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ABSTRACT 

Learning new identities is crucial for effective social interaction. A critical aspect of this 

process is the integration of different images from the same face into a view-invariant 

representation that can be used for recognition. The representation of symmetrical 

viewpoints has been proposed to be a key computational step in achieving view-invariance.  

The aim of this study was to determine whether the representation of symmetrical 

viewpoints in face-selective regions is directly linked to the perception and recognition of 

face identity. In Experiment 1, we measured fMRI responses while male and female human 

participants viewed images of real faces from different viewpoints (-90⁰, -45⁰, 0⁰, 45⁰, 90⁰ 

from full-face view). Within the face regions, patterns of neural response to symmetrical 

views (-45⁰ & 45⁰ or -90⁰ & 90⁰) were more similar than responses to non-symmetrical views 

in the FFA and STS, but not in the OFA. In Experiment 2, participants made perceptual 

similarity judgements to pairs of face images.  Images with symmetrical viewpoints were 

reported as being more similar than non-symmetric views. In Experiment 3, we asked 

whether symmetrical views also convey an advantage when learning new faces. We found 

that recognition was best when participants were tested with novel face images that were 

symmetrical to the learning viewpoint. Critically, the pattern of perceptual similarity and 

recognition across different viewpoints predicted the pattern of neural response in face-

selective regions. Together, our results provide support for the functional value of 

symmetry as an intermediate step in generating view-invariant representations.  
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SIGNIFICANCE STATEMENT 

The recognition of identity from faces is crucial for successful social interactions.  A critical 

step in this process is the integration of different views into a unified, view-invariant 

representation.  The representation of symmetrical views (e.g. left profile and right profile) 

has been proposed as an important intermediate step in computing view-invariant 

representations.  We found view symmetric representations were specific to some face-

selective regions, but not others.  We also show that these neural representations influence 

the perception of faces. Symmetric views were perceived to be more similar and were 

recognized more accurately than non-symmetric views. Moreover, the perception and 

recognition of faces at different viewpoints predicted patterns of response in those face 

regions with view symmetric representations.  
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INTRODUCTION 

Faces are seen from many different angles in everyday life and differences in viewpoint play 

an important role in social perception. For example, different orientations provide useful 

information about internal mental states, such as the focus of attention, and they directly 

affect social attributions (Sutherland et al., 2017). However, changes in viewpoint make the 

process of face recognition more difficult, because so many different views can be generated 

from the same identity. Despite this challenge, we can recognise familiar faces from different 

viewpoints with relative ease (Hancock et al,, 2000), raising the critical theoretical question 

of how this viewpoint-invariance for recognising familiar faces is achieved (Young, 2018; 

Young & Burton, 2017). Cognitive models of face processing have suggested that the 

recognition of facial identity is based on a view-invariant representation that receives 

convergent input from relatively viewpoint-specific representations (Bruce & Young, 1986; 

Burton et al., 1999; although see Tarr and Bulthoff, 1998). Understanding how the brain 

generates this viewpoint invariant representation is central to understanding how we 

recognize faces.   

Neurophysiological studies have shown that neurons in the temporal lobe can be 

selective for different facial viewpoints (Perrett et al., 1991). This led to the idea that 

recognition is initially based on multiple viewpoint-specific representations that are a 

precursor to viewpoint-invariant representations of identity (Perrett et al., 1998).  However, 

these studies also reported a sub-population of neurons that showed bimodal responses in 

which there was selectivity to two different viewpoints, typically symmetrical viewpoints.  

More recently, Freiwald and Tsao (Freiwald & Tsao, 2010; Dubois et al., 2015) used fMRI in 

combination with single neuron recording in different face regions of the monkey temporal 
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lobe.  They found that in the most posterior face regions (ML/MF), neurons were selective for 

the viewpoint of the face. However, a more anterior face patch (AL) contained neurons that 

showed mirror-symmetric tuning for viewpoint. The most anterior region (AM) contained 

view-invariant neurons. 

Neuroimaging studies have also found evidence for the representation of viewpoint 

symmetry in face-selective regions of the human brain.  Early studies found viewpoint-

selective responses to unfamiliar faces in face-selective regions (Andrews & Ewbank, 2004; 

Carlin et al., 2011; Fang et al., 2007; Grill-Spector et al., 1999; Guntupalliet al., 2017; Weibert 

et al., 2018), with partial view-invariance (20 – 30°) for familiar faces (Eger, Schweinberger et 

al., 2005; Ewbank & Andrews, 2008; Pourtois et al., 2005). More recently, a number of studies 

have found selectivity to mirror-symmetric viewpoints in face-selective regions (Axelrod & 

Yovel, 2012; Guntupalli et al., 2017; Kietzmann et al., 2012; 2015, 2017). These studies found 

that the pattern of response in face regions was more similar for symmetrical views of the 

face compared to non-symmetrical views. However, the existence of mirror-symmetric 

representations in face regions has been challenged by reports maintaining that patterns of 

response can be better explained by view-dependent representations (Ramírez, 2018; 

Ramirez et al., 2014). 

The existence and location of mirror-symmetric representations of faces is important, 

because they are often thought to form a key computational step in the generation of 

viewpoint-invariant representations (Axelrod & Yovel, 2012; Freiwald & Tsao, 2010; 

Kietzmann et al., 2012).  The aim of this study was to determine where mirror-symmetric 

representations exist and whether there is a direct link with the perception and recognition 

of faces.  Previous behavioural studies using face matching tasks have found better 
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performance on face image pairs showing symmetrical compared to non-symmetrical 

viewpoints (Busey & Zaki, 2004; Troje & Bülthoff, 1998). Here, we used perceptual matching 

and face-learning paradigms to ask whether mirror-symmetric representations in face-

selective regions can be predicted by performance on such behavioural tasks. A key feature 

of our study is the use of real human faces, as opposed to computer generated faces. Human 

faces are not perfectly mirror symmetrical, so it is important to use real human faces to 

determine if the brain represents symmetry in the real world and whether these 

representations are important for the perception and recognition of identity.  
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METHOD 

Participants 

All participants had normal or corrected-to-normal vision with no history of neurological 

conditions.  20 right-handed participants (10 female, mean age 25.3 ± 3.1) took part in 

Experiment 1. 20 participants took part in Experiment 2 (12 female, mean age 24.2 ± 3.6). 48 

participants took part in Experiment 3 (37 female, mean age 23.2 ± 5.2). Written consent was 

obtained from all participants and the studies were approved by the York Neuroimaging 

Centre Research Ethics Committee (Exp. 1), the Department of Psychology Ethics Committee 

at the University of York (Exp. 2) and Durham University (Exp. 3). All experiments conformed 

to the principles of the Declaration of Helsinki. 

Experiment 1 

Experimental Design 

Face images were taken from the Radboud Faces Database (Langner et al., 2010). There were 

five stimulus conditions, presented in a block design:  1) right profile (-90o), 2) right ¾  profile 

(-45o), 3) front view (0o), 4) left ¾ profile (45o), 5) left profile (90o).  These viewpoints were 

shown across 5 different identities (Figure 1). Images were placed onto a 1/f amplitude mask 

to ensure that all images stimulated the same amount of the visual field despite changes in 

viewpoint. 

Images from each viewpoint condition were presented in a blocked design.  Each block 

contained 5 images (columns in Fig. 1), with each image presented for 1 sec followed by a 200 

msec grey screen.  There was a 9 sec inter-block period during which a grey fixation screen 

was presented.  Each viewpoint condition was repeated 6 times, giving a total of 42 blocks. 

The order of identities in each block was randomized across blocks. To ensure participants 
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were paying attention during the scan, participants were required to monitor the images and 

indicate using a response box when they saw a red dot superimposed onto one of the images.  

Accuracy on this task was very high (99.9 + 0.5%). 

 

Figure 1   Examples of stimuli from Experiment 1. Each column shows the sequence of images in a 

representative stimulus block for the different conditions. Within each block the viewpoint remained 

the same, with the identity varying across images.  

Imaging Parameters 

Data for Experiment 1 were collected using a GE 3 Tesla HD Excite MRI system with an eight 

channel phased array head coil tuned to 127.4MHz. A gradient echo planar imaging (EPI) 

sequence was used to acquire the data. The acquisition parameters were: 38 contiguous axial 

slices, repetition time (TR) 3 seconds, echo time (TE) 32.5 milliseconds, flip angle 90°, field of 
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view (FOV) 28.8 x 28.8 cm, matrix 128 x 128, slice-thickness 3mm, voxel size 2.25 x 2.25 x 

3mm. To improve registration, the EPI image was co-registered with a T1-weighted image 

taken in the same plane, before being registered to the high resolution main structural scan 

(T1-weighted, 1.13 x 1.13 x 1 mm) of each participant. This was then co-registered to the 

standard MNI 152 brain. 

fMRI Analysis 

Our main analysis focussed on face-selective regions (fusiform face area: FFA, occipital face 

area: OFA; superior temporal sulcus: STS, inferior frontal gyrus: IFG; amygdala: AMG). There 

were two important principles underlying the way in which we defined the face-selective 

regions of interest (ROIs). The first principle was that ROIs should be based on independent 

data. Given that we were investigating the reliability of patterns of response across 

individuals, it was essential that these came from independent participants. The second 

principle was that ROIs must be of the same size (number of voxels), to allow the MVPA 

analyses to have comparable potential power to detect underlying patterns of response in 

each region. 

An independent localiser scan was therefore used to define group level ROIs using 

different participants (n = 83). Responses to faces that varied in identity and viewpoint were 

compared to the response to scrambled faces. ROIs comprised of the 500 most significant 

voxels in the OFA, FFA and STS (Sormaz, Watson, Smith, Young, & Andrews, 2016).  Our 

analysis was supplemented by using ROIs based on probabilistic visual field maps developed 

by Wang and colleagues (Wang, Mruczek, Arcaro, & Kastner, 2015). Our rationale for using 

these masks was to determine how the representation of face viewpoint changes from early 
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to higher levels of the visual system. The size of each region in our analysis is shown Table 1-

4. 

 Pattern analyses were performed using the PyMVPA toolbox 

(http://www.pymvpa.org/; Hanke et al., 2009). Parameter estimates from a univariate 

analysis of the main experiment were first normalised by subtracting the average response 

across the five viewpoint conditions (-90°, -45°, 0°, 45°, 90°).  The reliabilities of the neural 

patterns of response were then determined using a modified form of the correlation-based 

MVPA method devised by Haxby and colleagues (Haxby et al., 2001), whereby patterns of 

response from each participant were compared to the patterns resulting from the group 

analysis with that participant left out.  This Leave One Participant Out method (LOPO) allowed 

us to determine the consistency of the patterns of response across participants by measuring 

how similar each participant's responses were to those for the rest of the group. This method 

has been successfully used in several recent studies from our research group (Coggan, Liu, 

Baker, & Andrews, 2016; Rice, Watson, Hartley, & Andrews, 2014; Watson, Hartley, & 

Andrews, 2014; Weibert et al., 2018). The group pattern was derived by entering all but one 

of the participants’ data into a higher-level group analysis (mixed effects, FLAME 

http://www.fmrib.ox.ac.uk/fsl). This group pattern of response for each condition was then 

correlated with the pattern from the participant who was omitted from the group. For each 

unique pair of conditions, the LOPO method was repeated 20 times, with a different 

participant being omitted from the rest of the group each time. A Fisher's Z-transformation 

was then applied to the correlations prior to statistical analysis. 

To assess whether there were distinct patterns of response to individual viewpoint 

directions, paired t-tests were used to test the difference between the average within-
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condition (e.g. -90o vs -90o, -45o vs -45o) and the corresponding between-condition 

correlations. If a viewpoint evoked a distinct pattern of response, then the within-condition 

correlations for the individual participant and rest of the group data should be higher than 

the between-condition correlations in the given region.   

Next, a representational similarity analysis (Kriegeskorte, Mur, & Bandettini, 2008) 

was performed to determine how information about viewpoint was represented. We 

compared the fit achieved by 3 models derived from different theoretical perspectives: 1) 

Viewpoint, 2) Direction and 3) Symmetry.  In the Viewpoint model the value of each cell was 

proportional to the degree of difference in rotation between viewpoints. In the Direction 

model, cells involving combinations of viewpoints with the same direction (both-left facing or 

both right-facing) were given the value 1, whereas all other cells were coded 0. In the 

Symmetry model, cells showing symmetrical viewpoints were given a value of 1 and non-

symmetrical viewpoints were given a value 0. To prevent differences in the overall 

magnitude of within-condition and between-condition correlations artificially inflating 

differences in correlations between matrices, our analysis was only performed on the 

between-cluster comparisons. All models were normalized using a Z-transform (mean = 0, 

SD = 1) and then used in a linear regression analysis, with the outcomes defined as the 

correlation matrices obtained from the MVPA concatenated across LOPO iterations. For each 

model, elements within the matrix were extracted and flattened to a vector. These vectors 

were then repeated and tiled to match the number of participants. For each participant, 

correlation matrices were extracted and flattened to a vector. These vectors were then 

concatenated and entered into the model as the outcome variable. This analysis yielded a 

regression coefficient and an error that reflected variance across participants. All regression 
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analyses included a constant term. From this analysis, it was possible to determine the relative 

fit to each model in each ROI. 

 

Experiment 2 

Stimuli and Experimental Design 

To determine whether symmetrical viewpoints were seen as being more similar than non-

symmetrical viewpoints, we conducted a behavioural study in which participants rated the 

perceptual similarity of pairs of images which varied in viewpoint.  Stimuli consisted of the 

same greyscale images used in Experiment 1.  Images were presented in pairs, with the 

identity across the two images remaining the same, but the viewpoint changing.  Images were 

presented sequentially, with the first image being presented for 1 sec, a 200 msec ISI and then 

the second image.  Each viewpoint was presented with every other viewpoint, in both the 

first and second position.  For each identity, there were 2 trials for each of the 10 viewpoint 

combinations.  This was repeated for each of the 5 identities, giving a total of 10 trials for each 

of the 10 viewpoint combinations.  The order of trials was randomised for each individual 

participant. Participants were required to respond with a button press indicating how similar 

they perceived the images to be, on a scale of 1 – 7 (1 being less similar and 7 being more 

similar).  Participants were given an unlimited time to respond. The perceptual similarity 

between symmetric and non-symmetric responses was compared using a paired t-test. The 

perceptual similarity between different viewpoints was then used as a model in a regression 

analysis of the fMRI data from different regions.  
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Experiment 3 

Stimuli and Experimental Design 

Experiment 3 used a face-identity learning paradigm (see Longmore, Liu, and Young, 2008) to 

determine if a face learnt in one viewpoint conveyed an advantage in the recognition of the 

symmetrical viewpoint. Faces from the Radboud database were again used in this 

experiment. There were 20 male identities each posing a neutral facial expression at the 

following viewpoints: -90°, -45°, 0°, 45°, 90°.  The 20 identities were split into two sets. 

Participants were randomly assigned to Set 1 or Set 2. Within each set, each of the 10 

identities was assigned to one of the five viewpoints.  The assignment of identities to 

viewpoints was randomized for each participant. This generated 10 face images: 2 images for 

each viewpoint. 

In the learning phase, participants were presented with these 10 face images. The 

faces were presented sequentially, with each face being presented for 5 seconds, with a 

500ms ISI between each trial. Underneath each face was a first name. Names were randomly 

assigned to faces for each participant from a set of 10 names. These names were chosen to 

be short and common in the UK, consisting of one or two syllables and three or four letters, 

e.g. Paul, Tim. Participants were instructed to remember the face and its corresponding name.  

In the training phase, the 10 faces were split into two blocks of 5 faces. Participants 

were presented with the first block of 5 faces. These faces were presented individually, and 

for an unlimited time. Participants were asked to pick the name that they believed belonged 

to the face. The five name options were displayed below the face and participants had to use 

the mouse to click on the name they thought matched the face. The order of the names was 

random for each participant. Once a response had been recorded, participants were given 
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feedback to indicate whether they were correct or not. If they were incorrect, they were told 

what the correct name was for the target face. This feedback was provided to aid and 

reinforce the learning in this training phase. In order to move to the next block of 5 faces, the 

participants had to correctly name each face twice in a row. For example, if a given face was 

named correctly once, and then incorrectly the next time it was presented, the correct count 

for this face was returned to 0 and the participant had to complete two more trials correctly 

in a row, in order to continue. Once the participant had correctly named the face twice in a 

row, it was removed from the block. This process was repeated with the remaining block of 

five faces.  Next, the entire set of 10 faces were presented. In this final block of the training 

phase, participants had to correctly name all 10 faces twice in a row (in the same way as 

described above) in order to complete the phase.   

In the final test phase of the experiment, participants were presented with all images 

from the set.  This included the 10 images used for training and the remaining 40 images that 

were not used during training. Images were presented twice, giving 100 trials. The task was 

to match the name to the face from the 10 names displayed underneath the face. Feedback 

was not given in this phase of the experiment. For each identity, the aim was to determine if 

the (untrained) face images that were symmetrical to the trained view were identified 

correctly more often than the (untrained) face images that were not symmetrical to the 

trained view. If participants had correctly learned an image trained in phases 1 and 2, they 

should then be able to correctly recognise the same image at this final stage (e.g. when 

learned in 45° and tested in 45°). For this reason, only identities that were correctly 

recognised 100% of the time in the test stage when tested in the same viewpoint as they were 

learned, were retained for analysis.  The recognition of symmetric and non-symmetric 
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responses was compared using a paired t-test. The recognition rate between different 

viewpoints was then used as a model in a regression analysis of the fMRI data in different 

regions.  
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RESULTS 

Experiment 1 

Figure 2 shows the results of the MVPA analysis demonstrating the similarity in the patterns 

of response to different viewpoint directions in the (A) face and (B) visual field regions. To 

determine whether there were distinct patterns of response to individual viewpoint 

directions, within-viewpoint (e.g. -90o, -90o) correlations were compared to between-

viewpoint (e.g. -90o, -45o) correlations. 

 

Figure 2  Correlation matrices showing the similarity in the patterns of response across viewpoints in 

(A) face-selective and (B) visual field regions. (C) Distinct patterns of response were demonstrated by 

higher within-viewpoint correlations compared to between-viewpoint correlations. *** p < 0.001, ** 

p < 0.01, * p < 0.05 
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There was a significant difference between within-viewpoint compared to between-

viewpoint correlations in all face regions except the AMG and IFG (Fig.  2C and Table 1).  To 

determine if the size of the face regions was important, we repeated the analysis with smaller 

(200 voxel) masks and found a similar pattern of results (Table 1-1). There was also significant 

difference between within-viewpoint compared to between-viewpoint correlations across 

many visual field areas. This overall pattern demonstrates that there are distinct 

representations of particular face viewpoints across visual cortex.  

 

Table 1 Within-viewpoint and between-viewpoint correlations and associated paired t-tests across 

all ROIs. Further analysis is presented in the Extended Data Table 1-1 & Table 1-2. 

 Correlation (r)   

ROI Within-viewpoint Between-viewpoint t pcorrected 

V1 .35 -.08 10.07 <.001 

V2 .40 -.10 9.33 <.001 

V3 .41 -.10 9.98 <.001 

V3A .26 -.06 6.42 <.001 

V3B .23 -.06 10.35 <.001 

V4 .31 -.08 5.90 <.001 

VO1 .39 -.10 7.01 <.001 

VO2 .34 -.08 7.74 <.001 

PH1 .19 -.05 5.32 <.001 

PH2 .15 -.04 3.52 .011 

LO1 .20 -.05 6.77 <.001 

LO2 .18 -.05 3.79 .007 

MT .15 -.04 2.46 ns 

OFA .17 -.04 4.47 .002 

FFA .12 -.03 3.89 .007 

STS .20 -.05 4.41 .002 

AMG .05 -.01 2.47 ns 

IFG -.03 .00 -0.60 ns 

 

Next, we asked how similar the pattern of response to viewpoint was across all the 

ROIs by comparing the neural correlation matrices in Fig 2A and 2B.  Figure 3A shows the 
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similarity in the representation of viewpoint across all regions.  To determine the pattern of 

similarity in the representation across regions, a hierarchical clustering analysis was 

performed using an unweighted average distance method for computing the distance 

between clusters and the '1 minus correlation' values as the distance metric (Fig. 3B).  The 

distinct clusters shown by the output of the clustering show that the way viewpoint is 

represented differs between regions. 

 

Figure 3  (A) Representational similarity matrix showing the similarity in the neural representations 

across regions. (B) Hierarchical clustering analysis showing regions with similar patterns of response 

to face viewpoint.  

 

To determine how viewpoint is represented in different regions, our next analysis 

investigated how three different models of viewpoint representation were able to predict 

patterns of response.  Figure 4 and Table 2 show the models for each representation and the 

corresponding regression coefficient for each region. To determine if the size of the face 

regions was important, we repeated the analysis with smaller (200 voxel) masks and found a 

similar pattern of results (Table 2-1). The analysis was also repeated across all regions with 
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multiple regression (Table 2-2) and using a permutation test for statistical significance (Table 

2-3).   

 

Figure 4  Regression analysis of fMRI data showing how different models predict patterns of response 

to viewpoint in different regions.  (A) The Viewpoint and (B) Direction models predict the 

representational similarity in low-level visual areas. (C) In contrast, the symmetry model predicted 

patterns in high-level regions including the FFA and STS. *** p < 0.001, ** p < 0.01, * p < 0.05 
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Table 2 Regression coefficients for the viewpoint representation models across all ROIs. Further 

analysis is presented in the Extended Data Tables 2-1, 2-2 & 2-3. 

 Viewpoint Direction Symmetry 

ROI β pcorrected β pcorrected β pcorrected 

V1 .62 <.001 .63 <.001 -.37 <.001 

V2 .67 <.001 .66 <.001 -.39 <.001 

V3 .63 <.001 .61 <.001 -.33 <.001 

V3A .51 <.001 .48 <.001 -.28 <.001 

V3B .24 <.001 .30 <.001 -.08 ns 

V4 .37 <.001 .40 <.001 -.19 .001 

VO1 .48 <.001 .46 <.001 -.24 <.001 

VO2 .54 <.001 .50 <.001 -.28 <.001 

PH1 .12 ns .03 ns .15 .019 

PH2 -.06 ns -.12 ns .24 <.001 

LO1 .08 ns .10 ns .06 ns 

LO2 .05 ns  .09 ns .12 ns 

MT .09 ns .10 ns .05 ns 

OFA .24 <.001 .25 <.001 -.02 ns 

FFA -.03 ns -.14 ns .27 <.001 

STS .06 ns -.01 ns .25 <.001 

AMG -.11 ns .00 ns .05 ns 

IFG -.04 ns -.07 ns .02 ns 

       

 

The Viewpoint and Direction models (Fig 4A/B) showed a similar pattern with high 

coefficients in the early visual field regions (V1-V4) and in some of the ventral temporal visual 

field regions (VO1-VO2).  However, the coefficient values were not significant in the lateral 

occipital visual field regions (LO1, LO2) and the face-selective regions.  The only exception was 

the OFA, which had a significant regression coefficient for both Viewpoint and Direction.  The 

Symmetry model (Fig. 4C) showed an opposite pattern of results. We found significant but 
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negative coefficients in the early visual field regions (V1-V4) and in some of the ventral visual 

field regions (VO1-VO2). In contrast, there were significant positive coefficients in other 

ventral visual field regions (PH1-PH2) and in the FFA and STS.  The OFA did not show a 

significant effect for symmetry.  The AMG and IFG did not show significant coefficients for any 

of the three models.  

We also analysed our data to ask whether low-level differences can account for the 

pattern of data. To investigate the effects of low-level image properties on patterns of neural 

response in face-selective regions, the image statistics of each object were computed using 

the GIST descriptor (Oliva & Torralba, 2001). For each image, a vector of 2048 values was 

obtained by passing the image through a series of 32 Gabor filters (eight orientations at four 

spatial frequencies), and windowing the filtered images along a 8 x 8 grid or 64 spatial 

locations. Each vector represents the image in terms of the output of each gabor filter at each 

position across the image (Rice et al., 2014; Watson et al., 2014; Watson et al., 2016). Image 

similarities between conditions were measured by correlating the GIST descriptors for all 

combinations of images. The similarity matrix of the correlation values for the GIST descriptor 

across all pairwise combinations of conditions was then used as a regressor in a regression 

analysis with the fMRI data. Table 3 shows that, consistent with previous studies (Rice et al., 

2014; Watson et al., 2016; Weibert et al., 2018), low-level stimulus properties can account for 

some of the variance in the patterns of response in early visual field areas but also in higher 

visual areas such as the core face regions (OFA, FFA, STS).   
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Table 3  Regression coefficients for a model of low-level image properties across ROIs. 

 GIST 

ROI β pcorrected 

V1 .48 <.001 

V2 .53 <.001 

V3 .51 <.001 

V3A .40 <.001 

V3B .24 <.001 

V4 .30 <.001 

VO1 .39 <.001 

VO2 .43 <.001 

PH1 .19 .001 

PH2 .04 ns 

LO1 .17 .004 

LO2 .15 .017 

MT .13 .028 

OFA .27 <.001 

FFA .15 .012 

STS .22 <.001 

AMG -.09 ns 

IFG -.01 ns 

 

 

Experiment 2 

Experiment 2 aimed to assess the perceptual experience of facial viewpoint symmetry. 

Participants were presented with pairs of faces which showed different viewpoints and were 

asked to rate how similar they believed the images were on a scale of 1 to 7 (1: less similar, 

7: more similar).  A similarity matrix of each of the viewpoint combinations can be seen in 

Figure 5A.  In order to assess whether participants rate symmetrical directions more similar 

than non-symmetrical directions, data were averaged across symmetrical and non-
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symmetrical pairings. Participants rated symmetrical viewpoints as more similar than non-

symmetrical viewpoint conditions (t(19) = 6.37, p < .001). 

 Next, we asked whether the pattern of response in the perceptual similarity task could 

predict the patterns of response in different regions of the brain (Fig. 5A, right).  Using  a 

regression analysis with perceptual similarity as the model, we found that responses from V1 

were not predicted by the pattern of perceptual similarity. However, the correlation 

coefficients showed a progressive increase along the visual hierarchy with the highest 

regression coefficients in the FFA and STS (Table 3).  This shows a clear link between the 

perceptual similarity of different viewpoints and the pattern of response in some face regions. 

 

Figure 5  (A) Perceptual similarity ratings between viewpoint directions (left).  A regression analysis 

using the perceptual similarity ratings as a model showed an increase in the coefficients from low-

level to high-level visual regions, with the highest values in the FFA and STS. (B) Recognition rates for 

different combinations of viewpoint during the training and test phases of the recognition experiment 
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(left).  A regression analysis using the recognition values as a model showed an increase in the 

coefficients from low-level to high-level regions, with the highest values in the FFA and STS.  

*** p < 0.001, ** p < 0.01, * p < 0.05 

 

Experiment 3 

The aim of Experiment 3 was to determine if learning a face at a particular viewpoint 

conferred an advantage in the recognition of the symmetric viewpoint.  Figure 5B shows the 

% recognition rates for different combinations of viewpoint from training and test phases of 

the experiment.  In order to compare performance across symmetrical and non-symmetrical 

conditions, data were averaged across symmetrical and non-symmetrical viewpoint 

combinations. Participants performed significantly better when tested with a viewpoint that 

was symmetrical to the one which they had learned (t(47)= 2.63, p = .012).  

Next, we asked whether accuracy in the recognition task could predict the patterns of 

response in different regions of the brain (Fig. 5B, right).  Using a regression analysis with 

recognition accuracy as the model, we found that early visual areas were not significant.  In 

contrast, only LO2, FFA and STS showed positive regression coefficients (Table 3).  This 

demonstrates a link between behavioural performance on a face learning task and patterns 

of response in the face-selective regions, such as the FFA. 

To determine if the size of the face regions was important, we repeated the analysis 

of Experiment 2 and Experiment 3 with smaller (200 voxel) masks and found a similar pattern 

of results (Table 4-1). The analysis was also repeated across all regions with multiple 

regression (Table 4-2).  A multiple regression found significant effects of Similarity across 

many visual areas, but was largest in the FFA and STS. However, we did not find any additional 

benefit of the Recognition model. This is likely explained by the similarity in the models which 



25 

 

have a correlation of r = 0.53. Finally, we reanalysed the data using a permutation test for 

statistical significance (Table 4-3). 

 

Table 4 Regression coefficients demonstrating the ability of the behavioural data from Exp 2 

(Similarity ratings) and Exp 3 (Recognition) in predicting the neural responses across all ROIs. Further 

analysis is presented in the Extended Data Tables 4-1, 4-2 & 4-3. 

 Similarity Recognition 

ROI β pcorrected β pcorrected 

V1 .07 ns -.08 ns 

V2 .11 ns -.11 ns 

V3 .17 .006 -.08 ns 

V3A .12 ns -.09 ns 

V3B .24 <.001 .04 ns 

V4 .16 .010 -.06 ns 

VO1 .13 ns -.09 ns 

VO2 .11 ns -.12 ns 

PH1 .22 <.001 .04 ns 

PH2 .16 .011 .05 ns 

LO1 .31 <.001 .13 ns 

LO2 .32 <.001 .15 .043 

MT .20 .001 .03 ns 

OFA .28 <.001 .11 ns 

FFA .36 <.001 .17 .011 

STS .43 <.001 .18 .006 

AMG .04 ns .10 ns 

IFG .02 ns -.00 ns 
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DISCUSSION 

The aim of this study was to investigate and understand responses to symmetric views of real 

human faces in face-selective regions of the human brain. A viewpoint-symmetric 

representation was found in the FFA and STS, but not in the OFA (Experiment 1). To determine 

whether a symmetrical representation of viewpoint can convey an advantage in the 

perception and recognition of faces, participants performed a perceptual similarity and a face 

recognition task.  We found that symmetric viewpoints were perceived to be more similar 

than non-symmetric viewpoints (Experiment 2) and that identities learnt at a particular 

viewpoint were more accurately recognized at the symmetrical viewpoint compared to non-

symmetrical viewpoints (Experiment 3).  Critically, these behavioural judgements of 

symmetry and recognition across different views were able to predict patterns of response in 

face-selective brain regions. 

Previous neurophysiological studies have found a large number of neurons with 

maximal responses to specific viewpoints (Dubois et al., 2015; Freiwald & Tsao, 2010; Perrett 

et al., 1998, 1991). We also found distinct patterns of response to viewpoint throughout visual 

cortex.  Our findings are therefore consistent with previous neuroimaging studies that have 

also found distinct patterns of response to specific viewpoints (Axelrod & Yovel, 2012; Carlin 

et al., 2011; Dubois et al., 2015; Guntupalli et al., 2017; Kietzmann et al., 2012; Ramirez et al., 

2014).  These neural responses to viewpoint are also consistent with behavioural studies that 

have shown the importance of viewpoint-selective representations in the perception and 

recognition of unfamiliar faces (Bruce, 1982; Fang & He, 2005; Hill & Bruce, 1996; Longmore 

et al., 2008). 
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This widespread evidence of viewpoint selectivity to face images across the visual 

cortex provides a challenge to understanding how invariant representations of facial identity 

are achieved (Perrett et al., 1998).  One possibility is that different viewpoint-selective units 

converge to generate invariant units of facial identity, similar to the face recognition units 

suggested by cognitive models of face recognition (Bruce & Young, 1986; Burton et al., 1999).  

However, the discovery of neurons that are tuned to symmetric viewpoints of the face has 

led to the idea that these may provide an important intermediate computational step before 

full invariance is achieved (Freiwald & Tsao, 2010), or at least facilitate the process. Evidence 

that these viewpoint symmetric representations are found in the human brain comes from 

neuroimaging studies, which have found that the patterns of response in face regions to 

symmetrical viewpoints are more similar than to non-symmetrical viewpoints (Axelrod & 

Yovel, 2012; Guntupalli et al., 2017; Kietzmann et al., 2012, 2017).  However, there has been 

some inconsistency in the literature about which regions show a symmetrical representation 

of faces.  Kietzmann and colleagues found viewpoint symmetry represented in the OFA and 

FFA.  However, other studies report symmetrical representations in the FFA and STS, but not 

in the OFA, leading them to conclude that there is a hierarchical processing of face viewpoint 

in face regions (Axelrod & Yovel, 2012; Guntupalli et al., 2017). Finally, Ramirez and colleagues 

(Ramírez, 2018; Ramírez, 2017; Ramirez et al., 2014) have argued that symmetry responses 

in the FFA could be better explained by a view-dependent mechanism.  In contrast, to the 

current and previous studies, they presented faces in the periphery to test the invariance of 

viewpoint symmetry. So, it is possible that a lack of position invariance could explain the 

difference in results across studies (see Kietzmann et al., 2017).  Another possible reason for 

the difference in results could be the methodological choices in MVPA. However, view 
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symmetry in faces has been shown across different studies that have used a range of MVPA 

approaches (Axelrod & Yovel, 2012; Guntupalli et al., 2017; Kietzmann et al., 2012, 2017). 

To determine where viewpoint symmetry is represented, we compared how three 

different models (Viewpoint, Direction and Symmetry) predicted patterns of neural response 

in different regions of visual cortex. The predictions of the Viewpoint model were exclusively 

based on the angular separation between the different viewpoints, the Direction model 

coded whether combinations of viewpoints were both left-facing or right-facing, and the 

Symmetry model explicitly allowed different symmetric orientations (e.g. -45 and +45, or -90 

and +90) to be represented as similar to each other regardless of the angular separations 

themselves (which are 180 degrees for -90 and +90 images and only 90 degrees for -45 and 

+45 images). 

We found that the Viewpoint and Direction models best predicted responses in early 

visual cortex (V1-V4) and the OFA, but showed a gradual decline in high-level regions and 

were not able to explain the patterns in the FFA and STS.  In contrast, the patterns of response 

in the FFA and STS (but not the OFA) were best predicted by the Symmetry model. These 

findings are consistent with a hierarchical organization of viewpoint responsiveness across 

visual regions in which more posterior regions have view-dependent representations, but 

more anterior regions (including classic face-selective regions) are sensitive to viewpoint 

symmetry (Axelrod & Yovel, 2012; Freiwald & Tsao, 2010; Guntupalli et al., 2017; Kietzmann 

et al., 2012, 2017). 

  Although our results provide further support for the representation of viewpoint 

symmetry in face-selective neural regions, such as the FFA, it has not been clear whether 

these representations are important for the perception and recognition of faces. That is, the 
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link between neural and behavioural measures has not been investigated directly. To address 

this issue, we compared symmetrical and non-symmetrical views in a perceptual similarity 

task and a recognition task.  We found that symmetrical views of the face are perceived to be 

more similar than non-symmetrical views.  Similarly, we found that novel face images that 

were symmetric to a learned face view were recognized better than non-symmetric face 

views.  These results are consistent with previous studies that have shown a behavioural 

advantage for symmetric compared to non-symmetric viewpoints (Busey & Zaki, 2004; Troje 

& Bülthoff, 1998).  However, to investigate the link between symmetric and non-symmetric 

viewpoints and neural responses, we used the data from our behavioural results to predict 

patterns of response across visual cortex. The data from both the perceptual similarity and 

recognition experiments showed a progressive increase in their ability to predict neural 

responses from low-level to high-level regions.  Patterns of response in face regions such as 

the FFA and STS were predicted best by performance on both the perceptual similarity and 

recognition tasks.  This provides the first evidence for a close link between symmetrical 

representations in the brain and a behavioural advantage in the recognition of faces. 

A crucial difference between this study and many previous studies investigating 

symmetry is the use of real faces.  Many previous studies have used computer generated 

faces that are often themselves mirror symmetric. However, human faces are not actually 

completely symmetrical (see Figure 1). So, if the brain uses symmetry in order to assist 

reaching viewpoint invariance, it needs to be able to allow for these deviations from 

symmetry found in real human faces. We have been able to show that neural and behavioural 

responses are able to compensate for this lack of full mirror symmetry. 
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Although this study has focussed on face processing, a preference for bilateral 

symmetry is a more general property of the visual system (Bertamini et al., 2018; Keefe et al., 

2018). The bias in neural processing is also evident in perceptual judgements showing that we 

are adept at discriminating small deviations in bilateral symmetry (Corballis & Beale, 1976; 

Rhodes et al., 2005) and find bilaterally symmetrical images more aesthetically pleasing than 

non-symmetric images (Jacobsen et al., 2006; Makin et al., 2012).  Our study differs from 

these studies as bilateral symmetry is not evident in any one image itself. Rather, we have 

shown that symmetry enhances the integration over time of two images.  Nevertheless, we 

did find that sensitivity to viewpoint symmetry was evident in regions such as PH1 and PH2. 

Future studies will be necessary to determine the extent to which similar neural and 

perceptual mechanisms are involved in both processes. 

An important feature of our findings is that the spatial patterns of response to 

viewpoint generalized across participants. This observation complements other 

neuroimaging studies using univariate methods that have already shown that the locations of 

face-selective regions in the ventral visual pathway are broadly consistent across individuals 

(Davies-Thompson & Andrews, 2012; Kanwisher et al., 1997). This implies that common 

principles may well underpin the organization of these regions. In our analysis, we used 

multivariate methods to compare the spatial pattern of response in each individual with the 

spatial pattern from the rest of the group of participants (Coggan et al., 2016; Poldrack et al., 

2009; Rice et al., 2014; Watson et al., 2014; Weibert et al., 2018). The success of this approach 

implies that much of the topographic pattern of response to facial viewpoint is consistent 

across individuals. Of course, it is possible that a finer-grained within-participant analysis 

could reveal more information. However, it is unclear how this could lead to a completely 
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different pattern of response. Indeed, our results are consistent with many previous studies 

using within-participant analyses (Axelrod & Yovel, 2012; Guntupalli et al., 2017; Kietzmann 

et al., 2012). These observations are significant in that they suggest that our findings reflect 

the operation of large-scale organizing principles that are consistent across different 

individuals.  

 In conclusion, our results demonstrate that the spatial patterns of responses to facial 

viewpoint in the FFA and STS are sensitive to symmetry. A model that explicitly represented 

image symmetry was better able to predict patterns of response in these face regions than 

models based exclusively on image viewpoint or direction.  We also found that symmetrical 

viewpoints are perceived to be more similar and are more easily recognized than non-

symmetrical viewpoints in purely behavioural tasks.  Finally, we were able to establish a direct 

link between the neuroimaging and behavioural findings by showing that these behavioural 

data could predict patterns of response in face-selective regions, such as the FFA and STS.  

Together, these results support the idea that symmetrical representations are an important 

computational step in the generation of view-invariant representations of faces that are 

essential to familiar face recognition. 
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Table 1-1 Within-viewpoint and between-viewpoint correlations and associated paired t-tests across 

all face regions defined with 200 voxel masks. 

 Correlation (r)   

ROI Within-viewpoint Between-viewpoint t Pcorrected 

OFA  .16 -.04 3.50 .007 

FFA  .15 -.03 4.11 .003 

STS  .20 -.05 3.70 .006 

AMG  .07 -.02 3.32 .007 

IFG  .01 .00 0.24 ns 

 

 

Table 2-1 Regression coefficients for the viewpoint representation models across all face regions 

defined with 200 voxel masks. 

 Viewpoint Direction Symmetry 

ROI β pcorrected β pcorrected β pcorrected 

OFA  .18 .002 .25 <.001 -.05 ns 

FFA  -.02 ns -.15 .008 .28 <.001 

STS  .14 .021 .07 ns .13 .037 

AMG  -.12 ns .00 ns .08 ns 

IFG  -.02 ns -.08 ns .06 ns 

 

Table 4-1 Regression coefficients demonstrating the ability of the behavioural data from Exp 2 

(Similarity ratings) and Exp 3 (Recognition) in predicting the neural responses across all face regions 

defined with 200 voxel masks. 

 Similarity Recognition 

ROI β pcorrected β pcorrected 

OFA  .20 <.001 .12 ns 

FFA  .37 <.001 .16 .007 

STS  .34 <.001 .08 ns 

AMG  .06 ns .10 ns 

IFG  .04 ns -.01 ns 
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Table 2-2 Regression coefficients for the viewpoint representation models using multiple regression 

across all ROIs. 

 Viewpoint Direction Symmetry 

ROI β pcorrected β pcorrected β pcorrected 

V1 .36 <.001 .43 <.001 -.09 ns 

V2 .43 <.001 .43 <.001 -.07 ns 

V3 .42 <.001 .39 <.001 -.02 ns 

V3A .34 <.001 .30 <.001 -.03 ns 

V3B .15 ns .24 <.001 .06 ns 

V4 .21 .002 .29 <.001 -.01 ns 

VO1 .34 <.001 .29 <.001 .00 ns 

VO2 .38 <.001 .31 <.001 -.01 ns 

PH1 .28 <.001 -.04 ns .28 <.001 

PH2 .13 .032 -.11 ns .28 <.001 

LO1 .10 ns .09 ns .14 ns 

LO2 .10 ns .09 ns .19 ns  

MT .13 ns .07 ns .13 ns 

OFA .21 .005 .17 .018 .13 ns 

FFA .22 .003 -.16 .029 .34 <.001 

STS .27 <.001 -.05 ns .37 <.001 

AMG -.14 ns .07 ns .00 ns 

IFG .00 ns -.07 ns .00 ns 
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Table 4-2 Regression coefficients demonstrating the ability of the behavioural data from Exp 2 

(Similarity ratings) and Exp 3 (Recognition) in predicting the neural responses using multiple 

regression across all ROIs. 

 Similarity Recognition 

ROI β p β p 

V1 .15 .035 -.16 ns 

V2 .23 <.001 -.24 <.001 

V3 .29 <.001 -.23 <.001 

V3A .23 <.001 -.21 .003 

V3B .30 <.001 -.12 ns 

V4 .27 <.001 -.21 .004 

VO1 .25 <.001 -.22 .002 

VO2 .24 <.001 -.25 <.001 

PH1 .28 <.001 -.11 ns 

PH2 .19 .005 -.06 ns 

LO1 .34 <.001 -.05 ns 

LO2 .34 <.001 -.03 ns 

MT .25 <.001 -.10 ns 

OFA .31 <.001 -.05 ns 

FFA .37 <.001 -.03 ns 

STS .46 <.001 -.06 ns 

AMG -.02 ns .11 ns 

IFG .03 ns -.02 ns 
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Table 2-3  Permutation analysis for the viewpoint representation models’ ability to predict neural 

responses across ROIs. Permutation p-values have been corrected for multiple comparisons using 

the Bonferroni-Holm correction across ROIs. Critical values represent the 95th percentile of absolute 

permuted null distribution. 

 
Viewpoint Direction Symmetry 

ROI  β Permutation 

pcorrected 

Permutation 

critical value 

 β Permutation 

pcorrected 

Permutation 

critical value 

 β Permutation 

pcorrected 

Permutation 

critical value 

V1  .62 <.001 0.099  .63 <.001 0.097  -.37 <.001 0.098 

V2  .67 <.001 0.099  .66 <.001 0.098  -.39 <.001 0.099 

V3  .63 <.001 0.099  .61 <.001 0.098  -.33 <.001 0.099 

V3A  .51 <.001 0.098  .48 <.001 0.099  -.28 <.001 0.098 

V3B  .24 <.001 0.098  .30 <.001 0.098  -.08 ns 0.099 

V4  .37 <.001 0.097  .40 <.001 0.098  -.19 <.001 0.098 

VO1  .48 <.001 0.098  .46 <.001 0.099  -.24 <.001 0.096 

VO2  .54 <.001 0.098  .50 <.001 0.098  -.28 <.001 0.098 

PH1  .12 ns 0.099  .03 ns 0.099  .15 .010 0.097 

PH2  -.06 ns 0.096  -.12 ns 0.098  .24 <.001 0.098 

LO1  .08 ns 0.097  .10 ns 0.097  .06 ns 0.099 

LO2  .05 ns 0.097  .09 ns 0.097  .12 ns 0.099 

MT  .09 ns 0.099  .10 ns 0.098  .05 ns 0.099 

OFA  .24 <.001 0.099  .25 <.001 0.098  -.02 ns 0.099 

FFA  -.03 ns 0.097  -.14 ns 0.097  .27 <.001 0.100 

STS  .06 ns 0.099  -.01 ns 0.098  .25 <.001 0.100 

AMG  -.11 ns 0.098  .00 ns 0.097  .05 ns 0.098 

IFG  -.04 ns 0.101  -.07 ns 0.098  .02 ns 0.097 
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Table 4-3 Permutation analysis for simple linear regression demonstrating the ability of the 

behavioural data from Exp 2 and 3 in predicting the neural responses across all ROIs. Permutation p-

values have been corrected for multiple comparisons using the Bonferroni-Holm correction across 

ROIs. Critical values represent the 95th percentile of absolute permuted null distribution. 

 Similarity Recognition 

ROI  β Permutation 

pcorrected 

Permutation 

critical value 

 β Permutation 

pcorrected 

Permutation 

critical value 

V1  .07 ns 0.099  -.08 ns 0.098 

V2  .11 ns 0.098  -.11 ns 0.097 

V3  .17 .0030 0.099  -.08 ns 0.099 

V3A  .12 ns 0.098  -.09 ns 0.099 

V3B  .24 <.001 0.099  .04 ns 0.098 

V4  .16 .009 0.098  -.06 ns 0.097 

VO1  .13 ns 0.099  -.09 ns 0.010 

VO2  .11 ns 0.098  -.12 ns 0.099 

PH1  .22 <.001 0.099  .04 ns 0.099 

PH2  .16 .013 0.098  .05 ns 0.099 

LO1  .31 <.001 0.098  .13 ns 0.099 

LO2  .32 <.001 0.098  .15 .045 0.099 

MT  .20 .001 0.098  .03 ns 0.098 

OFA  .28 <.001 0.099  .11 ns 0.096 

FFA  .36 <.001 0.099  .17 .009 0.099 

STS  .43 <.001 0.099  .18 .007 0.098 

AMG  .04 ns 0.098  .10 ns 0.096 

IFG  .02 ns 0.099  .00 ns 0.098 
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Table 1-2 Total number of voxels for each region of interest. Voxel size = 2 x 2 x 2 mm. 

ROI Voxel Count 

V1 1604 

V2 1372 

V3 1044 

V3A 554 

V3B 263 

V4 328 

VO1 153 

VO2 253 

PH1 175 

PH2 165 

LO1 324 

LO2 125 

MT 86 

 


