data (see below). No samples exhibited the two highest, most decomposed hor-
izontal von Post categories, H9 or H10.

The multiple linear regression model for our measurements of K}, indicates that log;o(K},) declines strongly
and highly significantly with increasing depth (p = 0.004), dry bulk density (p < 0.001), and horizontal von
Post score (p = 0.001, Table 1 and Figure 2). The Kruskal-Wallis H test indicates no significant difference in
average log;o(K;) when all measurements are grouped solely by microhabitat type (albeit marginally so:
H; = 7.54, p = 0.057) or area (H, = 4.03, p = 0.134; see also Figure 3). However, when considered as
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Table 1
Summary of Multiple Linear Regression Model to Describe Log;o(Ky) (m/s)

Standard  Standardized

Descriptor Level Coefficient error coefficient t Significance
Constant = —-1.718 0.350 = —-4.912 < 0.001
Depth (m) - —-3.712 1.227 —-0.232 —3.025 0.004
Dry bulk density (kg/m") = —0.026 0.004 —0.715 —6.731 < 0.001
Horizontal von Post score = —0.199 0.056 —0.346 —3.572 0.001
Area intact center - - - - -
intact margin 0.088 0.231 0.030 0.383 0.703
modified margin - - - - -
Microhabitat hummock - - - - -
lawn —0.360 0.197 —0.164 —1.823 0.075
balk 0.380 0.299 0.109 1.270 0.210
cutting 0.786 0.339 0.188 2.321 0.025

Note. The descriptors area and microhabitat are categorical, for which level indicates a dummy variable (coded 1 to
represent the named condition, otherwise coded 0); the reference category for area is intact center, so that level is redun-
dant; the modified margin level in the area predictor is also redundant; the reference category for microhabitat is hum-
mock, so that level is redundant. See also Table 2. ¥ = 0.774, adjusted ¥ = 0.740, and predicted ¥ = 0.685.

predictors in the multiple regression model, the modified microhabitat types, balks and cuttings, exert
significant independent effects upon log;o(K}). Specifically, the independent effect of cuttings was to
increase log;o(K},) significantly compared to both hummocks (p = 0.025) and lawns (p = 0.004) of
comparable depths, dry bulk densities, and levels of decomposition; while the independent effect of balks
was to raise log;o(K},) significantly compared to lawns (p = 0.026); no other pairs of microhabitat types
exhibited significant independent effects on log;o(K},) (Table 2). The distinction between the intact central
and intact marginal areas had no significant independent effect on log;o(K;,) (p = 0.703; Table 1). The
fitted model explains a large proportion of variation in log;o(Kp): r* = 0.774, while adjusted r* = 0.740 (see
also Figure 4a). A high predicted 1* of 0.685 indicates that the model is largely robust to the effects of
individual data points, including two samples with particularly high log;o(Kp). The three continuous
predictors (depth, dry bulk density, and horizontal von Post) are all significantly positively correlated with
one another (Spearman's Rank Correlation Coefficient; p < 0.001 in all cases; see Figure 5). This situation,
known as multicollinearity, means that estimates of coefficients and significance of individual predictors
can be sensitive to random error and must therefore be treated with caution.

The three continuous descriptors, depth, dry bulk density, and horizontal von Post, differ greatly in their
units and magnitudes, which hinders direct comparison of their unstandardized regression coefficients.
Standardized coefficients arguably provide a more meaningful illustration of the relative effects of each
descriptor upon log;o(K}). Dry bulk density has the largest standardized coefficient (—0.715), followed by
horizontal von Post score (—0.346), while depth has the weakest effect (—0.232, Table 1).

3.2. Vertical Hydraulic Conductivity

Measured values of K, range between 3.00 x 10~® and 7.28 x 10~> m/s. In common with our horizontal mea-
surements, samples with vertical von Post scores of H1 were so permeable in the vertical dimension that we
could not attain meaningful measurements of K;,.. Unlike horizontal measurements, some samples exhibited
vertical von Post scores of H9, although there were still none in the highest category, H10.

The multiple linear regression model for log;o(K,,) (Tables 3 and 4) is broadly similar to that for log;o(Kp),
albeit with some important differences. As with the horizontal model, log;o-transformed K, declines
strongly and highly significantly with increasing vertical von Post score (p < 0.001) and dry bulk density
(p < 0.001). Unlike the horizontal model though, depth is a nonsignificant descriptor of log;o(K,), albeit
marginally so (p = 0.055, see also Figure 2b). As with the horizontal measurements, Kruskal-Wallis H test
indicates no significant difference in average log;o(K,) when all measurements are grouped solely by
microhabitat type (H; = 4.89, p = 0.180) or area (H, = 3.84, p = 0.146; see also Figure 3), but in the multi-
ple regression model most microhabitat types exert significant independent controls over log;o(K,). The
distinction between cuttings and balks has no significant independent effect on log,o(K,), but the
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Figure 2. Response of log;(K},) (left column) and logo(K;,) (right column) to depth (top row), dry bulk density (middle
row), and von Post score (bottom row).

independent effect of both of these modified habitat types is to increase log;o(K,) significantly in the
model compared to intact hummocks, while the independent effect of lawns is to reduce log;o(K,)
significantly compared to samples from all other habitat types (Table 4; with comparable values of depth,
dry bulk density, and vertical von Post score). As with log;o(K},), the distinction between the intact
center and intact margin has no significant independent effect upon logo(K,) (p = 0.946, Table 3).
The vertical model possesses greater explanatory power than the horizontal model: ¥ = 0.815 and
adjusted r* = 0.787 (see also Figure 4b). Like the horizontal model, the vertical model is robust to
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Figure 3. Log, o-transformed horizontal (a, c) and vertical (b, d) hydraulic conductivity grouped by area (a, b) and micro-
habitat type (c, d). Centerlines indicate sample medians; top and bottom of boxes indicate upper and lower quartiles,
respectively; whiskers extend to values no further than 1.5 times the interquartile range beyond the upper and lower
quartiles; remaining observations indicated by open circles. No groupings exhibited significant differences (Kruskal-
Wallis H test, p > 0.05 in all cases).

individual data points (predicted r* = 0.731). As in the horizontal model, the three continuous predictors are
all significantly positively correlated with one another (Spearman'’s Rank Correlation Coefficient; p < 0.01 in
all cases; see Figure 5), again indicating that individual coefficients must be treated cautiously.

Standardized regression coefficients for the vertical model follow a similar pattern to those for the horizontal
model. The standardized coefficients for dry bulk density (—0.793) and vertical von Post score (—0.393) in the
vertical model are slightly larger than their equivalents in the horizontal model, while depth is weaker
(—0.138, Table 3).

Table 2
Regression Coefficients (p Values in Brackets) for Independent Effects of Categories in the Microhabitat Descriptor From the

Multiple Linear Regression Model for Log;o(Kp)

Reference category

Effect

category Hummock Lawn Balk Cutting
hummock = = = =
lawn —0.360 (p = 0.075) = = =
balk 0.380 (p = 0.210) 0.740 (p = 0.026) = =
cutting 0.786 (p = 0.025) 1.146 (p = 0.004) 0.406 (p = 0.281) =

Note. Positive coefficients indicate that effect category causes an increase in log;o(Kj,) compared to the reference cate-
gory. Significant effects are shown in bold (p < 0.05 threshold). See Table 1 for details of other descriptors.
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Figure 4. Performance of multiple linear regression models in predicting
(a) logy0(Kp) and (b) logyo(K;,) compared to measured values. Broken lines

indicate 1:1 relationships between measured and modeled values.

4. Discussion

4.1. Horizontal Permeability

The low K measured by Baird et al. (2008) in the deep peat of our study
site's intact margin is not apparent in shallow layers, with differences
between intact central and intact marginal areas highly nonsignificant.
Morris et al. (2015) were similarly unable to find any evidence for a
low-K margin in shallow layers of an intact raised bog in Sweden, so at this
stage we may conjecture that, if such features are common, then they may
be restricted to deeper layers. Near-surface layers are likely to dominate
lateral fluxes due to their higher permeability, meaning that the low-K
in deep marginal peat at Cors Fochno may be less important than pre-
viously thought. Given that the low-K of deep, marginal peat does not
appear to originate in shallow layers, it may represent the legacy of some
past episode of peat development at the site.

Dry bulk density is by far the strongest control on log;o(K}), as evidenced
by its large standardized coefficient, indicating an important role for com-
pression in determining pore geometry. The strong, significant effect of
horizontal von Post score is independent of depth and dry bulk density,
meaning that loss of pore connectivity through the breakdown of pore
structures can be important regardless of the degree of compression.

The significant control of depth upon log;o(K};) mirrors that found by
Morris et al. (2015) in similarly shallow layers of their Swedish study site,
although our fitted slope coefficient is half that found by Morris et al.
(2015), and depth is the weakest of the three continuous descriptors
(Table 1). Such site-specific differences illustrate that any attempts to gen-
eralize fitted relationships beyond the study sites for which they were
developed must be made with caution.

Although significant controls from von Post, depth and dry bulk density
have all been observed before, they are rarely combined into multiple
regression (although see Pdivdnen, 1973). The high explanatory power
(adjusted r* = 0.740) and apparent robustness (predicted r* = 0.685) of
these three simple variables when considered simultaneously provides
encouragement that generalizable models of peat K;, may indeed be
attainable (see below). Nevertheless, in light of our remarks above about
site-specific variations, large, multisite data sets would likely be required
to produce such generalizable models.

Although Kruskal-Wallis H test indicates no significant difference between microhabitats, the significant
independent effect of cuttings in the regression model nonetheless indicates the important, albeit subtle, role
of microhabitat type in determining horizontal permeability. Given that this effect is independent of the
other predictors—particularly depth, dry bulk density, and von Post score, all of which could conceivably
contribute to determining total pore volume and pore size distribution—we are left to surmise that pores
in cutting infill peat are more interconnected than that formed by other microhabitats. However, small sam-
ple sizes in the modified margin and multicollinearity of predictors both mean that care should be exercised

at this stage of interpretation.

4.2. Vertical Permeability

Differences in the responses of horizontal and vertical permeability to their environmental controls high-
light the distinct ecohydrological roles played by these two variables and the need to consider them sepa-
rately in future modeling and measurement efforts. The nonsignificance of depth as a descriptor of
log;0(K,,) is marginal (p = 0.055), so we are cautious not to overinterpret it. Nonetheless, the weaker relation-
ship between depth and vertical permeability could be interpreted in a variety of ways. First, vertical com-
pression may lead primarily to a shortening of vertical conduits, rather than constriction as appears to be
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Figure 5. Scatterplots showing multicollinearity between pairs of predictor variables; rg is Spearman’s Rank Correlation
Coefficient. Some data points, particularly in Figures 5a and 5c, are obscured by overwriting.

the case in Kj,, which relies on horizontally aligned conduits. Alternatively, vertical permeability may be
dominated by macropores associated with ericaceous shrub roots, particularly those of Calluna vulgaris,
Erica tetralix, and Myrica gale, which are abundant at the study site. Vertical permeability of the peat
matrix may indeed decline with increasing depth, but vertical macropores may preserve a high bulk K.
The strong independent influence of microhabitat on log;(K,) contrasts with the weaker, less significant
effects of microhabitat in the horizontal model, and is consistent with the hypothesis of ericaceous
macropores dominating vertical permeability in shallow layers.
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Table 3
Summary of Multiple Linear Regression Model to Describe Log;o(Ky,) (m/s)

Standard  Standardized

Descriptor Level Coefficient error coefficient t Significance
Constant = —-1.740 0.329 = —5.285 < 0.001
Depth (m) - —2.267 1.153 —0.138 —1.966 0.055
Dry bulk density (kg/m3) - —0.029 0.004 —0.793 —7.806 < 0.001
Vertical von Post score - —0.233 0.054 —0.393 —4.339 < 0.001
Area intact center - - - - -
intact margin 0.015 0.216 0.005 0.068 0.946
modified margin - - - - -
Microhabitat hummock - - - - -
lawn —0.638 0.182 —0.283 —3.516 0.001
balk 0.687 0.290 0.192 2.373 0.022
cutting 1.221 0.317 0.285 3.858 < 0.001

Note. The descriptors area and microhabitat are categorical, for which level indicates a dummy variable (coded 1 to
represent the named condition, otherwise coded 0); the reference category for area is intact center, so that level is redun-
dant; the modified margin level in the area predictor is also redundant; the reference category for microhabitat is hum-
mock, so that level is redundant. See also Table 4. ¥ = 0.815, adjusted ¥ = 0.787, and predicted ¥ =0.731.

Differences in K, between the intact and modified parts of the bog are more pronounced than for Kj,.
Notwithstanding limitations arising from small sample sizes in the modified margin, and multicollinearity
between predictors, the vertical regression model suggests that both balks and cuttings cause independent
increases in K, compared to intact hummocks or lawns. Again, given that these effects are independent of
depth, dry bulk density and vertical von Post score, they would appear to indicate greater vertical connectiv-
ity of pores in these modified areas than elsewhere on the bog. Vertical permeability in balks may be domi-
nated by root casts from ericaceous shrubs, which were once common in this drained area of the bog before
restoration efforts caused rewetting. The independent effect of intact hummocks in raising K, compared to
intact lawns is consistent with similar findings between hummocks and hollows in the Swedish site studied
by Morris et al. (2015).

4.3. Opportunities and Challenges for Further Research

The high explanatory power exhibited by simple descriptors, both in the present study and previously (e.g.,
Boelter, 1969; Branham & Strack, 2014; Ivanov, 1981; Moore et al., 2015; Pdivinen, 1973), suggests the pos-
sibility of developing generally applicable models to estimate K}, and K, from easily measured proxies alone,
which ultimately may obviate the need for expensive, laborious direct measurements. Such models might be
attainable by utilizing the wealth of published data on K and other hydraulic properties from peatlands.
Pedotransfer functions are used to predict hydraulic properties in mineral soils based on simple metrics such
as grain size fractions, dry bulk density, and organic matter content (e.g., Clapp & Hornberger, 1978; Cosby
et al., 1984; Wosten et al., 1999, 2001). However, these schemes are inapplicable to peat because they feature
only a single variable to describe organic matter content and thus cannot incorporate important predictors
such as the degree of decomposition; additionally, metrics of grain size distribution are rarely definable for

Table 4
Regression Coefficients (p Values in Brackets) for Independent Effects of Categories in the Microhabitat Descriptor From the
Multiple Linear Regression Model for Log;o(K,)

Reference category

Effect

category Hummock Lawn Balk Cutting
hummock = = = =
lawn —0.638 (p = 0.001) = = =
balk 0.687 (p = 0.022) 1.325 (p < 0.001) = =
cutting 1.221 (p < 0.001) 1.860 (p < 0.001) 0.534 (p = 0.122) =

Note. Positive coefficients indicate that the effect category causes an increase in log;(K;,) compared to the reference
category. Significant effects are shown in bold (p < 0.05 threshold). See Table 3 for details of other descriptors.
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peat. In common with their existing mineral soil equivalents, pedotransfer functions for peats might also be
used to predict some unsaturated hydraulic parameters, such as those from van Genuchten's (1980) widely
applied model. Our measurements, and so the applicability of our fitted regression models, are restricted to
near-surface peat layers. Meta-analysis of published peat K data might seek to extend our approach into dee-
per layers.

Several obstacles lie in the path of such an endeavor. First, published measurements of K have been collected
using a wide variety of measurement techniques (e.g., piezometer slug tests and laboratory tests such as ours)
and quality control procedures, which have the potential to introduce large artifacts to estimates (cf. Baird
et al., 2004; Beckwith et al., 2003). Second, site-specific factors such as the distinction between bogs and fens,
levels of modification and degradation, and degree of afforestation have the potential to introduce large, sig-
nificant effects on peat hydraulic properties. Although some of these effects may be expressed through other
predictor variables such as dry bulk density and von Post score, others may need to be represented explicitly
as factors in any predictive model. Site-specific differences may reduce the predictive power of any general
model compared to the high explanatory power of our site-specific models. Third, K exhibits highly non-
linear, heteroscedastic relationships to its main predictors, which precludes the use of linear regression on
untransformed data. Linear models fitted to transformed data (e.g., Pdivinen, 1973; Morris et al., 2015;
the current study) contain systematic bias when back-transformed, and require empirical correction before
they can be used to predict on an untransformed scale (Ferguson, 1986). Nonlinear models fitted to untrans-
formed data (e.g., Morris et al., 2015) avoid such bias but still suffer from heteroscedasticity, particularly for
high values of K that exhibit the greatest variability and are the most important to determining flow rates.
Finally, any such meta-analysis must incorporate a sound strategy to deal with multicollinearity of predic-
tors, such as seen in our data.

5. Conclusions

We found that combinations of simple, easily measured descriptors, particularly depth, dry bulk density, and
von Post score, explain much of the variation in log; -transformed values of both horizontal and vertical peat
hydraulic conductivity. Controls on vertical and horizontal hydraulic conductivity are broadly similar,
although vertical hydraulic conductivity responded much less strongly to depth than did horizontal hydrau-
lic conductivity. Macropores associated with ericaceous roots may serve to maintain high vertical permeabil-
ity at depth, despite low horizontal permeability. The low-permeability margin previously observed in
deeper peat layers at this site and elsewhere is not evident in shallow peat. Simple, generalizable models
of peat hydraulic conductivity, and possibly other parameters, may be attainable through meta-analysis of
published data, so long as sufficient data can be gathered to characterize between-site variability.
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