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Abstract

We propose a semiparametric extension of the time-varying parameter re-

gression model with asymmetric stochastic volatility. For parameter estima-

tion we use Bayesian methods. We illustrate our methods with an application

to US inflation.
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1 Introduction

Time varying-parameter regression models with stochastic volatility (TVP-SV mo-

dels) have been successfully applied to inflation modeling (Stock and Watson, 2007;

Clark and Ravazzolo, 2015; Chan, 2017).

In this paper, we focus on the relationship between inflation and volatility that

has been examined by many researchers. (Friedman, 1977) points out the potential

positive association between inflation and volatility. There are also many empirical

evidences, including (Baillie et al., 1996), (Grier and Perry, 1998), and (Fountas,

2001). (Chan, 2017) developed a stochastic volatility in mean model with time-

varying parameters and applied it to estimate inflation. (Chan, 2017) found positive

relationship between inflation and volatility before early 1980s, and zero or even

negative after early 1980s.

The contribution of this paper is threefold. First, we capture the correlation

between inflation and volatility by modeling jointly the distribution of inflation

and log-volatility within a TVP-SV model. Furthermore, the joint distribution

of inflation and volatilities is modelled semiparametrically. The intuition behind

this semiparametric extension is that macroeconomic shocks that have the greatest

effect on the economy are often not symmetric, suggesting that innovations have a

distribution that is skewed to the left or to the right.

(Dimitrakopoulos, 2017) extended semiparametrically the TVP-SV model by

using mixtures of Dirichlet processes (Ferguson, 1973) for the observations’ errors

and the errors of the parameter-driven dynamics. (Dimitrakopoulos, 2017)’s mix-

ture approach over both the mixture’s means and variances of the observation dis-

tribution can capture this skewness. An alternative flexible approach to capturing

skewness is to jointly model nonparametrically the bivariate distribution of the ob-

servations and the log-volatilities. This approach was proposed by (Jensen and Ma-

heu, 2014) who used a bivariate Dirichlet process mixture model for the innovations

of a SV model with leverage to examine the behaviour of daily returns.
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Following (Jensen and Maheu, 2014), we extend the model of (Dimitrakopoulos,

2017) by accounting for a semiparametric asymmetric stochastic volatility that cap-

tures in a flexible way the joint distribution of the empirical skewness of inflation.

The resulting model specification is novel and constitutes our second contribution.

We use Bayesian methods and develop an efficient Markov chain Monte Carlo

algorithm for estimating the parameters of the model. This is our third contribution.

2 Econometric set up

2.1 The TVP-SV model with correlated errors

Consider the following time-varying parameter regression model with asymmetric

stochastic volatility

yt = µ+ x′
tβ + z′tαt + exp(ht/2)εt, t = 1, ..., T, (1)

αt+1 = αt + ut, ut ∼ N(0,Σ), t = 0, 1, ..., T − 1, (2)

ht+1 = µh + φ(ht − µh) + ηt, |φ| < 1, (3)

where the errors εt and ηt are independently and identically distributed following

the bivariate normal distribution,







εt

ηt






∼ N













0

0






,







1 ρσh

ρσh σ2
h












. (4)

In equation (1), µ is the intercept, β is the constant coefficient vector of dimen-

sion k × 1 and αt are the time-varying coefficients of dimension p× 1. No constant

is included in the design matrices xt and zt.
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The parameter-driven dynamics in equation (2) follow a random walk process

which is initialized with α0 = 0 and u0 ∼ N(0,Σ0), for known initial covariance

matrix Σ0.

In equation (3), the term ht is the log-volatility at time t and φ is a persistence

parameter that satisfies the stationarity restriction (|φ| < 1). The AR(1) stochastic

volatility process is initialized with h1 ∼ N(µh, σ
2
h/(1− φ2)).

The model given by expressions (1)-(4) is the TVP-SV model with correlated

errors1 (TVP-SVC model). Furthermore, when the correlation parameter ρ equals

zero, the TVP-SVC model reduces to the standard TVP-SV model.

We also assume the following priors

β ∼ N(β0,B), σ2
h ∼ IG(va/2, vβ/2), Σ ∼ IW (δ,∆−1),

µh ∼ N(µ̄h, σ̄h
2), µ ∼ N(µ̄, σ̄2), ρ ∼ N(ρ0, σ

2
ρ)I|ρ|<1, φ ∼ N(φ0, σ

2
φ)I|φ|<1,

where IW and IG denote the Inverse-Wishart distribution and the inverse gamma

distribution, respectively. I|ρ|<1 is an indicator function that equals one for the sta-

tionary region and zero otherwise and N(ρ0, σ
2
ρ)I|ρ|<1 is a normal density truncated

in the stationary region. Similar analysis holds for the prior of φ.

2.2 The semiparametric TVP-SV model with correlated er-

rors

We relax the parametric assumption for the joint distribution of εt and ηt by letting

this distribution be unspecified. To this end, we use the Dirichlet process prior which

is a powerful tool for modelling unknown distributions. For a detailed description

of this prior see (Navarro et al., 2006).

1In finance, the negative correlation between εt and ηt is called leverage effect: as asset prices

decline, companies become mechanically more leveraged since the relative value of their debt rises

relative to that of their equity. As a result, it is natural to expect that their stock becomes riskier,

hence more volatile. It is difficult to imagine that a similar economic argument exists for inflation.

For this reason, we avoid using the term “leverage” throughout the paper.
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The unspecified functional form of (εt, ηt)
′ is given by the following Dirichlet

process mixture (DPM) model







εt

ηt






|Λt ∼ N (0,Λt) ,

Λt
i.i.d
∼ G, G|a,G0 ∼ DP (a,G0), (5)

G0 = IW (s0, S0), a ∼ G(c, d),

where Λt =







σ2
y,t σyh,t

σyh,t σ2
h,t






. µh in expresson (3) is set to zero for identification

reasons.

Model (5) was first proposed by (Jensen and Maheu, 2014). According to this

model, the conditional distribution of the error vector (εt, ηt)
′ given Λt is a bivariate

Gaussian with mean zero and random variance-covariance matrix Λt. Λt is generated

from an unknown distribution G on which a Dirichlet process prior is imposed.

For the prior base distribution G0 we assume an Inverse-Wishart distribution and

for the positive scalar (precision parameter) a we use a gamma prior distribution.

Depending on the value of a, the DPM model in expression (5) can mimic a variety

of distributions (bivariate Student-t, bivariate normal, finite mixture of bivariate

normals).

Furthermore, for the distribution of ut we assume the following DPM structure,

ut|ωt,Σ ∼ N(0, ω−1
t Σ), t = 1, ..., T − 1,

ωt
i.i.d
∼ Gω, Gω|aω, G0ω ∼ DP (aω, G0ω), (6)

G0ω = G( eω
2
, eω

2
), aω ∼ G(cω, dω).

Model (6) was considered by (Dimitrakopoulos, 2017). The positive-valued scale
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mixing variable ωt is generated from a random distribution Gω. G0ω is the prior

baseline gamma distribution and aω is the dispersion parameter. The unconditional

distribution of the error ut follows an infinite mixture of multivariate Gaussians,

where this mixture arises from the convolution of Gω (the mixing distribution) with a

multivariate Gaussian kernel. Due to the clustering property of the Dirichlet process,

this infinite mixture model reduces to a finite mixture of multivariate Gaussians with

a random number of components. The resulting mixture model includes as special

cases the multivariate Student-t and the multivariate Normal.

The TVP-SVC model combined with the DPM models of (5) and (6) produces

the semiparametric TVP-SVC model (S-TVP-SVC model).

3 Posterior analysis

3.1 MCMC algorithm for the S-TVP-SVC model

Our MCMC algorithm updates the parameters (β, h, φ, µ, α, Σ), where h =

(h1, ..., hT+1)
′ and α = (α1, ...,αT ) as well as the DPM parameters. In the Online

Appendix we provide details of the MCMC algorithm for the S-TVP-SVC model.

3.2 Density forecasts

We evaluate the performance of the proposed semiparametric model against that of

competing models by conducting a recursive out-of-sample forecasting exercise. In

particular, the comparison of the models is done using density forecasts. Further

details are given in the Online Appendix.
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4 Empirical application

4.1 Modeling strategies

Our dataset consists of US quarterly consumer price index (CPI) inflation, covering

the period 1948Q1-2013Q2. The empirical model for capturing inflation dynamics

is an autoregressive TVP-SVC (AR-TVP-SVC) model,

yt = α1,t + α2,tyt−1 + exp(ht/2)εt, t = 1, ..., T,

αt+1 = αt + ut, ut ∼ N(0,Σ),

ht+1 = µh + φ(ht − µh) + ηt, |φ| < 1,







εt

ηt






∼ N













0

0






,







1 ρσh

ρσh σ2
h












,

where yt = 400 ∗ log(lt/lt−1) denotes the CPI inflation and lt is the quarterly CPI

figure. We plot yt in Figure 1.

For comparison purposes, we considered three alternative model specifications:

The first model is the the semiparametric version of the AR-TVP-SVC (AR-S-TVP-

SVC) model, where the disturbances (εt, ηt)
′ and ut follow the DPM structures of (5)

and (6), respectively. The second model is the the AR-S-TVP-SV model, proposed

by (Dimitrakopoulos, 2017) and the third one is the AR-TVP-SVC model, where

the errors (εt, ηt)
′ and ut are Student-t distributed. This model is referred to as the

AR-St-TVP-SVC model2.

We threw away the first 100000 draws and kept the next 150000 MCMC draws.

The hyperparameters for the priors of the AR-S-TVP-SVC model are the same as

those used in the simulation experiment of the Online Appendix.

2The St-TVP-SVC model is described in the Online Appendix.
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4.2 Empirical results

Table 1 presents the estimation results. The posterior estimate of ρ is positive

and significant in the parametric models (AR-TVP-SVC and AR-St-TVP-SVC),

with the correlation being stronger in the AR-TVP-SVC model than in the AR-

St-TVP-SVC model. The time plot of the expected values of p(ρt|y1, ..., yT ), where

ρt = σyh,t/(σy,tσh,t), t = 1, ..., 261 obtained from the AR-S-TVP-SVC also shows

a positive correlation between inflation and volatility (Figure 2). This correlation

attains its largest values during the period of Great Moderation and the Great

Recession. The same holds for the dynamic evolution of the expected values of

p(σ2
y,t|y1, ..., yT ) and p(σ2

h,t|y1, ..., yT ), t = 1, ..., 261 (Figures 3 and 4, respectively).

In Table 1, the estimated ρ was found to be large, positive and statistically

significant; ρ=0.5434 in the AR-St-TVP-SVC model and ρ=0.5530 in the AR-TVP-

SVC model. Also, from Figure 2 (AR-S-TVP-SVC model) the expected values of

ρt are also positive and around 0.4. The positive relationship between inflation and

inflation uncertainty has also been supported by previous studies; see for example

(Cukierman and Meltzer, 1986) and (Berument et al., 2009).

In addition, Figure 2 suggests that for the US economy the values of ρt do not

fluctuate substantially around 0.4, and therefore the relationship between inflation

and inflation volatility is not time-varying. This empirical finding holds throughout

the period in question and it is in contrast to the empirical findings of (Chan,

2017) for the US economy. (Chan, 2017) proposed a stochastic volatility in mean

model with time-varying parameters and found that there is a positive and time-

varying relationship between inflation and inflation uncertainty before 1980s, but

no relationship afterward.

Table 1 (last row) reports the density forecast results of the four models. For

the forecasting exercise the evaluation period is from 2013Q3 to 2014Q2. The AR-

S-TVP-SVC model provides better density forecasts than the rest of the models as
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this model has the highest log-predictive score3 (LPS). The forecast performance of

the AR-TVP-SVC model is lower than that of the AR-St-TVP-SVC model. The

AR-S-TVP-SV model produces the worst density forecasts. The forecasting results

clearly show that by modeling jointly the distribution of inflation and log-volatility

we substantially improve the forecast performance of the AR-TVP-SV models. Furt-

hermore, these results verify the forecast gains from modeling nonparametrically the

error distributions of the AR-TVP-SVC model.

In Figure 5 the posterior estimates of the coefficients αt for the AR-S-TVP-SVC

model exhibit time-variation the path of which is similar to that obtained from the

rest of the models of Table 3 (Figures 6-8).

Additional empirical results are presented in the Online Appendix.

5 Conclusions

Using MCMC methods, we estimated a semiparametric time-varying parameter re-

gression model with asymmetric stochastic volatility. The proposed model had bet-

ter fit to US inflation data than competing models. We also found positive correla-

tion between inflation and log-volatility, volatility fluctuation and time-variation in

coefficients.

3The log-predictive score is explained in the Online Appendix.
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Table 1: Empirical results

Model AR-S-TVP-SV AR-S-TVP-SVC AR-TVP-SVC AR-St-TVP-SVC

Mean CD IF Mean CD IF Mean CD IF Mean CD IF

Σ11 0.2845* 0.617 63.15 0.0923* -0.4571 94.25 0.0637* -1.5574 93.178 0.0656* 0.7755 77.47
(0.1551) (0.0683) (0.0415) (0.0423)

Σ22 0.0665* 0.286 53.95 0.0126* 3.559 27.052 0.0109* 0.9139 27.058 0.0110* -1.245 25.751
(0.0229) (0.0047) (0.0036) (0.0035)

φ 0.9681* 0.070 52.73 0.9751* 0.4035 98.86 0.9525* -0.0949 67.643 0.9567* 1.5542 51.552
(0.0231) (0.0266) (0.0290) (0.0390)

µh 0.6101 -0.2322 2.3447 0.6098 1.3335 14.976
(0.7760) (1.0238)

σ2
h 0.046* 0.8413 83.131 0.1278* -0.0095 83.43 0.1100* -1.1943 84.01

(0.0349) (0.0569) (0.0566)
ρ 0.5530* -0.0101 119.26 0.5434* 0.1185 105.45

(0.1916) (0.1895)
M 4.9697* 0.323 75.11 2.3632* 0.7541 95.22

(2.4398) (1.196)
Mω 4.0795* 0.475 21.94 2.3704* 0.8025 117.17

(2.1991) (1.396)
v1 43.455* -0.5186 106.03

(39.139)
v2 72.909* 0.5064 136.69

(34.097)

LPS 0.0798 0.6501 0.60283 0.6167

*Significant based on the 95% highest posterior density interval. LPS stands for log-predictive score; see Online Appendix.
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Figure 1: The inflation path from
1948Q1 to 2013Q2
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Figure 2: Time plot of the expected
value of p(ρt|y1, ..., yT ), t = 1, ..., 261,
obtained from the AR-S-TVP-SVCmo-
del.
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Figure 3: Time plot of the expected
value of p(σ2

y,t|y1, ..., yT ), t = 1, ..., 261,
obtained from the AR-S-TVP-SVCmo-
del.
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Figure 4: Time plot of the expected
value of p(σ2

h,t|y1, ..., yT ), t = 1, ..., 261,
obtained from the AR-S-TVP-SVCmo-
del.
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Figure 5: Evolution of αt, t =
1, ..., 261, obtained from the AR-
S-TVP-SVC model; posterior mean
(blue), two standard deviation bands
(red).
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Figure 6: Evolution of αt, t =
1, ..., 261, obtained from the AR-S-
TVP-SV model; posterior mean (blue),
two standard deviation bands (red).
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Figure 7: Evolution of αt, t =
1, ..., 261, obtained from the AR-
St-TVP-SVC model; posterior mean
(blue), two standard deviation bands
(red).
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Figure 8: Evolution of αt, t =
1, ..., 261, obtained from the AR-TVP-
SVC model; posterior mean (blue), two
standard deviation bands (red).
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Online Appendix for: The semiparametric asymmetric

stochastic volatility model with time-varying parameters: The

case of US inflation

Stefanos Dimitrakopoulos∗1

1Department of Accounting, Finance and Economics, Oxford Brookes University, UK

1 MCMC algorithm for the S-TVP-SVC model

The estimation of the S-TVP-SVC model is nontrivial, due to the intractability of the like-

lihood function under the presence of time-varying parameters, time-varying conditional

variances and nonparametric error structures. Our posterior algorithm is as follows:

Posterior sampling of {Λt}
Since Λt, t = 1, ..., T , follows a random discrete probability distribution on which a DP prior

is imposed, the set Λ = {Λt} will contain m = 1, ...,M , M ≤ T unique covariance matrices

Lm, where

Lm =

(

σ2y,m σyh,m

σyh,m σ2h,m

)

,

andM is the number of unique matrices in Λ. Define L = {Lm} and ρm = σyh,m/(σy,mσh,m).

In addition, let ψ = (ψ1, . . . , ψT )
′ be the vector of the latent indicator variables, where

ψt = m when Λt = Lm, m = 1, ...,M .

By introducing ψt in the S-TVP-SVC model, we can orthogonalise the correlated errors

εt and ηt. Following (Jensen and Maheu, 2014), one can show that equations (1) and (3) in

the main paper can be rewritten in terms of the orthogonal errors wt and ut as follows

yt = µ+ x′
tβ + z′tαt + ρψtσy,ψt exp(ht/2)(ht+1 − φht)/σh,ψt

+exp(ht/2)
√

1− ρ2ψtσy,ψtwt, wt ∼ N(0, 1), t = 1, ..., T , (A.1)

ht+1 = φht + σh,ψtut, |φ| < 1, ut ∼ N(0, 1), (A.2)

where (wt, ut) ∼ N(0, I2) and I2 is a 2 × 2 identity matrix. The posterior sampling of

µ, β, h, α and φ, which is presented below, is based on the equations (A.1) and (A.2).

∗Correspondence to: Stefanos Dimitrakopoulos, Oxford Brookes University, Department of Account-
ing, Finance and Economics, Oxford, OX33 1HX, UK, Tel: +44(0) 1865 485478, E-mail: sdimitrakopou-
los@brookes.ac.uk.
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Let the set Λ(t) denote Λ with Λt removed. Λ(t) will contain M (t) clusters, that is,

L(t) = (L
(t)
1 , ..., L

(t)

M(t))
′. The number of matrices in Λ(t) that correspond to the distinct

covariance matrix L
(t)
m will be n

(t)
m =

∑

j1(ψj = m, j 6= t), m = 1, ...,M (t).

Instead of simulating Λ, we sample L and ψ to improve mixing (MacEachern, 1994).

The sampler for updating {ψt} and {Lm} consists of two steps.

Step 1: Sample each ψt according to the probabilities

P (ψt = m|L(t), ψ(t), n
(t)
m ) ∝

{

qtm if m = 1, ...,M (t)

qt0 if m =M (t)+1, (A.3)

where ψ(t) = ψ\{ψt} and the weights qt0 and qtm in (A.3) are defined respectively as

qtm ∝ n
(t)
m fN (ǫt|0, L(t)

m ), qt0 ∝ a
∫

f(ǫt|Λt)dG0(Λt),

where ǫt = (εt, ηt)
′ = (y∗t / exp(ht/2), ht+1 − φht)

′ and y∗t = yt − µ− x′
tβ − z′tαt.

According to (A.3), ψt can take the existing value m = 1, ...,M (t) with probability pro-

portional to qtm. In this case, Λt, t = 1, ..., T , is assigned to an existing (unique) covariance

matrix L
(t)
m , m = 1, ...,M (t). fN (ǫt|0, L(t)

m ) is the bivariate normal distribution of ǫt evaluated

at L
(t)
m .

Also, according to (A.3), ψt can take a new value m =M (t) +1 with probability propor-

tional to qt0. In this case, we set Λt=LM(t)+1 and sample LM(t)+1 from the posterior baseline

distribution

Λt|ǫt, S0, s0 ∼ IW (s0 + 1, S0 + ǫtǫ
′
t).

The term qt0 is proportional to the dispersion parameter a times an integral which is

the marginal density of ǫt. This density is equal to the bivariate Student-t distribution

qMSt(ǫt|0, S0/(s0 − 1), s0 − 1), with mean 0, covariance S0/(s0 − 1) and degrees of freedom

s0 − 1.

Step 2:

Sample Lm, m = 1, ...,M from the following baseline posterior

Lm|{ǫt}t∈Fm , S0, s0 ∼ IW (s0 + nm, S0 +
∑

t∈Fm

ǫtǫ
′
t),

where Fm = {t : Λt = Lm} is the set of Λs equaling Lm.

Posterior sampling of a

We sample a as in (Escobar and West, 1995). So we first sample the latent random variable

ξ from p(ξ|a,M)∼ Beta(a + 1, T ) and then we sample a from a mixture of two gammas,

p(a|ξ,M)∼ πξG(c +M,d − log(ξ))+(1 − πξ)G(c +M − 1, d − log(ξ)), where πξ/(1 − πξ) =

(c+M − 1)/T (d− log(ξ)).
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Posterior sampling of h

Apply the sampler of (Chan, 2017) to the following model

yt = µ+ x′
tβ + z′tαt + ρψtσy,ψt exp(ht/2)(ht+1 − φht)/σh,ψt

+exp(ht/2)
√

1− ρ2ψtσy,ψtwt, wt ∼ N(0, 1), t = 1, ..., T ,

ht+1 = φht + σh,ψtut, |φ| < 1, ut ∼ N(0, 1).

In particular, one can show that the logarithm of the posterior distribution of the volatil-

ity vector h = (h1, ..., hT+1)
′ is given by

log p(h|y,β, µ,α, {Λt}, φ) ≈ const− 1
2(h

′Khh− 2h′kh) = log g(h), (A.4)

where y = (y1, ..., yT ), Kh =H ′Σ−1H +G and kh = f +Gh̃+H ′Σ−1HH−1ĥ. Also, ĥ =

(0, ..., 0)′ and Σ = diag(σ2h,0/(1−φ2), σ2h,ψ1
, ..., σ2h,ψT ), where σ

2
h,0 = E[G0](2,2) = [ S0

s0−p−1 ](2,2).

The point h̃ is the mode of the posterior log p(h|•) in (A.4). H is a lower triangular sparse

matrix

H =



















1 0 0 · · · 0

−φ 1 0 · · · 0

0 −φ 1 · · · 0
...

...
...

. . .
...

0 0 · · · −φ 1



















.

The gradient vector f = (f1, ..., fT+1)
′ and the negative Hessian matrix

G =



















G11 G12 0 · · · 0

G21 G22 G23 · · · 0
...

...
...

. . .
...

0 · · · GT,T−1 GTT GT,T+1

0 · · · 0 GT+1,T GT+1,T+1



















,

are calculated as follows:

The logarithm of the conditional distribution p(yt|ht, ht+1,β, µ,αt,Λt, φ) is given by

log p(yt|ht, ht+1,β, µ,αt,Λt, φ) = −1
2 log

(

2π(1− ρ2ψt)σ
2
y,ψt

)

-ht2

− exp(−ht)
2(1−ρ2

ψt
)σ2
y,ψt

(y∗t − ρψtσy,ψt exp(ht/2) (ht+1 − φht) /σh,ψt)
2.

Setting pt = p(yt|ht, ht+1,β, µ,αt,Λt, φ) for notational convenience, we have for t =

2, ..., T + 1,

f1 =
d log pt
dht

, ft =
d(log pt+log pt−1)

dht
,
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G11 = −d2 log pt
dh2t

, Gtt = −d2(log pt+log pt−1)
dh2t

, Gt−1,t = − d2 log pt
dhtdht+1

,

evaluated at h = h̃, where

d log pt
dht

= −1
2 − 1

2(1−ρ2
ψt

)

(

− y2∗t
σ2
y,ψt

exp(ht)
− 2ρ2ψtφ(ht+1 − φht)/σ

2
h,ψt

+
y∗t ρψt

σy,ψt exp(ht/2)σh,ψt
(ht+1 − φht + 2φ)

)

,

d2 log pt
dh2t

=− 1
2(1−ρ2

ψt
)

(

y2∗t
σ2
y,ψt

exp(ht)
+ 2ρ2ψtφ

2/σ2h,ψt

− y∗t ρψt
2σy,ψt exp(ht/2)σh,ψt

(ht+1 − φht + 4φ)
)

,

d log pt
dht+1

= − 1
(1−ρ2

ψt
)

(

ρ2ψt(ht+1 − φht)/σ
2
h,ψt

− y∗t ρψt
σy,ψt exp(ht/2)σh,ψt

)

,

d2 log pt
dh2t+1

= − ρ2
ψt

(1−ρ2
ψt

)σ2
h,ψt

,

d2 log pt
dhtht+1

= − 1
(1−ρ2

ψt
)

(

ρ2ψtφ/σ
2
h,ψt

− y∗t ρψt
2σy,ψt exp(ht/2)σh,ψt

)

.

According to expression (A.4), the posterior p(h|y,β, µ,α, {Λt}, φ) is approximated by

a Gaussian g(h) ∝ N(m̂,Kh
−1), with mean m̂ = Kh

−1kh and precision matrix Kh.

This Gaussian approximation is used as a proposal density in the Acceptance-Rejection

Metropolis-Hastings algorithm (see, for example, (Tierney, 1994) and (Chib and Greenberg,

1995)), where candidate draws are obtained using the precision sampler of (Chan and Jeli-

azkov, 2009), instead of Kalman-filter based methods.

The precision sampler of (Chan and Jeliazkov, 2009) works as follows. First of all, note

that Kh is a sparse matrix and therefore we can compute fast and efficiently m̂ without the

need to obtain the inverse Kh
−1, which involves a time-consuming matrix operation due to

its large size. Instead, we solve the linear system Khm̂ = kh. Next, we obtain the Cholesky

decomposition Kh = CC ′. Let x = C−1z, where z ∼ N(0, I). Then, x ∼ N(0,Kh
−1).

Finally return m̃ = m̂+ x.

Posterior sampling of β

Update β by sampling from

β|B,β0, µ,α,h, φ,y, {Λt} ∼ N(D0d0, D0),

where

D0 =

(

B−1 +
T
∑

t=1

xtx
′

t

exp(ht)σ2
y,ψt

(1−ρ2
ψt

)

)−1

,

d0 = B−1β0 +
T
∑

t=1

xt(yt−µ−z
′

tαt−ρψtσy,ψt exp(ht/2)(ht+1−φht)/σh,ψt )

exp(ht)σ2
y,ψt

(1−ρ2
ψt

)
.
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Posterior sampling of µ

Update µ by sampling from

µ|µ̄, σ̄2,α,β,h, φ,y, {Λt} ∼ N(D1d1, D1),

where

D1 =

(

1
σ̄2 +

T
∑

t=1

1
exp(ht)σ2

y,ψt
(1−ρ2

ψt
)

)−1

,

d1 = µ̄
σ̄2 +

T
∑

t=1

yt−x
′

tβ−z
′

tαt−ρψtσy,ψt exp(ht/2)(ht+1−φht)/σh,ψt
exp(ht)σ2

y,ψt
(1−ρ2

ψt
)

.

Posterior sampling of φ

We update φ using an independence Metropolis-Hastings algorithm. In particular, at the

l − th iteration we draw a candidate value φ(p) from the truncated normal distribution

N(σ2
φ̂
φ̂, σ2

φ̂
)I|φ|<1, where

σ2
φ̂
=

(

1
σ2
φ

+
T
∑

t=1

h2t
σ2
h,ψt

+
T
∑

t=1

ρ2
ψt
h2t

σ2
h,ψt

(1−ρ2
ψt

)

)−1

,

φ̂ =

(

φ0
σ2
φ

+
T
∑

t=1

htht+1

σ2
h,ψt

+
T
∑

t=1

ρψtht(y
∗

t−ρψtht+1σy,ψt exp(ht/2)/σh,ψt )

σh,ψtσy,ψt exp(ht/2)(1−ρ
2
ψt

)

)−1

.

Given φ(p) and the value from the previous iteration φ(l−1), φ(p) is accepted as a valid

current draw (φ(l)=φ(p)) with probability

ap(φ
(l−1), φ(p)) = min(

f(h1|σ2
h,0,φ

(p))

f(h1|σ2
h,0,φ

(l−1))
, 1),

where f(h1|σ2h,0, φ) = N(0, σ2h,0/(1− φ2)).

Posterior sampling of α

Apply the precision sampler of Chan and Jeliazkov (2009) to the following model

ỹt = z′tαt + exp(ht/2)
√

1− ρ2ψtσy,ψtwt, wt ∼ N(0, 1), t = 1, ..., T ,

αt+1 = αt + ut, ut ∼ N(0, ω−1
t Σ), t = 0, 1, ..., T − 1,

where ỹt = yt − µ− x′
tβ − ρψtσy,ψt exp(ht/2)(ht+1 − φht)/σh,ψt .

In particular, stacking the equation for ỹt over t = 1, ..., T, we have

ỹ = Zα+ ξ, ξt ∼ N(0,Sy) ⇔

where ξ = (ξ1, ..., ξT )
′,
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Z =



















z′1 0 0 · · · 0

0 z′2 0 · · · 0

0 0 z′3 · · · 0
...

...
...

. . .
...

0 0 0 · · · z′T



















,Sỹ =



















s1 0 0 · · · 0

0 s2 0 · · · 0

0 0 s3 · · · 0
...

...
...

. . .
...

0 0 0 · · · sT



















,

and st = exp(ht)(1− ρ2ψt)σ
2
y,ψt

, t = 1, ..., T .

The state equation αt+1 = αt + ut, can be written in a matrix notation as follows,

Γα = δ̃α + u,u ∼ N(0,Su),

where δ̃α = (α0,0, ...,0)
′, u = (u0,u1, ...,uT−1)

′, Su = diag(Σ0, ω
−1
1 Σ, ..., ω−1

T−1Σ) and Γ is

the first difference matrix

Γ =



















Ip 0 0 · · · 0

−Ip Ip 0 · · · 0

0 −Ip Ip · · · 0
...

...
...

. . .
...

0 0 · · · −Ip Ip



















.

Hence, the prior distribution of α is a normal distribution, that is, α|{ωt}T−1
t=1 ,Σ ∼

N(δα, (Γ
′S−1
u Γ)−1), where δα = Γ−1δ̃α. The posterior distribution of α is also normal

α|{ωt}T−1
t=1 ,Σ, ỹ ∼ N(α̂,D−1

α ),

where

Dα = Γ′S−1
u Γ+ Z′S−1

ỹ Z,

α̂ =D−1
α (Γ′S−1

u Γδα + Z′S−1
ỹ ỹ).

Note that Dα is a high-dimensional covariance matrix and therefore sampling from this

posterior can be time-consuming. However, Dα is a band matrix and we can sample from

N(α̂,D−1
α ) efficiently and fast, using the precision sampler of Chan and Jeliazkov (2009)

which is based on block-banded and sparse matrix algorithms and not on Kalman-filter re-

lated methods.

Posterior sampling of Σ

Update Σ by sampling from

Σ|δ,∆,α,ω ∼IW
(

δ + T − 1,∆−1 +
T−1
∑

t=1
ωt(αt+1 −αt)(αt+1 −αt)′

)

,

where ω = (ω1, ..., ωT−1).
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Posterior sampling of ω

Having calculated ut from ut = αt+1−αt, t = 1, ..., T −1, we update ω as in (Dimitrakopou-

los, 2017). Since ωt, t = 1, ..., T − 1 follows the Dirichlet process prior Gω, realizations of ωt

from Gω will lie in a set of Mω ≤ T − 1 distinct values or clusters ω∗ = (ω∗
1, ..., ω

∗
Mω

), where

ω∗
mω , mω = 1, ...,Mω is a random draw from G0ω.

Let ω(t) denote all the elements in {ωt}T−1
t=1 excluding the component ωt. The vector

ω(t) will contain ties. Suppose that ω(t) contains M
(t)
ω unique values, (ω

∗(t)
1 , ..., ω

∗(t)

M
(t)
ω

) and

assume also that each of these values appears in ω(t), n
(t)
mω times, where n

(t)
mω =

∑

j1(ψ
ω
j =

mω, j 6= t), mω = 1, ...,M
(t)
ω . The term ψωt , t = 1, ..., T − 1 is a latent indicator variable such

that ψωt = mω when ωt = ω∗
mω , mω = 1, ...,Mω.

From the Pólya-urn process (Blackwell and MacQueen, 1973), one can easily show that

{ωt}T−1
t=1 can be updated from the conditional posterior (continuous-discrete) distribution

p
(

ωt|ω(t),ut, eω,Σ, G0ω

)

∝ q̃t0p(ωt|ut, eω,Σ) +

M
(t)
ω
∑

mω=1

q̃tmωδω∗(t)
mω

(ωt),

t = 1, ..., T −1, (A.5)

where the posterior density of ωt under the prior G0ω is a gamma density, namely

p(ωt|ut, eω,Σ) ∝ p(ut|Σ, ωt)G0ω(ωt)∝ ω
eω+p

2
−1

t e−
ωt(eω+u

′
tΣ

−1
ut)

2 ,

and the weights q̃t0 and q̃tmω are given respectively by q̃t0 ∝ a
∫

f(ut|Σ)dG0ω(ωt)∝ aqt(ut|0,Σ, eω),
where qt denotes the multivariate t-density function, and q̃tmω ∝ n

(t)
mω fN (ut|0, 1

ω
∗(t)
mω

Σ), where

fN denotes the multivariate normal distribution.

We do not sample directly from expression (A.5) but instead update the latent indicators

in an analogous way to that for Λs and resample the clusters ω∗
mω , mω = 1, ...,Mω from the

posterior gamma distribution

p(ω∗
mω |{ut}t∈Fmω , eω,Σ) ∝ ω∗

mω

eω+p×nmω
2

−1e−
ω∗mω

(eω+
∑

t∈Fmω

u
′
tΣ

−1
ut)

2 ,

where Fmω = {t : ωt = ω∗
mω} is the set of ωs sharing the parameter ω∗

mω .

Posterior sampling of aω

We update aω in the same way we update a.

2 Density forecasts

Forecast evaluation is conducted in terms of density forecasts. Define ΩT = (y,XT ,ZT ),

where y = (y1, ..., yT ), XT = (x1, ...,xT ) and ZT = (z1, ..., zT ).

Given ΩT and G (the prior baseline distribution), we compute the one-step-ahead out-of-

sample predictive density of yT+1, f(yT+1|G,ΩT ), which is used as the density forecast for

yT+1. As a natural metric for the evaluation of the density forecast we compute the logarithm
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of the predictive likelihood, which is the logarithm of the predictive density evaluated at the

observed yoT+1, namely, f(yoT+1|G,ΩT ). Next, we move one period forward and repeat the

same forecasting exercise using ΩT+1 data. For the evaluation period t = T + 1, ..., T + k,

the sum of the log predictive likelihoods
∑T+k−1

t=T log f(yot+1|G,ΩT ) is known as the log

predictive score of the model. Higher values entail better (out-of-sample) forecasting ability

of the model.

The predictive density f(yT+1|G,ΩT ) is obtained as follows. Let Θ denote the parameter

vector of the model, that is, Θ=(β, Σ, α, h, φ, µ Λ,ω, a, aω)
′, where Λ = {Λt} and ω =

(ω1, ..., ωT−1). For the S-TVP-SVC model the (one-step ahead) joint predictive density of

f((yT+1, hT+2)
′) conditional on the prior baseline distribution G and on the data ΩT is given

by

f

(

yT+1

hT+2

|G,ΩT

)

=

∫

f

(

yT+1

hT+2

|Θ
)

π(Θ|ΩT )dΘ, (A.6)

with G having been integrated out of the distribution of the error vector (εt, ηt)
′. Expression

(A.6) is approximated via Monte Carlo simulation by

f

(

yT+1

hT+2

|G,ΩT

)

≈ 1

L

L
∑

l=1

f̂

(

yT+1

hT+2

|Θ(l)

)

, (A.7)

where the functional form of the density in the right hand side of expression (A.7) is given

by

f

(

yT+1

hT+2

|Θ
)

=
a

a+ T
fMSt

((

yT+1

hT+2

)

;

(

µ+ x′
T+1β + z′T+1αT+1

φhT+1

)

,
ET+1S0ET+1

s0 − 1
, s0 − 1

)

+
1

a+ T

M
∑

m=1

nmN

((

yT+1

hT+2

)

;

(

µ+ x′
T+1β + z′T+1αT+1

φhT+1

)

, ET+1LmET+1

)

,

where fMSt(r1, r2, r3) is the bivariate Student-t distribution with mean r1, covariance r2 and

degrees of freedom r3, αT+1 is obtained from equation (2) of the manuscript and ET+1 =
(

exp(h(T+1)/2) 0

0 1

)

. L is the number of iterations (after the burn-in period).

From expression (A.6) we can obtain the marginal posterior predictive density of yT+1,

which is defined as

f(yT+1|G,ΩT ) =

∫

f(yT+1|Θ)f(Θ|ΩT )dΘ ≈ 1

L

L
∑

l=1

f̂(yT+1|Θ(l)),

where f̂(yT+1|Θ(l)) when evaluated at an observed value yT+1 is the predictive likelihood of

the S-TVP-SVC model and is defined as
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f(yT+1|Θ) =
a

a+ T
fSt(yT+1;µ+ x′

T+1β + z′T+1αT+1,
S0(1,1) exp(h(T+1))

s0 − 1
, s0 − 1)

+
1

a+ T

M
∑

m=1

nmN(yT+1;µ+ x′
T+1β + z′T+1αT+1, exp(h(T+1))σ

2
y,m),

where fSt is the univariate Student-t distribution with mean µ+x′
T+1β+z′T+1αT+1, variance

S0(1,1)
exp(h(T+1))

s0−1 and degrees of freedom s0 − 1. S0(1,1) is the (1,1) element of S0.

3 The St-TVP-SVC model

Consider the following TVP-SV model,

yt = µ+ x′
tβ + z′tαt + exp(ht/2)

√
λ1tεt, t = 1, ..., T,

αt+1 = αt + ut, ut ∼ N(0, λ−1
2t Σ),

ht+1 = µh + φ(ht − µh) + ηt, |φ| < 1,

(

εt

ηt

)

∼ N

[(

0

0

)

,

(

1 ρσh

ρσh σ2h

)]

,

where λ1t ∼ IG(v1/2, v1/2), λ2t ∼ G(v2/2, v2/2) and v1 and v2 follow a uniform prior on

the domain [3, 120].

To update v1 and v2 we use Metropolis-Hastings steps.

4 Monte Carlo experiments

To evaluate the efficiency of the proposed MCMC algorithm for the semiparametric TVP-

SVC model we conducted Monte Carlo experiments.

The simulated data set was generated from the following model

yt = 0.2 + x′
tβ + z′tαt + exp(ht/2)

√
λtεt, λt ∼ IG(8/2, 8/2), t = 1, ..., 260,

αt+1 = αt + ut, ut ∼MV t(0,Σ, 5),

ht+1 = 0.8ht + ηt,

(

εt

ηt

)

∼ N

[(

0

0

)

,

(

1 −0.5×
√
0.1

−0.5×
√
0.1 0.1

)]

,
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where β = (−1, 3)′, αt = (α1t, α2t)
′ and ρ = −0.5. MV t is the multivariate-t distribution

with mean 0, covariance matrix Σ = diag(2, 2) and degrees of freedom 5, where diag(·)
denotes a diagonal matrix. Also, α1 = (−10, 20)′. T = 260 is almost equal to the size of the

empirical data set.

The elements of xt = (x1t, x2t)
′ and zt = (z1t, z2t)

′ for t = 1, ..., T are drawn from a

uniform distribution, that is, xjt ∼ U(−0.5, 0.5) and zit ∼ U(−0.5, 0.5) for j, i = 1, 2.

We assume the following prior distributions

β ∼ N(0, 20× I2×2), α1 ∼ N(0, 10× I2×2), µ ∼ N(0, 10),

φ ∼ N(0.97, 0.12)I|φ|<1, Σ ∼ IW (1, 10× I2×2), G0 = IW (10, I2×2),

G0ω = G(52 , 52), a ∼ G(3, 9), aω ∼ G(3, 9),

where I2×2 is a 2× 2 identity matrix.

After discarding the first 50000 draws, we run the sampler 150000. The code was written

in Matlab and run on a desktop with an Intel Core i7-4710HQ @2.50 GHz 2.50 GHz. For

T = 260, it takes about 1091 seconds for 10000 iterations.

In Table 1 we present the posterior means and standard deviations of the model param-

eters. We also report the CD statistics of (Geweke, 1992) and the inefficiency factor (IF);

see, for example, (Chib, 2001). Given the small sample size (T = 260), the sampler of the

S-TVP-SVC model leads to satisfactory estimation accuracy. This accuracy improves as the

sample size increases; in Table 2 we present the estimation results, using the same simulated

data set but for T = 8001.

Furthermore, Figures 1 (T = 260) and 2 (T = 800) show the evolution of the estimated

time-varying parameters α1t and α2t, along with their two standard deviation bands. The

semiparametric model is able to capture the time variation of the coefficients, with their

estimated posterior means tracing well the true path of the states.

Table 1: Simulated data: T=260

Model S-TVP-SVC

True values Mean Stdev IF CD

µ = 0.2 0.1257 0.0896 5.5058 2.3879

β1 = −1 -1.3472 0.3115 4.6442 -0.9717

β2 = 3 3.3511 0.2919 4.5504 0.7794

Σ11 = 2 2.957 1.729 97.171 0.9650

Σ22 = 2 1.131 1.4036 92.666 0.9764

φ = 0.8 0.8291 0.0775 86.991 2.1522

1For T = 800, it takes about 3319 seconds for 10000 iterations.
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Figure 1: Simulated data: Path of the estimated α1t and α2t for the
S-TVP-SVC model; T=260. True path (black), posterior mean (blue),
two standard deviation bands (red).
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Figure 2: Simulated data: Path of the estimated α1t and α2t for the
S-TVP-SVC model; T=800. True path (black), posterior mean (blue),
two standard deviation bands (red).
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Table 2: Simulated data: T=800

Model S-TVP-SVC

True values Mean Stdev IF CD

µ = 0.2 0.2037 0.0467 3.8194 -0.6750

β1 = −1 -0.9838 0.1644 4.2254 -0.6478

β2 = 3 2.9987 0.1655 3.9814 -0.9239

Σ11 = 2 2.2188 1.2914 72.032 0.5743

Σ22 = 2 2.4661 0.6672 69.74 0.6740

φ = 0.8 0.8127 0.0540 56.305 1.382

5 Additional empirical results

In Table 1 of the main paper, the DMP structure of expression (5) for the AR-S-TVP-SVC

model produced M = 2.3632 clusters (M is explained in this Online Appendix). In other

words, the proposed semiparametric model requires 2.3632 bivariate Gaussians to fit the

data. For the AR-S-TVP-SV model, the estimated value of M was larger (M = 4.3697)

to that of the AR-S-TVP-SVC model. Similarly, the AR-S-TVP-SV and AR-S-TVP-SVC

models gave different degree of clustering, Mω, in ω = (ω1, ..., ωT−1). Mω is also explained

in this Online Appendix. The nonnormality of the errors (εt, ηt)
′ and ut is also supported

by the reported values of the degrees of freedom for the AR-St-TVP-SVC model (see Table

1 of the main paper).

In Figures 3-6 of this Appendix, we present the posterior mean of the time-varying

volatility for the four empirical models of the main paper. This posterior mean is smoother

in Figure 3 than in Figures 4 and 5. In Figure 6, the posterior estimates of volatilities for

the AR-S-TVP-SVC model are much larger than those for the rest of the models. This is

justified by the large expected values of p(σ2h,t|y1, ..., yT ), t = 1, ..., 261; see Figure 4 of the

main paper.
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Figure 3: Evolution of exp(ht), t =
1, ..., 261, obtained from the AR-S-TVP-
SV model; posterior mean (blue), two
standard deviation bands (red).
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Figure 4: Evolution of exp(ht), t =
1, ..., 262, obtained from the AR-TVP-
SVC model; posterior mean (blue), two
standard deviation bands (red).
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Figure 5: Evolution of exp(ht), t =
1, ..., 262, obtained from the AR-St-TVP-
SVC model; posterior mean (blue), two
standard deviation bands (red).
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Figure 6: Evolution of exp(ht), t =
1, ..., 262, obtained from the AR-S-TVP-
SVC model; posterior mean (blue), two
standard deviation bands (red).
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of Statistics 1(2): 353–355.

Chan JCC. 2017. The stochastic volatility in mean model with time-varying parameters: An

application to inflation modeling. Journal of Business & Economic Statistics 35(1): 17–28.

Chan JCC, Jeliazkov I. 2009. Efficient simulation and integrated likelihood estimation in

state space models. International Journal of Mathematical Modelling and Numerical Op-

timisation 1: 101–120.

Chib S. 2001. Markov Chain Monte Carlo methods: Computation and Inference. In Heckman

JJ. and Leamer E, (Eds.), Handbook of Econometrics, Volume 5, (pp. 3569-3649). Elsevier.

Chib S, Greenberg E. 1995. Understanding the Metropolis–Hastings algorithm. The Ameri-

can Statistician 49(4): 327–335.

Dimitrakopoulos S. 2017. Semiparametric Bayesian inference for time-varying parameter

regression models with stochastic volatility. Economics Letters 150: 10–14.

Escobar M, West M. 1995. Bayesian density estimation and inference using mixtures. Journal

of the American Statistical Association 90(430): 577–588.

Geweke J. 1992. Evaluating the Accuracy of Sampling-Based Approaches to the Calculation

of Posterior Moments. In Bernardo J, Berger J, Dawid A and Smith A, (Eds.), Bayesian

Statistics 4, Oxford: Clarendon Press, (pp. 641-649).

Jensen M, Maheu JM. 2014. Estimating a semiparametric asymmetric stochastic volatility

model with a Dirichlet process mixture. Journal of Econometrics 178: 523–538.

MacEachern SN. 1994. Estimating normal means with a conjugate style Dirichlet process

prior. Communications in Statistics. Simulation and Computation 23(3): 727–741.

Tierney L. 1994. Markov Chains for exploring posterior distributions. The Annals of Statis-

tics 22(4): 1701–1728.

14


	Manuscript
	online_appendix_of_manuscript

