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1 Introduction

Generalized linear state space (GLSS) models for discrete-response time series observa-

tions have been well studied in Bayesian literature (West et al., 1985; Fahrmeir, 1992;

Song, 2000; Czado and Song, 2008; Stefanescu et al., 2009; Abanto-Valle and Dey, 2014).

This class of models consists of two processes. In the first process, an observation or mea-

surement equation defines the conditional mean of a time series of discrete observations

as a nonlinear function (known as the inverse link function) of a sequence of latent state

variables. In the second process, a transition or state equation describes the (stationary

or non-stationary) dynamic process of the randomly time-varying state variables.

GLSS models can capture, through a time-varying parameter specification, the struc-

tural instability which may be present in time series of macro(financial) variables. A second

well-known characteristic of (macro)financial time series is conditional heteroscedasticity.

Researchers have highlighted the importance of allowing for time-varying conditional vari-

ances when analyzing discrete-response time series data (Hausman et al., 1992; Bollerslev

et al., 1992; Dueker, 1999). However, the Bayesian literature on GLSS models has assumed

homoscedastic errors so far.

In this paper, we extend the Bayesian literature on GLSS models by introducing a

new class of models, the generalized nonlinear state space (GNLSS) models. The term

“nonlinear” is justified by the presence of conditional heteroscedasticity. In the context

of our empirical application we show that by accounting for conditional heteroscedasticity

we achieve an increase in the forecast performance of GLSS models.

In particular, we develop methods of Bayesian inference in a state space mixed model

with stochastic volatility (SV) (Taylor, 1986) for ordinal-valued time series. The stochastic

volatility component accounts for some stylized facts of (macro)financial time series such as

volatility clustering, heavy tails and high-peakedness. For the proposed ordinal-response

model, the inverse link function is assumed to be a normal cumulative distribution function

(c.d.f). The term “mixed” refers to the inclusion of both constant and time-varying

coefficients in the model. The parameter transitions are captured by a random walk

process.

The proposed model contributes also to the literature on discrete-response time series
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models with conditional heteroscedasticity (Müller and Czado (2009), Hsieh and Yang

(2009),Yang and Parwada (2012), Ahmed (2015)). In the context of our empirical ap-

plication, we show that by not accounting for time-varying parameters, the forecasting

ability of discrete-choice models with conditional heteroscedasticity deteriorates.

Our model entails estimation challenges due to its latent nature, the presence of

stochastic volatilities as well as the presence of the latent time-varying parameters. There-

fore, we resort to Markov chain Monte Carlo methods and devise an efficient algorithm in

order to estimate all parameters of interest.

In terms of our empirical application, our point of departure is the famous model of

Hamilton and Jorda (2002) who examined the direction and magnitude of change of the

Federal funds rate target in the context of an ordered probit specification. We built upon

this model to account for time-varying parameters as well as conditional heteroscedasticity

and conduct a forecasting exercise. Forecast evaluation is conducted, using point and

density forecasts.

The resulting empirical model is inspired by the paper of Dueker (1999) who high-

lighted the importance of accounting for conditional heteroscedasticity in modelling dis-

crete changes in the bank prime lending rate and the paper of Huang and Lin (2006) who

examined the same issue, using an ordered probit model with time-varying parameters.

2 Econometric set up

Consider the following latent time-varying parameter regression model with stochastic

volatility

y∗t = x′

tβ + z′tαt + εt, εt ∼ N(0, exp(ht)), t = 1, ..., T, (1)

αt+1 = αt + ut, ut ∼ N(0,Σ), t = 0, 1, ..., T − 1, (2)

ht = µh + φ(ht−1 − µh) + ηt, |φ| < 1, ηt ∼ N(0, σ2
η). (3)

Equation (1) contains the constant coefficient vector, β, of dimension k× 1 and time-

varying coefficients, αt, of dimension p × 1. The design matrix xt includes an intercept.

The parameter-driven dynamics follow a random walk process which is given in equation

3



(2). This process is initialized with α0 = 0 and u0 ∼ N(0,Σ0), where Σ0 is a known

initial state error variance.

In expression (3) time-varying volatility is captured by a stochastic volatility model,

where ht is the log-volatility at time t. The dynamics of ht is governed by a stationary

(|φ| < 1) first-order autoregressive stochastic process with unconditional mean µh and

unconditional variance σ2
η/(1 − φ2); the parameter φ measures the persistence in log-

volatilities and σ2
η is the variance of shock to the log-volatility. We also assume that both

the error terms εt and ηt are independent for all t.

The variable y∗t is latent. Instead, we observe the ordinal response variable yt, where

each yt takes on any one of the J ordered values in the range 1, ..., J . The unobserved

variable y∗t and the observed variable yt are connected by

yt = j ⇔ ζj−1 < y∗t ≤ ζj , 1 ≤ j ≤ J. (4)

To ensure a properly defined cumulative distribution function for yt we assume ζj >

ζj−1, ∀j, with ζ0 = −∞ and ζJ = +∞.

The model, given by the expressions (1)-(4) is the ordinal-response state space mixed

model with stochastic volatility (OSSMM-SV model).

For identification reasons, some restrictions need to be imposed on the model. As

a location normalization, we set ζ1 = 0. As a scale normalization we fix an additional

cutpoint, setting ζJ−1 = 1 (Chen and Dey, 2000)1. We also transform the cutpoints as

follows

ζ∗j = log
(

ζj−ζj−1

1−ζj

)

, j = 2, .., J − 2, (5)

with ζ∗(2,J−2)= (ζ∗2 , ..., ζ
∗

J−2)
′. This reparameterization, due to Chen and Dey (2000) allows

for an efficient way of simulating the ζj ’s.

We assume the following independent priors over the set of parameters (β,Σ, ζ∗(2,J−2),

σ2
η, µh, φ),

β ∼ N(β0,B),Σ ∼ IW (δ,∆−1), ζ∗(2,J−2) ∼ N(µζ∗ ,Σζ∗),

1For various identification schemes of ordinal-response models see Chen and Khan (2003), Hasegawa
(2009) and Muller and Czado (2009).
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σ2
η ∼ IG(va/2, vβ/2), µh ∼ N(µ̄h, σ̄h

2), (φ+ 1)/2 ∼ Beta(φa, φβ),

where IW and IG denote the Inverse-Wishart distribution and the inverse gamma distri-

bution, respectively. The prior on (φ + 1)/2 ensures that the prior on φ has support on

(−1, 1). Furthermore, the reparametization in (5) allows us to place unrestricted priors

over ζ∗(2,J−2). Therefore, for the transformed cutpoints ζ∗(2,J−2) we assume a multivariate

normal prior.

3 Posterior analysis

3.1 MCMC algorithm

Define

y = (y1, ..., yT ), y
∗ = (y∗1, ..., y

∗

T ), α = (α1, ...,αT ), h = (h1, ..., hT ).

The likelihood function of the proposed model is given by

L = p(y|β,α, ζ(2,J−2),h) =
T
∏

t=1

J
∏

j=1

P (yt = j|β,αt, ζj−1, ζj , ht)
1(yt=j),

where

P (yt = j|β,αt, ζj−1, ζj , ht)= Φ(
ζj−x

′

tβ−z
′

tαt

exp(ht/2)
)− Φ(

ζj−1−x
′

tβ−z
′

tαt

exp(ht/2)
),

with 1(yt = j) being an indicator function that equals one if yt = j and zero otherwise.

Φ is the standard Gaussian c.d.f and ζ(2,J−2)= (ζ2, ..., ζJ−2)
′.

The MCMC scheme for the OSSMM-SV model consists of updating the parameters (β,

Σ, α, σ2
η, µh, φ, ζ

∗

(2,J−2), y
∗,h). We sample the state vector α, using the precision sampler

of Chan and Jeliazkov (2009). To update the volatility vector h we apply the approach of

Chan (2015). We update ζ∗(2,J−2) and y∗ in one block, within an independence Metropolis-

Hastings step in order to improve efficiency.

Details of the MCMC algorithm, along with a simulation study, are provided in the

Online Appendix.
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3.2 Forecast evaluation

To evaluate the performance of the proposed model we conduct a recursive out-of-sample

forecasting exercise, using predictive likelihoods. Let Θ = (y∗,α,h, σ2
η, µh, φ, ζ

∗

(2,J−2))

denote the vector of all parameters in the model and Θ(m) be an MCMC sample of Θ at

iteration m = 1...M, after the burn-in period. The conditional predictive density for the

(one-step ahead) yt+1 given Θ(m) and the data Ωt = (yt,Xt,Zt), where Xt = (x1, ...,xt)

and Zt = (z1, ..., zt) is given by

p(yt+1|Ωt,Θ
(m)) = Φ(

ζ
(m)
j

−x
′

t+1β
(m)

−z
′

t+1α
(m)
t+1

exp(h
(m)
t+1/2)

)− Φ(
ζ
(m)
j−1−x

′

t+1β
(m)

−z
′

t+1α
(m)
t+1

exp(h
(m)
t+1/2)

).

By taking the average over the MCMC samples we can integrate out the model parameters

to obtain the predictive density defined as

p(yt+1|Ωt) =
1
M

∑M
m=1 p(yt+1|Ωt,Θ

(m)).

Replacing yt+1 by the observed value yot+1, we obtain the value p(yt+1 = yot+1|Ωt) which

is called the predictive likelihood of yt+1. Next we move one period ahead and repeat

the same forecasting exercise with Ωt+1 data. The log predictive score of the model

for the evaluation period t = t0 + 1, ..., T is the sum of the log predictive likelihoods

∑T−1
t=t0

log p(yt+1 = yot+1|Ωt). Higher values indicate better (out-of-sample) forecasting

ability of the model.

The predictive likelihood p(yt+1 = yot+1|Ωt) is a natural measure to evaluate the density

forecast p(yt+1|Ωt). We can also obtain the point forecast for yt+1 by producing an

estimate for the predictive mean E(yt+1|Ωt). A usual metric for the evaluation of point

forecasts is the root mean squared forecast error (RMSFE) defined as

RMSFE =

√

∑T−1
t=t0

(yot+1 − E(yt+1|Ωt))2

T − to
.
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4 Empirical application

4.1 Data

To illustrate the proposed methodology we focus on the Federal funds rate target changes.

In particular, we exploit the data set of the seminal paper of Hamilton and Jorda (2002).

Using the Federal Open Market Committee (FOMC) meeting days, Hamilton and Jorda

(2002) estimated an ordered probit model of monetary policy with five ordinal responses in

order to capture the magnitude and direction of the target changes when they occurred.

They used weekly data covering the period from the 1st week of February 1984 to the

last week of April 2001. The explanatory variables used in their analysis included the

magnitude of the last target change as of the previous week (yt−1) and the spread between

the 6-month Treasury bill rate and the Federal funds rate (SPt−1).

We use the same explanatory variables but allow their coefficients to be time-varying,

that is, zt−1 = (yt−1, SPt−1)
′. Following also Hamilton and Jorda (2002) we characterize

the monetary policy in terms of five regimes over the period 1984-2001, ranging from -

0.50% (extreme easying) to +0.50% (extreme tightening), in steps of 0.25%; see Table 1

which displays the frequency of each monetary regime in our data set.

The OSSMM-SV model is compared against the same model but without the SV

component (OSSMM model) and an ordinal-response with SV model that assumes time-

constant coefficients (OR-SV model). The last 6 observations were used to calculate the

log predictive scores (LPS) and the RMSFE.

In Table 2 we present our estimation results along with the Geweke (1992)’s Conver-

gence Diagnostics (CD) and the Inefficiency Factor (IF). We run the sampler 150000 times

after throwing away the first 50000 iterations. We use the same hyperparameters for the

priors of the OSSMM-SV model as those used in the simulation study (Online Appendix).

4.2 Results

Based on the log predictive scores, reported in Table 2, the OSSMM-SV model, which

accounts for conditional heteroscedasticity and time-varying coefficients provides better

density forecasts than the rest of the models. By assuming time-constant conditional

variance in the OSSMM-SV model, the forecast performance of the resulting model, the
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OSSMM model, deteriorates. Similarly, by assuming time-constant coefficients in the

OSSMM-SV model, the resulting model, the OR-SV model performs quite badly, failing

to produce good density forecasts. The produced values of the RMSFE verify the above

findings.

All the parameters across all models of Table 2 are statistically significant. Figures 1

displays the path of the estimated posterior means of the time-varying parameters along

with their two standard deviation bands, obtained from the OSSMM-SV model. As can

be seen from Figure 1 the effect of the previous target change (yt−1) on the current’s week

target change is positive throughout the time period in question. So, it is more possible to

have an increase of the target in this week than a decrease, if there was a target increase

previously. Furthermore, the effect of the spread between the 6-month Treasury bill rate

and the Federal funds rate (SPt−1) is positive most of the time while it can be larger than

the effect of yt−1; see Figure 1.

Similar results were obtained from the OSSMM model (Figure 2).

5 Conclusions

We set up and estimated a discrete-response state space model with stochastic volatility.

Bayesian methods were used to estimate the model parameters. We found that this model

had better forecast performance than alternative specifications.
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Figure 1: Empirical analysis: Path of the posterior means of
the time-varying parameters obtained from the OSSMM-SV
model
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Figure 2: Empirical analysis: Path of the posterior means
of the time-varying parameters obtained from the OSSMM
model.
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Table 1: Regimes of monetary policy

Dependent variable yt target change frequency
1 -0.50 (extreme easing) 16
2 -0.20 (easing) 43
3 0 (no change) 14
4 0.20 (tightening) 34
5 0.50 (extreme tightening) 9

Table 2: Empirical results

Model OSSMM-SV OSSMM OR-SV

Mean CD IF Mean CD IF Mean CD IF
Const 0.5550* 0.385 13.43 0.5439* 0.900 8.67 0.5622* 0.247 3.76

(0.0587) (0.0544) (0.0698)
yt−1 0.7586* 0.398 2.30

(0.1153)
SPt−1 0.2017* 0.979 2.22

(0.0502)
Σyt−1 0.0200* 0.685 35.93 0.0206* 0.657 34.03

(0.0136) (0.0139)
ΣSPt−1 0.0199* 0.477 36.15 0.0227* 0.233 39.43

(0.0118) (0.0134)
φ 0.9108* 0.037 6.72 0.9082* 0.231 6.52

(0.0597) (0.0603)
µh -2.7447* 0.618 3.74 -2.3186* 0.643 2.75

(0.5760) (0.5477)
ση 0.2007* 0.412 30.22 0.2044* 0.480 30.64

(0.0515) (0.0535)
σ 0.2483* 0.250 6.80

(0.0266)
ζ2 0.4358* 0.842 5.61 0.4340* 0.704 4.38 0.4156* 0.035 4.30

(0.0477) (0.0457) (0.0540)
ζ3 0.5749* 0.803 6.05 0.5709* 0.696 4.83 0.5516* 0.030 4.24

(0.0492) (0.0469) (0.0561)
LPS -4.8703 -4.8893 -8.9303

RMSFE 0.5596 0.5618 2.3113
*Significant based on the 95% highest posterior density interval. Standard errors in parentheses.
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Online Appendix for: Discrete-response state space models

with conditional heteroscedasticity: An application to

forecasting the federal funds rate target

Stefanos Dimitrakopoulos∗1 and Dipak K. Dey2

1Department of Accounting, Finance and Economics, Oxford Brookes University, UK

2Department of Statistics, University of Connecticut, USA

1 A simulation experiment

In order to assess the performance of the proposed MCMC estimation procedure we gen-

erated T=1000 observations from the OSSMM-SV model. We assumed J = 7 ordered

choices, k = 3 constant coefficients (including the intercept), p = 2 time-varying coeffi-

cients and the following set of true parameter values

β = (0, 1,−0.8)′,Σ = diag(0.1, 0.03),α1 = (2,−1)′,φ = 0.8, µh = 0.9,

ζ2 = 0.2, ζ3 = 0.4, ζ4 = 0.6, ζ5 = 0.8, σ2
η = 0.01,

where diag(·) is a diagonal matrix. The elements (x1t, x2t) of xt = (1, x1t, x2t)
′ as well

as zt = (z1t, z2t)
′ for t = 1, ..., T are generated respectively as xjt ∼ U(0, 1) − 0.5 and

zit ∼ 2 ∗ U(0, 1)− 0.5, j, i = 1, 2, where U is the uniform distribution.

Furthermore, we assume the following proper (but sufficiently diffuse) prior distribu-

tions

∗Correspondence to: Stefanos Dimitrakopoulos, Oxford Brookes University, Department of Account-
ing, Finance and Economics, Oxford, OX33 1HX, UK, Tel: +44(0) 1865 485478, E-mail: sdimitrakopou-
los@brookes.ac.uk.
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β ∼ N(0, 20× I3×3), α1 ∼ N(0, 20× I2×2), Σ ∼ IW (1, 20× I2×2),

(φ+ 1)/2 ∼ Beta(80, 14), σ2
η ∼ IG(50/2, 0.5/2), µh ∼ N(0, 100),

ζ∗(2,5) ∼ N(0, 20× I4×4),

where Ii×i is a i× i identity matrix.

We run our sampler for 60000 iterations with a burn-in of 30000 iterations. Table 1

reports the estimates of the posterior means and standard deviations for all the parameters.

Furthermore, we monitor convergence and the efficiency of the posterior simulators, using

the CD statistics of Geweke (1992) and the inefficiency factor (IF)- see, for example, Chib

(2001)-, respectively.

The sampler for the OSSMM-SV model provides satisfactory estimation results for all

the parameters. It is worth noting that the sample autocorrelations for the cutpoints (not

shown), decay very quickly within the first few iterations. This is also verified by the small

values of the inefficiency factors for the cutpoints (see Table 1). Based on CD statistics,

the null hypothesis that convergence to the posterior distribution has been achieved can

not be rejected for the estimated parameters at the 5% significance level. The inefficiency

factors are quite low for all the parameters, indicating an efficient sampling, except for

the parameters Σ11, Σ22, µh and ση. However, due to the M=60000 iterations (after the

burn-in period), we obtain sufficient uncorrelated samples for posterior inference.

The paths for the posterior means of α1t and α2t, obtained from the OSSMM-SV model

are presented in Figure 1. As can be seen from these figure, the posterior means follow

closely the true paths of α1t and α2t and almost all the true values are contained within

the two standard deviation bands.
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Table 1: Simulation results for the OSSMM-SV model

True values Mean CD IF
β0 = 0(Const) 0.0426 0.695 30.98

(0.016)
β1 = 1 1.2135 0.241 81.72

(0.2125)
β2 = −0.8 -0.8133 0.333 71.12

(0.1592)
Σ11 = 0.1 0.1004 0.171 172.68

(0.0483)
Σ22 = 0.03 0.0477 0.723 155.99

(0.0365)
φ = 0.8 0.8573 0.499 37.76

(0.0610)
µh = 0.9 0.8626 0.277 164.65

(0.2204)
ση = 0.1 0.1732 0.034 145.85

(0.0355)
ζ2 = 0.2 0.1343 0.966 2.05

(0.0357)
ζ3 = 0.4 0.3719 0.148 2.14

(0.0510)
ζ4 = 0.6 0.6214 0.080 2.22

(0.0532)
ζ5 = 0.8 0.7956 0.017 2.26

(0.0486)

Standard errors in parentheses.
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Figure 1: Simulated data: Path of the estimated α1t and α2t for the
OSSMM-SV model; T=1000. True path (black), posterior mean (blue),
two standard deviation bands (red).
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2 MCMC algorithm for the OSSMM-SV model

Posterior sampling of β

Update β by sampling from

β|B,β0,α,y∗,h ∼ N(D0d0, D0),

where

D0 =

(
B−1 +

T∑
t=1

xtx
′

t

exp(ht)

)−1

, d0 = B−1β0 +
T∑
t=1

xt(y∗t −z
′

tαt)
exp(ht)

.

Posterior sampling of Σ

Update Σ by sampling from

Σ|δ,∆,α ∼IW

(
δ + T − 1,∆−1 +

T−1∑
t=1

(αt+1 −αt)(αt+1 −αt)
′

)
.

Posterior sampling of α

Stacking y∗t = x′
tβ + z′tαt + εt over t = 1, ..., T, we have

y∗ = Xβ + Zα+ ε, εt ∼ N(0,Sy∗) ⇔

y∗ −Xβ = Zα+ ε,⇔

ỹ∗ = Zα+ ε,

where ỹ∗ = y∗ −Xβ, ε = (ε1, ..., εT )
′, X = (x′

1, ...,x
′
T )

′,

Z =




z′1 0 0 · · · 0

0 z′2 0 · · · 0

0 0 z′3 · · · 0

...
...

...
. . .

...

0 0 0 · · · z′T




,Sy∗ =




exp(h1) 0 0 · · · 0

0 exp(h2) 0 · · · 0

0 0 exp(h3) · · · 0

...
...

...
. . .

...

0 0 0 · · · exp(hT )




.

The state equation αt+1 = αt + ut, can be rewritten in a matrix notation as follows,
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Hα = δ̃α + u,u ∼ N(0,Su),

where δ̃α = (α0,0, ...,0)
′, u = (u1, ...,uT )

′, Su = diag(Σ0, ...,Σ) and H is the first

difference matrix

H =




Ip 0 0 · · · 0

Ip Ip 0 · · · 0

0 Ip Ip · · · 0

...
...

...
. . .

...

0 0 · · · Ip Ip




.

Hence, the prior distribution of α is Gaussian, that is, α|Σ ∼ N(δα, (H
′S−1

u H)−1),

where δα = H−1δ̃α. The conditional posterior distribution of α is also Gaussian,

α|Σ,y∗ ∼ N(α̂,D−1
α ),

where Dα = H ′S−1
u H + Z′S−1

y∗ Z (A.1)

and

α̂ = D−1
α (H ′S−1

u Hδα + Z′S−1
y∗ ỹ

∗). (A.2)

Typically, Dα is a high-dimensional covariance matrix and sampling from the posterior

distribution of α can be time-consuming. Yet, since the precision matrix Dα is a band

matrix, we can efficiently sample from N(α̂,D−1
α ), using the precision sampler of Chan

and Jeliazkov (2009) that exploits block-banded and sparse matrix algorithms, instead of

Kalman-filter based methods

In particular, compute Dα, using (A.1) and obtain its Cholesky factor C, such that

C ′C = Dα. Then, we proceed to the smoothing step, where we solve

C ′Cα̂ = H ′S−1
u Hδα + Z′S−1

y∗ ỹ
∗,

by forward and backward substitution to obtain α̂. The final step is the simulation step,

where we sample z ∼ N(0, I), solve C ′x = z for x by backward substitution and return
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α = α̂+ x, so that α ∼ N(α̂,D−1
α ) .

Posterior sampling of h

Apply the sampler of Chan (2015) to the following model

y⋆t = exp(ht/2)ǫt, ǫt ∼ N(0, 1), t = 1, ..., T ,

ht = µh + φ(ht−1 − µh) + ηt, |φ| < 1, ηt ∼ N(0, σ2
η),

with cov(ǫt, ηt) = 0, y⋆t = y∗t − x′
tβ − z′tαt and initial condition h1 ∼ N(µh, σ

2
η/(1− φ2)).

To be more specific, the posterior distribution of the volatility vector h is given by

p(h|φ, σ2
η, µh,β,y

⋆,α) ∝ p(y⋆|β,h,α)p(h|φ, σ2
η, µh), (A.3)

where y⋆
t = (y⋆1, ..., y

⋆
T ). In order to sample from the posterior distribution p(h|φ, σ2

η, µh,β,y
⋆,α),

we approximate it by a Gaussian distribution, which is then used as a proposal den-

sity within the Acceptance-Rejection Metropolis-Hastings (ARMH) algorithm (see, for

example, Tierney (1994) and Chib and Greenberg (1995)). Candidate draws from the

Gaussian approximation are generated using the precision sampler of Chan and Jeli-

azkov (2009), instead of Kalman-filter based methods. In particular, it can be shown

that the density p(h|φ, σ2
η, µh) in expression (A.3) is Gaussian; that is, h|φ, σ2

η, µh ∼

N(H−1ĥ, (H ′Σ−1H)−1), where ĥ = (µh, (1 − φ)µh, ..., (1 − φ)µh)
′, Σ = diag(σ2

η/(1 −

φ2), σ2
η, ..., σ

2
η) and H is a lower triangular sparse matrix (with determinant 1-hence, it is

invertible)

H =




1 0 0 · · · 0

−φ 1 0 · · · 0

0 −φ 1 · · · 0

...
...

...
. . .

...

0 0 · · · −φ 1




.

The logarithm of p(h|φ, σ2
η, µh) can be written as
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log p(h|φ, σ2
η, µh) = const−1

2(h
′H ′Σ−1Hh−2h′H ′Σ−1HH−1ĥ). (A.4)

The density p(y⋆|β,h,α) in expression (A.3) can also be approximated by a normal

density. By taking the second order Taylor expansion of the logarithm of p(y⋆|β,h,α)

around h̃, which is the mode of the posterior log p(h|φ, σ2
η, µh,β,y

⋆,α) (see below), we

have,

log p(y⋆|β,h,α) ≈ log p(y⋆|β,α, h̃) + (h− h̃)′f − 1
2(h− h̃)′G(h− h̃),

= const− 1
2(h

′Gh−2h′(f+Gh̃)), (A.5)

where f = (f1, ..., fT )
′ is the gradient vector with ft =

d log p(y⋆t |β,αt,ht)
dht

= −1
2+

1
2y

2⋆
t exp(−ht)

evaluated at h̃t, t = 1, ..., T and G = diag(G1, ..., GT ) is the diagonal negative Hessian

of the log p(y⋆|β,h,α), with Gt = −d2 log p(y⋆t |β,αt,ht)

dh2
t

= 1
2y

2⋆
t exp(−ht) evaluated at h̃t,

t = 1, ..., T .

From (A.4) and (A.5) the logarithm of the posterior distribution of the volatility vector

becomes

log p(h|φ, σ2
η, µh,β,y

⋆,α) ≈ const− 1
2(h

′Khh−2h′kh) = log g(h), (A.6)

where Kh = H ′Σ−1H+G, kh = f+Gh̃+H ′Σ−1HH−1ĥ and g(h) ∝ N(m̂,Kh
−1), with

m̂ = Kh
−1kh. In other words, the posterior p(h|φ, σ2

η, µh,β,y
⋆,α) can be approximated

by a normal density with mean m̂ and precision matrix Kh. This Gaussian approximation

is then used as a proposal density in the ARMH step, where candidate values are obtained

using the precision sampler of Chan and Jeliazkov (2009), instead of Kalman-filter based

methods.

Typically, N(m̂,Kh
−1) is a high-dimensional density and sampling from it can be

time-consuming. Here, we use the precision-based sampler of Chan and Jeliazkov (2009),

which exploits the fact that the precision matrix Kh is a band matrix since H ′Σ−1H

and G are also band matrices. In particular, Kh is a tridiagonal matrix as its non-zero

elements appearing only on the main diagonal and the diagonals above and below the main

one. Consequently, we can compute fast and efficiently the mean m̂ without calculating

the inverse Kh
−1, by solving the linear system Khm̂ = kh. Furthermore, a draw m̃ from
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N(m̂,Kh
−1) can be obtained, using the precision sampler of Chan and Jeliazkov (2009):

calculate the Cholesky factor C of Kh such that C ′C = Kh, sample T independent

standard normal draws, z ∼ N(0, I), solve C ′x = z for x by backward substitution and

return m̃ = m̂+ x.

The point h̃ around of which the second order Taylor expansion is taken in ex-

pression (A.5) is desirable to be the mode of the posterior log p(h|φ, σ2
η, µh,β,y

⋆,α)

for an efficient sampling. The negative Hessian of this posterior distribution evaluated

at h = h̃ is Kh and the gradient evaluated at h = h̃ is -Khh̃ +kh. To find the

mode, we apply the Newton-Raphson method as follows: 1) Initialize h = h̃(1) for

some constant vector h̃(1). 2) Set h̃ = h̃(l) for l = 1, 2, ..., and compute Kh, kh and

h(l+1) = h(l) +Kh
−1(−Khh

(l) + kh) = Kh
−1kh. This process is repeated until conver-

gence is achieved.

Posterior sampling of φ

We sample from p(φ|σ2
η,h, φa, φβ , µh) using an independence Metropolis-Hastings algo-

rithm. At the ith iteration we generate a proposed value φ∗(p) from the truncated normal

in the interval [−1, 1],

φ∗(p)|h, σ2
η, µh ∼ TN[−1,1]

(∑T
t=2(ht−µh)(ht−1−µh)
∑T

t=3(ht−1−µh)2
,

σ2
η

∑T
t=3(ht−1−µh)2

)
.

Given the accepted value φ(i−1) from the previous (i − 1)th iteration, we accept φ∗(p)

as a valid current value (φ(i) = φ∗(p)) with probability

ap(φ
(i−1), φ∗(p)) = min

(
p(φ∗(p))

√
1−φ2∗(p)

p(φ(i−1))
√

1−φ2(i−1)
, 1

)
,

where p(φ) ∝ (φ+1
2 )φa−1(1−φ

2 )φβ−1 is the prior of φ.

Posterior sampling of µh

We sample µh from

µh|φ, σ2
η,h, µ̄h, σ̄h

2 ∼ N(D1d1, D1),
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where

D1 =
(
σ2
η+σ̄h

2[(T−1)(1−φ)2+1−φ2]

σ̄h
2σ2

η

)−1

, d1 = µ̄h

σ̄h
2 + h1(1−φ2)

σ2
η

+
(1−φ)

∑T
t=2(ht−φht−1)
σ2
η

.

Posterior sampling of ζ∗(2,J−2) and y∗ in one block

To improve the mixing of the proposed MCMC algorithm, we first sample the transformed

cutpoints ζ∗(2,J−2), marginalized over the latent variables y∗, using a Metropolis-Hastings

algorithm. We, then, calculate the cutpoints ζj , from ζj =
ζj−1+exp ζ∗j
1+exp ζ∗j

, j = 2, .., J − 2.

Next, given the updated ζj ’s, we sample the latent dependent variable y∗t , t = 1, ..., T

from

y∗t |yt = j,β,αt, ζj−1, ζj , ht ∼TN(ζj−1,ζj ](x
′
tβ + z′tαt, exp(ht)),

where TN is the truncated normal distribution with support defined by the threshold

parameters ζj−1 and ζj .

The proposed Metropolis-Hastings algorithm for sampling the ζ∗(2,J−2) works as follows.

The conditional distribution of p(ζ∗(2,J−2)|y,β,α,h) is defined as

p(ζ∗(2,J−2)|y,β,α,h) = p(ζ∗(2,J−2))p(ζ(2,J−2)|y,β,α,h)×
J−2∏

j=2

(1−ζj−1) exp ζ∗j
(1+exp ζ∗j )2

,

where the last term of the above expression is the Jacobian of the transformation from

ζ(2,J−2) to ζ∗(2,J−2) and the second term is the full conditional distribution of the cutpoints

ζ(2,J−2) given by

p(ζ(2,J−2)|y,β,α,h) ∝
∏

t:yt=2

P (ζ1 < y∗t ≤ ζ2)×... ...×
∏

t:yt=J−1

P (ζJ−2 < y∗t ≤ ζJ−1).

The multivariate Student-t distribution

MV t(ζ∗(2,J−2)| ̂ζ∗(2,J−2), cΣ̂ζ∗

(2,J−2)
, v),

is used as a proposal distribution, where ̂ζ∗(2,J−2) = arg max p(ζ∗(2,J−2)|y,β,α,h) is

defined to be the mode of the right hand side of p(ζ∗(2,J−2)|•) and the term

Σ̂ζ∗

(2,J−2)
=

[(
− ϑ2 log p(ζ∗

(2,J−2)|•)

ϑζ∗

(2,J−2)ϑζ
∗
′

(2,J−2)

)

ζ∗

(2,J−2)=
̂ζ∗

(2,J−2)

]−1

,
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is the inverse of the negative Hessian matrix of log p(ζ∗(2,J−2)|•), scaled by some arbi-

trary number c > 0. The term v is the degrees of freedom and is specified arbitrarily at

the onset of the programming along with the scalar c and the other priors.

Let ζ
∗(l−1)
(2,J−2) be the accepted value of ζ∗(2,J−2) at the previous (l−1-th) iteration. At the

l-th iteration generate a value ζ
∗(p)
(2,J−2) from MV t(ζ

∗(p)
(2,J−2)|•). The transition probability

from ζ
∗(l−1)
(2,J−2) to ζ

∗(p)
(2,J−2) is

ap(ζ
∗(l−1)
(2,J−2), ζ

∗(p)
(2,J−2)) = min(

p(ζ
∗(p)
(2,J−2)

|y,β,α,h) MV t(ζ
∗(l−1)
(2,J−2)

|•)

p(ζ
∗(l−1)
(2,J−2)

|y,β,α,h) MV t(ζ
∗(p)
(2,J−2)

|•)
, 1).
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