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Summary

We propose a Poisson regression model that controls for three potential

sources of persistence in panel count data; dynamics, latent heterogeneity and

serial correlation in the idiosyncratic errors. We also account for the initial

conditions problem. For model estimation, we develop a Markov Chain Monte

Carlo algorithm. The proposed methodology is illustrated by a real example

on the number of patents granted.
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Monte Carlo, panel count data, serial correlation

JEL classification: C1, C5, C11, C13

1 Introduction

There is a vast econometrics literature on the analysis of count data (Winkelmann,

2008; Cameron and Trivedi, 2013). In this paper we propose a Poisson model that

∗Correspondence to: Stefanos Dimitrakopoulos, E-mail: sdimitrakopoulos@brookes.ac.uk.
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accounts for three potential sources of the persistent behaviour of counts across

economic units; true state dependence, spurious state dependence and serial error

correlation.

True state dependence is modelled through a lagged dependent variable that con-

trols for dynamic effects, spurious state dependence is captured by a latent random

variable (Heckman, 1981) that controls for unobserved heterogeneity, while serial

correlation in the idiosyncratic errors is assumed to follow a first-order stationary

autoregressive process. The resulting model specification is a dynamic panel Poisson

model with latent heterogeneity and serially correlated errors.

We also account for an inherent problem in our model, that of the endogeneity

of the initial count for each cross-sectional unit (initial conditions problem). The as-

sumption of exogenous initial conditions produces biased and inconsistent estimates

(Fotouhi, 2005). To tackle this problem we apply the approach of Wooldridge (2005)

that attempts to model the relationship between the unobserved heterogeneity and

initial values.

In the context of Poisson regression analysis of event counts, researchers have pro-

posed dynamic Poisson models with unobserved heterogeneity (Crépon and Duguet,

1997; Blundell et al., 2002) in order to disentangle true and spurious state depen-

dence. Yet, the issue of persistence (true state dependence, spurious state depen-

dence, serial error correlation) as well as the initial values problem have not been

properly addressed in panel counts. This paper aspires to fill this gap.

To estimate the parameters of the proposed model, we develop a Markov Chain

Monte Carlo (MCMC) algorithm, the efficiency of which is evaluated with a simu-

lation study. We also conduct model comparison. Our methodology is illustrated

with an empirical example on patenting.

The paper is organized as follows. In section 2 we set up the proposed model and

in section 3 we describe the posterior analysis. The empirical results are presented

in section 4. Section 5 concludes. An Online Appendix accompanies this paper.
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2 Econometric framework

Let yit be the observed count outcome for individual i = 1, ..., N at time t = 1, ..., T ,

that follows the Poisson distribution with conditional mean λit

f(yit;λit) =
λ
yit
it exp(−λit)

yit!
. (1)

For λit we assume the following exponential mean function

λit = exp(x′
itβ + γyit−1 + ϕi + ǫit), (2)

where xit=(x1,it, .., xk,it)
′ is a vector of exogenous covariates1 that contains an in-

tercept, ϕi denotes the individual-specific random effect that controls for spurious

state dependence, whereas the coefficient on yit−1 measures the strength of true state

dependence.

Since yit is non-negative, a positive coefficient γ makes the model explosive as

γyit−1 > 0. To overcome this problem we replace yit−1 in (2) by its logarithm,

ln yit−1, and then use a strictly positive transformation y∗it−1 of the yit−1 values, when

yit−1 = 0. In particular, we rescale only the zero values of yit−1 to a constant c, that

is, y∗it−1 = max(yit−1, c), c ∈ (0, 1); see also Zeger and Qaqish (1988). Therefore,

expression (2) is replaced by

λit = exp(x′
itβ + γ ln y∗it−1 + ϕi + ǫit). (3)

For the idiosyncratic error terms ǫit, we assume the following first-order station-

ary (|ρ| < 1) autoregressive specification

ǫit = ρǫit−1 + vit, − 1 < ρ < 1, vit
i.i.d
∼ N(0, σ2

v). (4)

1Addressing the issue of potential violation of the exogeneity assumption in the context of the
proposed model is a changeling econometric task and thus is left for future research; see also Biewen
(2009) for potential treatment.
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The random variables vit are independent and identically normally distributed

across all i and t with mean zero and variance σ2
v . We also assume that vit and ϕi

are mutually independent.

To tackle the initial values problem we follow the approach of Wooldridge (2005)

and model ϕi as follows

ϕi = h1 ln y
∗
i0 + x′

ih2 + ui, ui ∼ N(0, σ2
u), i = 1, ..., N. (5)

As before, if the first available count in the sample for individual i, yi0, is zero,

it is rescaled to a constant c, that is, y∗i0 = max(yi0, c), c ∈ (0, 1). Also, xi is

the time average of xit and ui is a stochastic disturbance, which is assumed to be

uncorrelated with yi0 and xi. For identification reasons, time-constant regressors

that maybe included in xit should be excluded from xi.

To conduct Bayesian analysis we impose priors over the parameters (δ, h, ρ, σ2
v ,

σ2
u),

p(δ) ∝ 1,h ∼ Nk+1(h̃, H̃),

ρ ∼ N(ρ0, σ
2
ρ)I(−1,1)(ρ), σ−2

v ∼G(
e1

2
,
f1

2
), σ2

u ∼ ∼IG(
e0

2
,
f0

2
),

where δ = (β′, γ)′, h = (h1,h2)
′, G denotes the gamma distribution and IG denotes

the inverse gamma distribution. The prior distribution for δ is flat. A truncated

normal is imposed on ρ.

3 Posterior analysis

3.1 MCMC algorithm

To estimate the model parameters, we follow closely the paper by Chib and Jeliazkov

(2006) and develop a similar MCMC algorithm that augments the parameter space

(Tanner and Wong, 1987) to include the latent variables {λ∗
it}i≥1,t≥1, where λ∗

it =
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w′
itδ + ϕi + ǫit and w′

it = (x′
it, ln y

∗
it−1).

The details of the estimation method are given in the Online Appendix, where

we also conduct a Monte Carlo experiment.

3.2 Model comparison

For model comparison we compute the marginal likelihood (ML). There are many

ways to do that. One popular numerical method is the method of Chib (1995) and

Chib and Jeliazkov (2001); see, also, Chib et al. (1998). In this paper we use the

Bayesian Information Criterion (BIC)- (Schwarz, 1978). As an alternative model

comparison criterion, we also calculate cross-validation (CV) predictive densities.

Higher BIC and CV values indicate better in-sample fit. Both criteria are explained

in the Online Appendix.

4 Empirical application

4.1 Data

As an empirical illustration of the proposed model, we focus on the number of

patents awarded to firms and its relationship with research and development (R&D)

expenditures. This topic has already been analyzed by various researchers (Hausman

et al., 1984; Hall et al., 1986; Blundell et al., 1995, 1999, 2002; Montalvo, 1997;

Crépon and Duguet, 1997; Cincera, 1997).

In particular, we use a balanced panel data set on 346 firms for the years 1975−

1979. This data set has also been analyzed by Hall et al. (1986)2. Figure 1, which

plots the dependent variable for all the firms over time, suggests that persistence is

an issue.

In this empirical example, we take into account the three potential sources of

2It can also be downloaded from
http://faculty.econ.ucdavis.edu/faculty/cameron/racd2/RACD2programs.html.
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persistence in the number of patents granted. The true state dependence implies

the past decisions of the patent offices that issue the patent documents have a direct

impact on their current patent decisions. Spurious state dependence entails that

the decisions of the patent offices are entirely attributed to firm-specific unobserved

components. Serial error correlation could be justified by the fact that the firms

operate in an economic environment, which is subject to shocks that affects over

time their R&D output measured through patents.

Our set of regressors contains the logarithm of current and up to five past years’

research and development expenditures (lnR0, lnR1, lnR2, lnR3, lnR4, lnR5), the

logarithm of the book value of capital in 1972, which is a measure of firm size

(lnSIZE), an indicator variable that equals 1 if the firm belongs to the science

sector (SS), as well as time dummies (Y EAR). lnSIZE and SS are time-invariant

covariates and therefore are excluded from Wooldridge’s (2005) equation. The same

holds for the year dummies.

In our empirical analysis, the proposed model (model 1) is compared against

three competing panel Poisson models that have already been used by the literature

on panel count data. The first competing model is a panel Poisson model with

dynamics and Wooldridge (2005)’s-type latent heterogeneity (model 2), the second

one is a panel Poisson with only latent heterogeneity (model 3) and the third one is

a panel Poisson model with only dynamics (model 4). Models 2-4 are described in

the Online Appendix, along with their MCMC algorithms that draw heavily upon

the algorithm of Chib et al. (1998).

The empirical results (posterior means and standard deviations) are presented in

Table 1. These results were obtained after running the MCMC algorithm for 80000

iterations with a burn-in phase of 50000 cycles. The fixed quantity c was set equal

to 0.5. Alternative values, such as 0.1 or 0.8, did not affect the results.
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4.2 Results

The set of the common statistically significant variables across the four models

includes the ln y∗it−1, lnR0, Y EAR = 1978 and Y EAR = 1979. Our goal is to

identify the potential sources of inertia in the number of patents awarded to firms.

For the Poisson models that control for dynamics (models 1,2 and 4), we observe

that the estimated coefficients on ln y∗it−1 are positive and statistically significant;

the number of patents granted in the previous period is a valid determinant of the

number of patents granted in the current period. The positive sign implies that the

number of patents granted in the previous period is less likely to affect downwards

the number of patents granted in the current period. It is also worth noting that

the coefficient on ln y∗it−1 is close to one in model 4 but as we move to models 2 and

1, it decreases towards zero.

Due to the nonlinear nature of the Poisson model, we also calculated the average

partial effects (APEs) for yit−1, which is the main covariate of interest3. The APEs

for yit−1 reflect the strength of true state dependence. In the proposed model, the

(statistically significant) APEs is 0.1005 with a standard deviation of 0.0586; given

the number of patents in the previous period, the probability of a firm having a larger

number of patents awarded in the current period increases by 10.05% . For models

2 and 4, the corresponding (statistically significant) APEs are 0.2597 (0.1239) and

0.9432 (0.0921), respectively. Standard deviations are in the parentheses. So, true

state dependence is weak in model 2, weaker in model 1 and strong in model 4.

Also, there is evidence of strong dynamic dependence in the counts through

the serial correlation in the idiosyncratic errors; the autoregressive parameter ρ is

positive, significant and high in magnitude (0.8311). Furthermore, as can be seen

from Table 2, the current counts are conditioned on the initial counts but not on the

mean of explanatory variables; the coefficient h1 is significant but the coefficients in

h2 are not in models 1 and 2.

3For the calculation of the APEs, see the Online Appendix.
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Across the models of Table 1 that account for unobserved heterogeneity (models

1, 2 and 3) the error variance σ2
u is significant. This implies that the persistence in the

counts is not only the result of serially correlated errors and true state dependence

but also of the firm-related unobserved heterogeneity (spurious state dependence).

Model 1, which controls for dynamics, latent heterogeneity and serially corre-

lated errors, has the best fit to the data set, as it produces the largest BIC value

(-1390.21) and the largest CV value(0.2095). Controlling only for dynamics and

latent heterogeneity, model 2 delivers worse BIC and CV values, an indication that

serial correlation in the idiosyncratic errors should not be ignored. Goodness of fit

deteriorates even further, when we control only for latent heterogeneity (model 3) or

only for dynamics (model 4), signalling the importance of accounting for both true

and spurious state dependence. Hence, the most (least) preferred model is model 1

(model 4).

For robustness check, we re-estimated the proposed model (model 1) without the

mean variables x (model 1a), without the initial counts ln y∗i0 (model 1b) and with

an AR(2) error structure(1AR(2) model). The results obtained from these models are

the same with those of model 1, in terms of the significance of the covariates and

the sources of persistence; see Online Appendix.

5 Conclusion

In this paper we proposed a Poisson panel data model with dynamics, latent het-

erogeneity and serial error correlation. We also accounted for the initial conditions

problem. Our Bayesian methodology was illustrated by a real data set on the num-

ber of patents awarded. We found that all three sources of persistence are present

in the data set, with dynamics being weak and with serial error correlation being

strong.
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Figure 1: Empirical results. Plot of the dependent variable for all firms over time
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Table 1: Empirical results for the competing Poisson models

model 1 model 2 model 3 model 4

constant 0.1249 0.0632 -0.1350 0.0294
(0.1072) (0.1153) (0.2030) (0.0303)

ln y∗it−1 0.0936* 0.2448* 0.9311*
(0.0325) (0.0248) (0.0082)

SS -0.0173 0.0264 0.4325* 0.0312*
(0.0689) (0.0657) (0.1218) (0.0120)

lnSIZE -0.0369 -0.0012 0.2843* 0.0205*
(0.0291) (0.0316) (0.0511) (0.0059)

lnR0 0.2998* 0.3504* 0.4205* 0.2427*
(0.0697) (0.0637) (0.0588) (0.0487)

lnR1 -0.0720 -0.0777 -0.0380 -0.1659*
(0.0706) (0.0718) (0.0701) (0.0681)

lnR2 0.0396 0.0670 0.1157 -0.0514
(0.0641) (0.0661) (0.0660) (0.0646)

lnR3 0.0096 0.0090 0.0373 -0.0294
(0.0624) (0.0608) (0.0597) (0.0599)

lnR4 0.0281 0.0151 0.0142 0.0062
(0.0579) (0.0541) (0.0538) (0.0540)

lnR5 -0.0183 0.0285 0.0488 0.0337
(0.0503) (0.0443) (0.0421) (0.0361)

YEAR=1976 -0.0384 -0.041* -0.0457* -0.0222
(0.0227) (0.0177) (0.0179) (0.0176)

YEAR=1977 -0.0327 -0.0372* -0.0501* 0.0059
(0.0273) (0.0181) (0.0182) (0.0177)

YEAR=1978 -0.1457* -0.1611* -0.1776* -0.1129*
(0.0294) (0.0192) (0.0189) (0.0182)

YEAR=1979 -0.2002* -0.1774* -0.2316* -0.0453*
(0.0341) (0.0213) (0.0199) (0.0185)

σ2
u 0.1091* 0.1481* 0.9942*

(0.0386) (0.0208) (0.0963)
σ2
v 0.0355*

(0.0037)
ρ 0.8311*

(0.0751)

BIC -1390.21 -1411.47 -1432.98 -1439.74
CV 0.2095 0.1748 0.1744 0.1612

*Significant based on the 95% highest posterior density interval. Stan-
dard deviations in parentheses.
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Table 2: Empirical results for Wooldridge’s (2005) regression

model 1 model 2

h1 0.7376* 0.6010*
(0.0407) (0.0349)

h21(lnR0)
-0.0799 -0.1460

(0.3551) (0.3254)
h22(lnR1)

0.0490 0.0524

(0.5988) (0.5646)
h23(lnR2)

-0.0432 -0.0557

(0.6324) (0.5941)
h24(lnR3)

0.0809 0.0168

(0.6028) (0.5535)
h25(lnR4)

-0.2022 -0.1171

(0.5466) (0.4891)
h26(lnR5)

0.1320 0.01851

(0.2912) (0.2621)

*Significant based on the 95%
highest posterior density inter-
val. Standard deviations in
parentheses.
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Online Appendix for: Accounting for persistence in panel count

data models. An application to the number of patents awarded

Stefanos Dimitrakopoulos∗

Department of Accounting, Finance and Economics, Oxford Brookes University, Oxford, OX33

1HX, UK

1 MCMC algorithm for the proposed Poisson model

If we stack the latent equation λ∗it = w′
itδ + ϕi + ǫit over t within i we get

λ∗
i = Wiδ+ iTϕi + ǫi, (A.1)

where Wi = (wi1, ...,wiT )
′, iT is a T × 1 vector of ones and ǫi = (ǫi1, ..., ǫiT )

′ follows a

multivariate normal with mean 0 and covariance matrix σ2vΩi, which is symmetric and pos-

itive definite with

Ωi =
1

1−ρ2




1 ρ ρ2 · · · ρT−1

ρ 1 ρ · · · ρT−2

ρ2 ρ 1 · · · ρT−3

...
...

...
. . .

...

ρT−1 ρT−2 ρT−3 · · · 1




.

The MCMC algorithm works as follows:

• We sample σ−2
v , δ|{λ∗

i }, {Ωi}, {ϕi}, e1, f1 in one block by sampling

(a) σ−2
v |{λ∗

i }, {Ωi}, {ϕi}, e1, f1 ∼ G( e12 ,
f1
2 ), where e1 = e1 +NT − k− 1, f1 = f1 + (λ̃

∗
−

Wδ̂)′Ω−1(λ̃
∗
−Wδ̂), λ̃

∗
contains the elements λ̃it

∗
= λ∗it − ϕi, i = 1, ...N , t = 1, ..., T that

have been stacked over i and t, W = (W′
1, ...,W

′
N )′, δ̂ is the OLS estimator of δ given by

δ̂ = (W′Ω−1W)−1W′Ω−1λ̃
∗
and Ω is a block diagonal matrix,

Ω =




Ω1

Ω2

. . .

ΩN



.

∗Correspondence to: Stefanos Dimitrakopoulos, E-mail: sdimitrakopoulos@brookes.ac.uk.
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(b) δ|{λ∗
i }, σ

2
v , {Ωi}, {ϕi} ∼ N

(
δ̂, ( 1

σ2
v
W′Ω−1W)−1

)
.

•We sample ϕi|λ
∗
i ,h, δ,Ωi, σ

2
v , σ

2
u ∼N(d0, D0), i = 1, ..., N , where D0 =

(
1
σ2
u
+ σ−2

v i′TΩ
−1
i iT

)−1

and d0 = D0

(
k′
ih

σ2
u
+ σ−2

v i′TΩ
−1
i (λ∗

i −Wiδ)
)
with k′

i = (ln y∗i0,x
′
i).

• We sample h|{ϕi}, H̃, h̃, σ
2
u ∼ N(dh, Dh), where dh = Dh

(
H̃−1h̃ +k′ϕ

σ2
u

)
and Dh =

(
H̃−1 + k′k

σ2
u

)−1
, where k is the matrix that consists of all ki and ϕ is the vector of all ϕi.

• We sample λ∗
i , i = 1, ..., N , from the posterior distribution of λ∗

i |δ, σ
2
v ,Ωi, ϕi,yi, which

is proportional to N(λ∗
i |Wiδ + iTϕi, σ

2
vΩi)Poisson(yi|exp(λ

∗
i )), where yi = {yit}t≥1. This

density does not have closed form. Therefore we use an independence Metropolis-Hastings

(MH) algorithm [see, for example, Chib and Greenberg (1995)] to update each λ∗
i . In this

paper, we orthogonalize the correlated errors so that the elements within each λ∗
i can be

sampled independently of one another (Chib and Jeliazkov, 2006).

In particular, we decompose the covariance matrix Ωi as Ωi = ξIT + R̃i, where IT is the

T × T identity matrix, ξ is an arbitrary constant that satisfies the constraint ξ̄ > ξ > 0,

where ξ̄ is the minimum eigenvalue of Ωi and R̃i is a symmetric positive definite matrix. The

algorithm becomes stable by setting ξ = ξ̄/2 [see, also, Chib and Jeliazkov (2006)]. R̃i can

be further decomposed into R̃i = C ′
iCi (Cholesky decomposition). Hence, Ωi = C ′

iCi + ξIT .

Using this decomposition, the latent regression for λ∗
i , i = 1, ..., N can be written as

λ∗
i = Wiδ+ iTϕi+C ′

iηi+ei, (A.2)

where ηi ∼ N(0, σ2vIT ) and ei ∼ N(0, ξσ2vIT ). Using (A.2), the (intractable) full condi-

tional distribution of each λ∗it, i = 1, ..., N , t = 1, ..., T is given by

p(λ∗it|δ, σ
2
v , ρ, ϕi, yit) ∝ exp

(
−exp(λ∗it) + λ∗ityit − exp

(
1

2ξσ2
v
(λ∗it −w′

itδ − ϕi − qit)
2
))

,

where qit is the t − th element of qi = C ′
iηi. Let St(λ∗it|λ̂

∗
it, c1Vλ∗

it
, v1) denote a Student-

t distribution, where λ̂∗it is defined as the modal value of the logp(λ∗it|δ, σ
2
v , ρ, ϕi, yit), Vλ∗

it
=

(−Hλ∗
it
)−1 is defined as the inverse of the negative Hessian of the of the logp(λ∗it|δ, σ

2
v , ρ, ϕi, yit)

evaluated at λ̂∗it, v1 is the degrees of freedom and c1 is a positive-valued scale parameter.

Both v1 and c1 are essentially tuning parameters which are determined prior to the main

MCMC loop. To obtain the modal value we use a few Newton-Raphson rounds implemented

via the gradient

λ̂∗it = −exp(λ∗it) + yit −
1

ξσ2
v
(λ∗it −w′

itδ − ϕi − qit),

and the Hessian

Hλ∗
it
= −exp(λ∗it)−

1
ξσ2

v
.
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Then, sample a proposal value λ
∗(p)
it from the density St(λ∗it|λ̂

∗
it, c1Vλ∗

it
, v1) and move to

λ
∗(p)
it given the current point λ

∗(c)
it with probability of move

min

(
p(λ

∗(p)
it |δ,σ2

v ,ρ,ϕi,yit)St(λ
∗
it|λ̂

∗(c)
it ,c1Vλ∗

it
,v1)

p(λ
∗(c)
it |δ,σ2

v ,ρ,ϕi,yit)St(λ
∗(p)
it |λ̂∗

it,c1Vλ∗
it
,v1)

, 1

)
.

• To update qi = C ′
iηi, i = 1, ..., N in each iteration we sample ηi from ηi|λ

∗
i , δ, ϕi, σ

2
v ∼

N(p1, P1), where p1 = P1

(
Ci(y∗

i−Wiδ−iTϕi)
ξσ2

v

)
and P1 =

(
IT
σ2
v
+

CiC
′
i

ξσ2
v

)−1
.

•We sample ρ|ǫ, σ2v , ρ0, σ
2
ρ ∝Ψ(ρ)×N(d2, D2)I(−1,1)(ρ), where ǫ = (ǫ′1, ..., ǫ

′
N )′, ǫit = λ∗it−

w′
itδ−ϕi, Ψ(ρ) =

√
(1− ρ2)N×exp

(
− (1−ρ2)

2σ2
v

∑N
i=1 ǫ

2
i1

)
, d2 = D2

(
ρ0
σ2
ρ
+ σ−2

v

∑N
i=1

∑T
t=2 ǫitǫit−1

)

and D2 =
(

1
σ2
ρ
+ σ−2

v

∑N
i=1

∑T
t=2 ǫ

2
it−1

)−1
. We use an independence Metropolis-Hastings

algorithm in order to simulate ρ. A candidate value ρ′ is generated from the density

N(d2, D2)I(−1,1)(ρ) and is accepted as the next value in the chain with probability min(Ψ(ρ′)/Ψ(ρ), 1);

otherwise, the current value ρ is taken to be the next value in the sample.

• We obtain deterministically the errors ui from ui = ϕi − h1 ln yi0 − x′
ih2,i = 1, ..., N.

• We update σ2u from

σ2u|{ui}, e0, f0 ∼ IG(
e0
2
,
f0
2
),

where

e0 = e0 +N, f0 = f0 +
N∑

i=1

u2i .

2 A simulation study for the proposed Poisson model

In this section we evaluate the efficiency of the MCMC scheme for the proposed Poisson

model, utilizing a simulated data set.

We set N = 800 and T = 5. For the parameters of interest, we assume the following true

values:

β1 = 0(intercept), β2 = −0.1, β3 = 0.2, β4 = 0.3, γ = 0.1, ρ = 0.8,

σ2v = σ2u = 0.1, h1 = 0.3, h21 = 0.1, h22 = 0.5, h23 = 0.8.

Also, x2it, x3it and x4it are generated independently from 0.5N(0,1), 0.2+ N(0,1) and

0.6N(0,1), respectively. We also use the following priors:

σ−2
v ∼ G(4.2/2, 0.5/2), ρ ∼ N(0, 10)I(−1,1)(ρ), δ ∼ N(0, 100I),

h ∼ N(0, 100× I4), σ
2
u ∼ IG(4.2/2, 0.5/2).

Notice that the intercept is excluded from Wooldridge’s (2005) regression. We run the

algorithm 20000 times after throwing away the first 25000 iterations. The posterior means

and standard deviations of the parameters in question are presented in Table 1. To monitor
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Table 1: Simulated data. Estimation results
True values Mean IF CD

β1 = 0 0.0525 25.3605 0.7729

(0.0540)

β2 = −0.1 -0.1127 26.5100 -1.7495

(0.0233)

β3 = 0.2 0.1902 43.8098 -2.5536

(0.0123)

β4 = 0.3 0.3112 49.5420 2.0279

(0.0237)

γ = 0.1 0.1036 47.3089 -1.6519

(0.0165)

σ2v = 0.1 0.1058 55.3660 -0.2752

(0.0105)

ρ = 0.8 0.7724 116.6448 0.9027

(0.0676)

σ2u = 0.1 0.1843 118.0805 -1.5325

(0.0943)

h1 = 0.3 0.2652 80.66 0.5460

(0.0394)

h21 = 0.1 0.0374 35.065 -1.9768

(0.1450)

h22 = 0.5 0.4485 33.708 0.8700

(0.0586)

h23 = 0.8 0.8182 64.41 2.6057

(0.1233)

Standard deviations in parentheses.

convergence and mixing, we also report the CD statistics of Geweke (1992) and the ineffi-

ciency factor (IF); see, for example, Chib (2001). As can be seen from Table 1, the estimated

parameters are close to their true values.

3 Model comparison

The marginal likelihood is used to measure the fit of the model to the data in hand. For

model M with likelihood p(y|M,θ), where y is the data vector, and prior p(θ|M), the

marginal likelihood (ML) is defined as

p(y|M) =

∫
p(y|M,θ)p(θ|M)dθ, (A.3)

where θ = (δ,h, ρ, σ2u, σ
2
v).

Expression (A.3), though, is intractable. Using the Bayesian Information Criterion
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(Schwarz, 1978), the marginal likelihood for model M can be approximated by

p(y|M) ≈ n
−dk
2 L(θ̂|M,y), (A.4)

where L(θ|M,y) is the likelihood function and θ̂ is the maximum likelihood estimate of θ.

By taking the logarithm of both sides we have

log p(y|M) ≈ logL(θ̂|M,y)− log(n)
dk
2

= BIC, (A.5)

where dk is the dimension of θ and n is the total sample size.

Based on the second-order Taylor series expansion, we use the MCMC draws to approxi-

mate the maximum log-likelihood function, logL(θ̂|M,y), from the posterior log-likelihood

score (LLS), logL(θ̃|M,y), where θ̃ is the posterior mean of θ. The LLS is calculated as

the posterior expectation of the log-likelihood function, LLS ≈ E(logL(θ̃|M,y)).

An alternative model comparison criterion is based on cross-validation predictive densi-

ties. In particular, we apply the leave-one-out cross validation (CV) method that requires

the calculation of the conditional predictive ordinate (CPO),

CPOit = f(yit|y−it) =

∫
f(yit|Θ)f(Θ|y−it) = EΘ|y−it

[f(yit|Θ)], i = 1, ..., N, t = 1, ..., T,

(A.6)

where y−it = y \ {yit} and Θ = (δ, {ϕi}, {qit}, ξ, σ
2
v). Gelfand and Dey (1994) and Gelfand

(1996) proposed a Monte Carlo integration of CPO. More specifically,

ˆCPOit = f̂(yit|y−it) =

(
1

L

L∑

l=1

(
f(yit|y−it,Θ

(l))
)−1

)−1

, (A.7)

where L is the number of iterations after the burn-in period. Then, for each model we

calculate the average of the estimated CPO values, 1
NT

∑N
i=1

∑T
t=1 f̂(yit|y−it). Higher values

of this average imply better “goodness of fit” of a model.

4 Average marginal effects

For the proposed model, the marginal effect (ME) for the it-th component with respect to

the k-th continuous regressor is

MEkit =
∂E(yit|wit, δ, ϕi, qit)

∂xk,it
= βkexp(w

′
itδ + ϕi + qit). (A.8)

By integrating out all the unknowns (including the random effects), the posterior distri-

bution of MEkit is

π(MEkit|data) =

∫
π(MEkit|δ, ϕi, qit, data)dπ(δ, ϕi, qit|data). (A.9)

Using the composition method, we can produce a sample of MEkit values, using the
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posterior draws of δ, ϕi, qit from the MCMC algorithm. Chib and Hamilton (2002) also

used this method to calculate average treatment effects. Given a posterior sample of MEkit

values obtained from π(MEkit|data), which we denote by {ME
(l)
kit}, the average marginal

effect (AME) can be defined as

AMEk =

∑L

l=1

∑N

i=1

∑T

t=1 ME
(l)
kit

L×N × T
, (A.10)

where ME
(l)
kit = β

(l)
k exp(w′

itδ
(l)+ϕ

(l)
i + q

(l)
it ) and L is the total number of iterations after the

burn-in period.

If xk,it is binary, the marginal effect is

∆j(xk,it) = exp((w ′
itδ − xk,itβk) + βk + ϕi + qit)− exp((w ′

itδ − xk,itβk) + ϕi + qit). (A.11)

5 Empirical analysis

5.1 Additional empirical models

Model 2: Dynamic panel Poisson model with (Wooldridge, 2005)’-type latent

heterogeneity

yit|λit ∼ Poisson(λit),

λit = exp(x′
itβ + γ ln y∗it−1 + ϕi),

ϕi = h1 ln y
∗
i0 + x′

ih2 + ui,

ui ∼ N(0, σ2u).

Model 3: panel Poisson model with latent heterogeneity

yit|λit ∼ Poisson(λit),

λit = exp(x′
itβ + ϕi),

ϕi ∼ N(0, σ2u).

Model 4: Dynamic panel Poisson model

yit|λit ∼ Poisson(λit),

λit = exp(x′
itβ + γ ln y∗it−1).

5.1.1 MCMC algorithm for Model 2

Drawing upon the algorithm of Chib et al. (1998), we present the MCMC algorithm for

model 2 as the algorithms for models 3 and 4 are straightforward. It is also worth noting

that the MCMC algorithm that we used for the static model (model 3) is exactly the same

as that in the Chib et al. (1998) paper.

The conditional distributions of h and σ2u are the same as those in the proposed model.

The posterior densities of ϕi and δ = (β′, γ)′ are intractable and therefore we use the

independence Metropolis-Hastings algorithm to make draws.

6



• The posterior distribution of ϕi, i = 1, ...N is given by

p(ϕi|{yit}t≥1,h, δ, σ
2
u) ∝ exp

(
− 1

2σ2
u
(ϕi − k′

ih)
2
)
×
∏T

t=1
exp[−exp(w′

itδ+ϕi)][exp(w
′
itδ+ϕi)]

yit

yit!
.

A proposed draw ϕ
(p)
i is generated from the Student-t distribution St(ϕ

(p)
i |ϕ̂i, c2Vϕi

, v2),

where ϕ̂i = argmax logp(ϕi|{yit}t≥1,h, δ, σ
2
u) is the modal value of the logarithm of the

posterior distribution of ϕi, Vϕi
= (−Hϕi

)−1 is the inverse of the negative Hessian of

logp(ϕi|{yit}t≥1,h, δ, σ
2
u) evaluated at ϕ̂i, v2 is the degrees of freedom and c2 > 0 is a

constant. To obtain the modal value we use the Newton-Raphson method that requires the

calculation of the gradient

gϕi
= −(ϕi − k′

ih)/σ
2
u +

∑T
t=1[yit − exp(w′

itδ + ϕi)],

and the Hessian

Hϕi
= −σ−2

u −
∑T

t=1 exp(w
′
itδ + ϕi).

Given the current value ϕ
(c)
i , we move to the proposed point ϕ

(p)
i with probability

ap(ϕ
(c)
i , ϕ

(p)
i ) = min

(
p(ϕ

(p)
i |{yit}t≥1,h,δ,σ

2
u)St(ϕ

(c)
i |ϕ̂i,c2Vϕi

,v2)

p(ϕ
(c)
i |{yit}t≥1,h,δ,σ2

u)St(ϕ
(p)
i |ϕ̂i,c2Vϕi

,v2)
, 1

)
.

• The target density of δ is also intractable,

p(δ|{yit}i≥1,t≥1, {ϕi}) ∝
∏N

i=1

∏T
t=1

exp[−exp(w′
itδ+ϕi)][exp(w

′
itδ+ϕi)]

yit

yit!
.

To generate δ from its full conditional we use a multivariate Student-t distribution

MV t(δ|δ̂, c3Σ̂δ, v3), where δ̂ = argmax logp(δ|{yit}i≥1,t≥1, {ϕi}) is the mode of the log-

arithm of the right hand side of the above conditional distribution and Σ̂δ = [−Hδ]
−1 is the

negative inverse of the Hessian matrix of p(δ|{yit}i≥1,t≥1, {ϕi}) at the mode δ̂. The degrees

of freedom v3 and the scaling factor c3 are, as before, adjustable parameters. The maximizer

δ̂ is obtained by using the Newton-Raphson procedure with gradient vector

gδ =
∑N

i=1

∑T
t=1[yit − exp(w′

itδ + ϕi)]wit,

and Hessian matrix

Hδ = −
∑N

i=1

∑T
t=1[exp(w

′
itδ + ϕi)]witw

′
it.

The algorithm to generate δ works as follows:

1) Let δ(c) be the current value.

2) Generate a proposed value δ(p) from MV t(δ|δ̂, c3Σ̂δ, v3).
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3) A move from δ(c) to δ(p) is made with probability

min(
p(δ(p)|{yit}i≥1,t≥1,{ϕi}) MV t(δ(c)|δ̂,c3Σ̂δ ,v3)

p(δ(c)|{yit}i≥1,t≥1,{ϕi}) MV t(δ(p)|δ̂,c3Σ̂δ ,v3)
, 1).

5.1.2 Additional empirical results
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Table 2: Empirical results for variants of model 1

model 1a model 1b model 1AR(2)

constant 0.1344 0.4952* 0.1085
(0.1039) (0.1612) (0.1044)

ln y∗
it−1 0.1060* 0.2140* 0.1237*

(0.0342) (0.0807) (0.0464)
SS -0.0202 0.0627 -0.0112

(0.0657) (0.1006) (0.0658)
lnSIZE -0.0362 0.0126 -0.0307

(0.0271) (0.0412) (0.0284)
lnR0 0.2757* 0.3022* 0.3201*

(0.0637) (0.0732) (0.0707)
lnR1 -0.0996 -0.0948 -0.0836

(0.0677) (0.0712) (0.0695)
lnR2 0.0275 0.0405 0.0526

(0.0627) (0.0661) (0.0656)
lnR3 0.0040 0.00347 0.0139

(0.0597) (0.0643) (0.0631)
lnR4 0.0250 0.0256 0.0378

(0.0599) (0.0593) (0.0590)
lnR5 -0.0123 -0.0033 -0.0094

(0.0472) (0.0493) (0.0502)
YEAR=1976 -0.0366 -0.0368 -0.0386

(0.0232) (0.0242) (0.0233)
YEAR=1977 -0.0298 -0.0305 -0.0351

(0.0275) (0.0272) (0.0270)
YEAR=1978 -0.1409* -0.1429* -0.1490*

(0.0302) (0.0298) (0.030)
YEAR=1979 -0.1888* -0.1853 * -0.202*

(0.0335) (0.0342) (0.0343)
σ2
u 0.1053* 0.1468* 0.1051*

(0.0349) (0.0421) (0.0386)
σ2
v 0.0353* 0.0361* 0.0367*

(0.0036) (0.0038) (0.0042)
ρ 0.8213* 0.8696* 0.7165*

(0.0793) (0.1292) (0.1407)
ρ2 0.1192

(0.1321)
BIC -1402.55 -1398.73 1410.20
CV 0.2071 0.1995 0.17463

*Significant based on the 95% highest posterior density

interval. Standard deviations in parentheses. The APEs

for yit−1 is 0.1141 with a standard deviation of 0.0647 in

model 1a and 0.2276 with a standard deviation of 0.1215

in model 1b. For the 1AR(2) model, the APE is 0.1320

with a standard deviation of 0.0733.
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Table 3: Empirical results for Wooldridge’s (2005) regression

model 1a model 1b model 1AR(2)

h1 0.7236* 0.7125*
(0.0406) (0.0499)

h21(lnR0)
0.0888 -0.1071

(0.4336) (0.3545)
h22(lnR1)

-0.0078 0.0418

(0.6965) (0.6047)
h23(lnR2)

-0.3338 0.0142

(0.7116) (0.6215)
h24(lnR3)

0.3100 -0.0057

(0.6862) (0.5859)
h25(lnR4)

0.3527 -0.1982

(0.6329) (0.5216)
h26(lnR5)

0.0566 0.1350

(0.3781) (0.2882)

*Significant based on the 95% highest posterior density

interval. Standard deviations in parentheses.
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5.2 A semiparametric extension of the proposed model

For robustness check, we also considered a semiparametric modification of the proposed

model. In particular, Wooldridge (2005) acknowledges that a misspecified distribution for

the latent heterogeneity generally results in inconsistent parameter estimates. Therefore, we

decided to let this distribution be unspecified, by imposing a nonparametric structure on it,

the Dirichlet Process (DP) prior (Ferguson, 1973).

This prior has been widely used in Bayesian nonparametric modelling and it is a powerful

tool for modelling random unknown distributions. For a detailed description of the Dirichlet

process prior the interested reader is referred to Navarro et al. (2006) and Ghosal (2010) .

It is worth noting that semiparametric Bayesian Poisson regression models based on DP

priors have been considered by Jochmann and Len-Gonzlez (2004) and Zheng (2008).

In our analysis, we assume that ui follows the Dirichlet process mixture (DPM) model,

which is defined as

ui|µi, σ
2
i

iid
∼ N(µi, σ

2
i ),(

µi

σ2
i

)
|G

iid
∼ G,

G|a,G0
iid
∼ DP (a,G0),

G0(µi, σ
2
i ) ≡ N(µi;µ0, τ0σ

2
i )IG(σ

2
i ;

e0
2 ,

f0
2 ),

a
iid
∼ G(c, d).

Conditional on the mean µi and variance σ2i , the ui are independent and normally dis-

tributed. The parameters µi and σ
2
i are generated from an unknown distribution G on which

the Dirichlet process (DP) prior is imposed. The DP prior is defined by the prior baseline

distribution G0, which is a conjugate normal-inverse gamma distribution, and a nonnegative

concentration parameter a that follows a gamma prior.

So, our full model specification is

yit|λit ∼ Poisson(λit),

λit = exp(x′
itβ + γ ln y∗it−1 + ϕi + ǫit),

ǫit = ρǫit−1 + vit, − 1 < ρ < 1, vit
iid
∼ N(0, σ2v),

ϕi = h1 ln y
∗
i0 + x′

ih2 + ui,

where ui follows the DPM model that is given above. Note that now xit does not contain

an intercept.

5.2.1 MCMC algorithm for the semiparametric model

Our MCMC scheme contains two parts. In part I, we update in each iteration the parameters

({λ∗it}i≥1,t≥1, δ, {ϕi},h, σ
2
v , ρ) and recover the errors {ui} deterministically, using the auxil-

iary regression of Wooldridge (2005). In part II, we update the Dirichlet process parameters

ϑi = (µi, σ
2
i ), i = 1, ..., N , and a.

Part I
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We update the parameters ({λ∗it}i≥1,t≥1, δ, σ
2
v , ρ, {ui}) in the same way that we did for

the parametric proposed model. In addition, we update ϕi and h as follows:

•We sample ϕi|λ
∗
i ,h, δ,Ωi, σ

2
v , ϑi ∼N(d0, D0), i = 1, ..., N , where D0 =

(
1
σ2
i

+ σ−2
v i′TΩ

−1
i iT

)−1

and d0 = D0

(
k′
ih+µi

σ2
i

+ σ−2
v i′TΩ

−1
i (λ∗

i −Wiδ)
)
with k′

i = (ln y∗i0,x
′
i).

• We sample h|{ϕi}, H̃, h̃, {ϑi} ∼ N(dh, Dh), where dh = Dh

(
H̃−1h̃ +k′(ϕ−µ)

σ2

)
and

Dh =
(
H̃−1 + k′k

σ2

)−1
, where k is the matrix that consists of all ki,ϕ is the vector of all ϕi,

σ2 is the vector of all σ2i and µ is the vector of all µi.

Part II

To improve efficiency of sampling from θ|{ui}, µ0, τ0, e0, f0, we sample from the equivalent

distribution θ∗,ψ|{ui}, µ0, τ0, e0, f0, where θ = (ϑ1, ..., ϑN )′, θ∗ = (ϑ∗1, ..., ϑ
∗
M )′, M ≤ N

contains the set of unique values from the θ with ϑ∗m, m = 1, ...,M representing a cluster

location and ψ = (ψ1, . . . , ψN )′ is the vector of the latent indicator variables such that

ψi = m iff ϑi = ϑ∗m. Together θ∗ and ψ completely define θ (MacEachern, 1994). Let also

θ∗(i) = (ϑ
∗(i)
1 , ..., ϑ

∗(i)

M(i))
′ denote the distinct values in θ(i), which is the θ with the element ϑi

deleted. Also, the number of clusters in θ∗(i) is indexed from m = 1 to M (i). Furthermore,

we define n
(i)
m =

∑
j1(ψj = m, j 6= i), m = 1, ...,M (i) to be the number of elements in θ(i)

that take the distinct element ϑ
∗(i)
m .

We follow a two-step process in order to draw from θ∗,ψ|{ui}, µ0, τ0, e0, f0. In the first

step , we sample ψ and M by drawing ϑi, i = 1, ..., N from

ϑi|θ
(i), ui, G0 ∼ c

a

a+N − 1
qi0p(ϑi|ui, µ0, τ0, e0, f0) +

M(i)∑

m=1

c

a+N − 1
n(i)m qimδϑ∗(i)

m
(ϑi),

setting ψi = M (i) + 1 and ϑi=ϑ
∗
M(i)+1

when ϑ∗
M(i)+1

is sampled from p(ϑi|ui, µ0, τ0, e0, f0)

or ψi = m, when ϑi = ϑ
∗(i)
m , m = 1, ...,M (i). c is the normalizing constant and δϑj

(ϑi)

represents a unit point mass at ϑi = ϑj . The new cluster value ϑ∗
M(i)+1

is sampled from

p(ϑi|ui, µ0, τ0, e0, f0), which is the posterior density of ϑi under the prior G0. By conjugacy

we have

ϑi = (µi, σ
2
i )|ui, µ0, τ0, e0, f0 ∼ N(µi|µ0, τ0σ

2
i )IG(σ

2
i |
e0
2
,
f0
2
),

where

µ0 =
µ0 + τ0ui
1 + τ0

, τ0 =
τ0

1 + τ0
, e0 = e0 + 1, f0 = f0 +

(ui − µ0)
2

τ0 + 1
.

The probability of assigning ψi to a new cluster is proportional to the marginal den-

sity of ui, q̃i0 =
∫
f(ui|ϑi)dG0(ϑi) =qt(ui|µ0, (1 + τ0)f0/e0, e0), where qt is the Student-t

distribution, µ0 is the mean, e0 is the degrees of freedom and (1 + τ0)f0/e0 is the scale

factor. The probability of ψi equaling an existing cluster m = 1, ...,M (i) is proportional
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to n
(i)
m qim, where q̃im is the normal distribution of ui evaluated at ϑ

∗(i)
m ; hence, q̃im =

n
(i)
m exp(−1

2

(
ui − µ

∗(i)
m

)2
/σ

∗2(i)
m ).

In the second step, given M and ψ, we draw each ϑ∗m, m = 1, ...,M from

ϑ∗m = (µ∗m, σ
∗2
m )|{ui }i∈Fm , µ0, τ0, e0, f0 ∼ N(µ∗m|µm, τmσ

∗2
m )IG(σ∗2m |

em
2
,
fm
2
),

where

µm =

µ0 + τ0
∑

i∈Fm

ui

1 + τ0nm
, τm =

τ0
1 + τ0nm

,

em = e0 + nm, fm = f0 +

nm( 1
nm

∑
i∈Fm

ui − µ0)
2

1 + τ0nm
+
∑

i∈Fm

(ui −
1

nm

∑

i∈Fm

ui)
2,

and Fm = {i : ϑi = ϑ∗m} is the set of individuals that share the same parameter ϑ∗m.

•

To sample the precision parameter a we first sample η̃ from η̃|a,N∼ Beta(a + 1, N),

where η̃ is a latent variable and then sample a from a mixture of two gammas, a|η̃, c, d,M∼

πη̃G(c+M,d− ln(η̃)) + (1− πη̃)G(c+M − 1, d− ln(η̃)) with the mixture weight πη̃ satisfy-

ing πη̃/(1−πη̃) = (c+M−1)/N(d− ln(η̃)). For further details, see Escobar and West (1994).

5.2.2 Empirical results for the semiparametric model
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Table 4: Empirical results for the semiparametric proposed model

ln y∗
it−1 0.01062

(0.0303)
SS -0.1135

( 0.1064)
lnSIZE -0.0732

(0.0414)
lnR0 0.3172*

(0.0690)
lnR1 -0.0719

(0.0677)
lnR2 0.0520

(0.0660)
lnR3 0.0177

(0.0624)
lnR4 0.0269

(0.0573)
lnR5 -0.0097

(0.0502)
YEAR=1976 -0.0408

(0.0225)
YEAR=1977 -0.0408

(0.0272)
YEAR=1978 -0.1550*

(0.0309)
YEAR=1979 -0.2203*

(0.0336)
σ2
v 0.0354*

(0.0037)
ρ 0.8523*

(0.0459)
a 0.4288*

(0.3150)

*Significant based on the 95% high-

est posterior density interval. Stan-

dard deviations in parentheses. The

APE for yit−1 is 0.0111 with a stan-

dard deviation of 0.0070.
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Table 5: Empirical results for Wooldridge’s (2005) regression

h1 0.7729*
(0.0401)

h21(lnR0)
-0.0732

(0.3983)
h22(lnR1)

0.0529

(0.5987)
h23(lnR2)

-0.0444

(0.6157)
h24(lnR3)

0.0854

(0.6732)
h25(lnR4)

-0.1804

(0.5125)
h26(lnR5)

0.1900

(0.3677)

*Significant based on the 95% high-

est posterior density interval. Stan-

dard deviations in parentheses.
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