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Abstract. Constraint solvers are complex pieces of software and are
notoriously difficult to debug. In large part this is due to the difficulty
of pinpointing the source of an error in the vast searches these solvers
perform, since the effect of an error may only come to light long af-
ter the error is made. In addition, an error does not necessarily lead to
the wrong result, further complicating the debugging process. A major
source of errors in a constraint solver is the complex constraint propaga-
tion algorithms that provide the inference that controls and directs the
search. In this paper we show that metamorphic testing is a principled
way to test constraint solvers by comparing two different implementa-
tions of the same constraint. Specifically, specialised propagators for the
constraint are tested against the general purpose table constraint propa-
gator. We report on metamorphic testing of the constraint solver Minion.
We demonstrate that the metamorphic testing method is very effective
for finding artificial bugs introduced by random code mutation.

1 Introduction

Metamorphic testing [24] involves generating new test cases from existing ones,
where the expected result of a new test case can be generated from the result
of an existing test via a metamorphic relation. By comparing the results of the
original test with the new one we can identify cases where the metamorphic
relations are broken, indicating the presence of errors in the implementation. As
an illustrative example in the context of a constraint satisfaction problem (CSP),
given any unsolvable CSP, adding a constraint or removing domain values from
a variable should result in another unsolvable CSP.1

Metamorphic testing cannot be used completely in isolation — a solver that
immediately returns that a problem is unsolvable would pass all of the meta-
morphic tests given in this paper. However, the big advantage of metamorphic
testing of a constraint solver is that it transforms the relatively hard problem
of validating the behaviour of a constraint solver against an independent oracle
into comparing a solver against its own behaviour on a different problem.

One major area of constraints research is the creation of new propagation
algorithms for constraints. Here metamorphic testing shines — we can check

1 The authors have experienced both of these conditions being violated in both their
own, and other, solvers.
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the correctness and propagation level of a new propagation algorithm for a con-
straint by comparing it with a previously existing algorithm. Assuming the two
algorithms do not contain exactly the same bug (which is unlikely, if the two al-
gorithms were independently designed and implemented), comparing one against
the other provides us with a high level of confidence that both are correct.

The central argument of this paper is that metamorphic testing is a good fit
for constraint solving. While it can be difficult to solve a constraint problem, it
is easy to generate one randomly, and there are simple transformations that can
take one constraint problem and produce another with the same set of solutions.

2 The Constraint Solver Minion

Throughout this paper, we use the Minion constraint solver to illustrate meta-
morphic testing in constraint solvers. We begin with an overview of the most
important features of Minion’s input language, for a more extensive discussion
of Minion’s features see [10].

Variable Types: Minion provides four implementations of integer variables.
BOOL (Initial domain must be {0, 1}), DISCRETE and BOUND (Initial domain
must be a range {x..y}) and SPARSEBOUND. BOUND and SPARSEBOUND only
support changing the bounds of a variable during search.

Constraints: The current release of Minion features 72 constraints, includ-
ing arithmetic and logical constraints, element [8], alldiff [11] and gcc [19].
Constraints can also be combined, either disjunctively or conjunctively [14].

Reification : Every constraint in Minion can be reified or reifyimplied [14]
(also called half reification [6]): these combine a constraint C and a Boolean
b into the new constraint b ⇐⇒ C and b =⇒ C respectively.

Search Orders: Minion provides ten variable orderings, including static or-
derings, smallest domain first, conflict ordering [18] and weighted degree [2].

Global Propagation Level: Minion can perform higher levels of consistency,
including Singleton Arc Consistency [5].

Some of Minion’s features make testing particularly challenging. Several con-
straints have different implementations for the different types of variables. Also,
Minion allows propagators to dynamically change the set of variables whose
changes they are informed of. Further, these changes can either automatically
revert when search backtracks, or remain in their new location [8]. This means
testing must verify how a propagator behaves over an entire search.

3 Instance-based Testing in Minion

The original method of testing Minion involved a set of small test instances, for
which the following information was derived by hand:

SOLCOUNT n The number of solutions to the problem is n.
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NODECOUNT n The number of search nodes until the first solution under Min-

ion’s default search strategy is n.
CHECKONESOL sol The first solution with Minion’s default search strategy is

sol (given as a list).

SOLCOUNT tests are used to test variable and value ordering heuristics, while
NODECOUNT is used to check that a constraint propagator achieves an expected
level of consistency. At the time of writing, this test suite includes 312 instances.
New tests are added whenever a bug is discovered in Minion.

For illustration, the bugs found in the inequality constraint (
∑

ci×xi ≤ y for
constants ci and variables xi and y) before metamorphic testing was introduced
include: Summing a list of Boolean variables to ≥ −1; summing variables to
greater than 65,536 (which overflowed the unsigned short type in C); crashing
if any ci = 0; and sums where all variables were assigned at the root node.

This test-based approach is effective at preventing the reintroduction of pre-
viously identified bugs. However, we still found users discovering a large number
of errors. This motivates the adoption of the more proactive metamorphic ap-
proach. Instance-based testing remains in use to complement the metamorphic
tester described in the following section, and remains the primary means of test-
ing variable and value ordering heuristics.

4 Metamorphic Testing in Minion

In this section we explain how Minion uses metamorphic testing for propagators.
Given a constraint propagator to test, testing begins by generating a problem
instance consisting of a single occurrence of that constraint with a random do-
main for each variable in its scope. As an example, consider difference(x,y,z),
which implements the constraint |x − y| = z. The leftmost instance in Fig. 1
shows a corresponding instance. The tester adds several random additional con-
straints, as presented in the middle instance of Fig. 1. These extra constraints
are necessary because many bugs only occur when multiple propagators inter-
act. Optionally, the tester may at this stage create an optimisation problem
by MAXIMISING or MINIMISING a randomly chosen variable. Finally, the tester
transforms this instance into another instance with the same set of solutions
by replacing the constraint being tested with an equivalent table constraint,
as presented in the rightmost instance of Fig. 1. The tester then compares the
searches of the middle and rightmost instances.

We test the reified version of each constraint propagator separately. The
production of metamorphic instances proceeds similarly, but differs in the con-
struction of the table constraint. The scope of the table constraint includes that
of the reified constraint, and the reification variable.

The rationale for using a table constraint is that it can represent any other
constraint and many propagators for the table constraint achieve GAC [15].
Any errors in Minion’s implementation of the table constraint propagator would
likely be found while testing it against all other constraints. Also, Minion in-
cludes several implementations of table constraints [15,20], which are compared.
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MINION 3

**VARIABLES**

DISCRETE x1 {-3..0}

DISCRETE x2 {0..4}

DISCRETE x3 {0..1}

**CONSTRAINTS**

difference(x1,x2,x3)

**EOF**

MINION 3

**VARIABLES**

DISCRETE x1 {-3..0}

DISCRETE x2 {0..4}

DISCRETE x3 {0..1}

**CONSTRAINTS**

difference(x1,x2,x3)

diseq(x1,x3)

eq(x2,x3)

**EOF**

MINION 3

**VARIABLES**

DISCRETE x1 {-3..1}

DISCRETE x2 {-0..4}

DISCRETE x3 {0..1}

**TUPLELIST**

tab 3 3

-1 0 1 0 0 0 0 1 1

**CONSTRAINTS**

table([x1,x2,x3],tab)

diseq(x1,x3)

eq(x2,x3)

**EOF**

Fig. 1: Stages of production of metamorphic instances.

The testing process is automated in Python. For each propagator, there is a
Python function that, given a list of domains for each variable, returns the list of
allowed tuples. Minion is run on the original and transformed instances with the
default static variable ordering. The search trees of both instances are compared
according to the metamorphic relations described in the following section.

5 Tree Comparison

The tester compares the search trees explored by Minion in solving two different
instances, which differ only in the expression of the constraint being tested. If
the tested propagator achieves GAC, Minion will explore identical search trees
for both instances. If the propagator achieves less than GAC then the search tree
may include extra nodes and values but will still find the same set of solutions.

We begin with a formal definition of a two-way branching search tree, which
is commonly employed in modern constraint solvers, including Minion:

Definition 1. Consider a CSP with a list of variables V and a function D which
gives the initial domain of every variable. A search node contains a function N
which maps each v ∈ V to a subset of D(v) and one of the following labels:

Fail : A fail node has no children and represents no solutions. In this case
∀v ∈ V.|N(v)| = 0 (some solvers do not empty all domains at a failure node.
We require this to make node comparison easier)

Solution : In a solution node, |N(v)| = 1 for all v ∈ V . N then represents a
single assignment to every variable, which is a solution to the CSP.

Branch : In a branch node, there is a branching literal 〈v, x〉, where v ∈ V
and x ∈ D(v) and two child nodes, where in the left v is assigned x, and in
the right x is removed from the domain of v. |D(v)| must be > 1.

This definition is purposely loose — we could easily place (and check) extra
requirements on search trees, in particular between a search node and its children
in the case of branching nodes but this has not appeared necessary thus far.
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When the tester compares two propagators which achieves GAC, comparing
search trees is easy – check the search trees are identical, including equality of the
variable domains at each node. For weaker propagators we need a more complex
method of comparing trees, which is given in Definition 2.

Definition 2. Consider a set of variables V with initial domains D and search
nodes N1, N2 from two search trees of CSPs with variables V with initial domains
D (but possibly different constraints). The tree rooted on N1 is a subtree of the
tree rooted on N2 if ∀v ∈ V.N1(v) ⊆ N2(v) and the following are true:

– If N2 is a solution node, so is N1, similarly if N2 is a fail node, so is N1.
– If N2 is a branch node with branch literal l = 〈v, x〉, then one of the following

cases is true:
• N1 is also a branch node, N1 also branches on l, and N1’s left child is

a subtree of N2’s left child (and similarly for right child).
• x /∈ N1(v), there are no solutions in the subtree under N2’s left child and

N2’s right child is a subtree of N1.

The most complex part of Definition 2 is the final branching case. In this
case, we branch on a literal in N2 that does not occur in N1. All we know about
the left branch of this node is that it will contain no solutions. We will show
later this is equivalent to being a supertree of a fail node.

We also need to define propagators, and how they change search states. The
property the tester uses to compare search trees is given in Lemma 1 below.
Intuitively, Lemma 1 shows that if we run propagators on a search state, then
either adding more literals to the search state, or replacing one or more propa-
gators with weaker propagators, never leads propagation removing more literals.
This lemma uses the fact that a GAC propagator removes every literal which
can correctly be removed and that propagators are inflationary (they never add
literals to the search state). This lemma applies to a wide range of propaga-
tors, including non-monotonic propagators or propagators which use randomised
algorithms[23]. This paper does not contain a full discussion of propagators: for
a general overview see [1,22].

Lemma 1. Consider two search states N and M on the same set of variables
V , where ∀v ∈ V.N(v) ⊆ M(v) (from here denoted by N ⊆V M), and two lists
of inflationary propagators P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉 where for all
i, pi and qi are both propagators for a constraint ci and the pi achieves GAC. If
NP is a result of applying elements of P to N until a fixed point is reached, and
similarly for MQ, then NP ⊆V MQ.

Proof. We proceed by induction. Consider a search state S where NP ⊆V S ⊆V

M , and a propagator qi ∈ Q. Then the result SQ of applying qi to S must
be contained in M as qi is inflationary, and must satisfy NP ⊆V SQ, because
NP ⊆ S, and NP is a fixed point for P and therefore all of the pi.

Given Lemma 1, we can now prove our main result, which is that the def-
inition of subtrees given in Definition 2 is correct, and the tester uses this in
metamorphic testing to check the correctness of propagators.
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Lemma 2. Consider a set of variables V with initial domains D, and two lists
of propagators P = 〈p1, . . . , pn〉 and Q = 〈q1, . . . , qn〉, where for all i pi and qi
are both propagators for a constraint ci, and the pi achieves GAC. Given a static
variable and value ordering, a search tree generated by P is a subtree of a search
tree generated by Q.

Proof. We will proceed inductively. To begin, apply P and Q to D to get the root
nodes of the search states. By Lemma 1 we know that ∀v ∈ V.P (D) ⊆ Q(D),
and as correct propagators never remove solutions, the set of assignments to
P (D) and Q(D) which are solutions will be the same. Now consider any pair of
search states NP and NQ where ∀v ∈ V.NP (v) ⊆ NQ(v) and the assignments to
NP and NQ which are solutions are the same. We then continue our induction
by considering the possible types of NQ.

If NQ is a branch node with branching literal l = 〈v, x〉, there are two
possibilities: either x ∈ NP (v) or x 6∈ NP (v). If x 6∈ NP (v), then the left child of
NQ is created from NQ by reducing the domain of v to {x} and then applying
Q. None of the assignments to this search state will be solutions, as x 6∈ NP (v)
and the set of assignments to NP and NQ which are solutions are the same.
Therefore this child and all of its children are not solution nodes.

If x ∈ NP (v), then the branching literal we pick for NP must also be l, as
the value and variable order is static. The left child of NP is created by reducing
the domain of v to {x} and then running P to a fixed point. The left child of
NQ is created similarly, and by Lemma 1 these children will satisfy our inductive
hypothesis. Similarly, the right children also satisfy the inductive hypothesis.

If NQ is a fail node, then as ∀v ∈ V.NP (v) ⊆ NQ(v), NP is also a fail node.
Similarly, if NQ is a solution node, then as the assignments to NQ and NP

which are solutions are the same, then NP must also be a solution node.

6 Practical Experience

Metamorphic testing was introduced into Minion in 2007. It is impossible to
measure reliably the number of bugs it has discovered over time, as it has been
used during the development of every constraint [13,14,20,15,19,11,12,9] added
to Minion since 2007 and many bugs will be found at this stage. We can say no
bug has been reported in any propagator which was published after development
in Minion, except for one which was not added to the metamorphic tester.

6.1 Mutation Testing

In order to test the robustness of metamorphic testing, we performed muta-
tion testing [4,16]. We tested three constraints: strict (lexless) and non-strict
(lexleq) lexicographic ordering, difference, and the reified and reifyimplied
variants of these three constraints. difference is an example of a propaga-
tor with complex arithmetic, while lexless and lexleq are global constraints.
These constraints were still simple enough to check which mutations actually in-
troduced bugs. We ran the tester for the difference constraints for 1000 tests,
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and the lex constraints for 100 tests (the metamorphic tester tests global con-
straints less as tests take much longer to run). We ran the tester 10 times on
each mutation. After filtering out non-compiling mutations, for each constraint
we have 20 mutations generated by changing a random Boolean operator (an
ROR mutation [17]) and 10 mutations generated by removing a random line of
code (an SDL mutation [17]).

The tester found each bug in at least one out of the ten test runs. The non-
buggy mutations fall into three groups. Five mutations introduced inefficiencies
without changing propagation. Three mutations changed the propagation level of
a non-GAC propagator, which is not currently be detected. Finally, one mutation
improved performance by removing unnecessary code!

Three mutations were only detected in some runs of the tester. Two lex
bugs passed more than half of the time, each passing six out of ten test runs.
These bugs only affected the first invocation of the constraint, and required
several variables already to be assigned by other constraints. This demonstrates
the importance of introducing extra constraints to the models. One difference
instance passed eight out of ten times. This bug introduced a problem in reifying
the constraint, by acting as if the domain of the first variable had no holes in it.
This problem only very occasionally resulted in an incorrect solution.
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Fig. 2: Number of tests before detecting a bug introduced by a code mutation

Figure 2 shows the median number of tests that were needed before detecting
a bug that was introduced by a source code mutation, sorted by first failing test.
In many cases bugs are detected with less than 25 test instances.

6.2 Limitations of Metamorphic Testing

There have been three wrong-answer bugs found in released versions of Minion
since the introduction of metamorphic testing. One involved a constraint which
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was not added to the metamorphic tester. The other two involved large domains
– the first involved domain values larger than 230, the second searches with
more than 231 search nodes. Another source of occasional bugs has been bad
behaviour on inputs which were supposed to be rejected – the tester only tests
valid constraint problems.

6.3 Related Work

Many large A.I. systems have developed similar test frameworks, where many
problems, sometimes randomly generated, are tested for correctness. We discuss
a few of the most relevant here.

Testing of the Gecode solver [7] has evolved similarly to Minion’s. Gecode has
an extensive list of fixed tests and a tester which uses random problems. Gecode’s
random tests creating a random search state which contains a known solution.
Literals not in the known solution are removed one by one and the propagator
is run, checking no literals from the known solution are ever removed. Other
properties of propagators (such as if reaching a fixed point) are also checked.
This approach has some limitations compared to Minion, such as not testing
multi-solution problems, optimisation problems, or if the propagator works when
backtracking. Also, search-tree comparison metamorphic testing should be easier
to add to other solvers, as it only requires solvers to output their search tree.

Brummayer and Biere [3] generate random inputs for SMT solvers. Tthey
compare the results of multiple solvers looking for inconsistencies. This was very
successful, but not useful for solvers like Minion with a unique input format. Also,
their technique could not be used to detect the level of propagation achieved.

Reger, Suda and Voronkov discuss the testing of the Vampire theorem prover
[21]. They use a fixed set of benchmarks, testing the solver’s many configuration
options against each other, and also validating the generated proof.

7 Conclusions

Overall, metamorphic testing has been a great success for Minion. It is impossi-
ble to measure the number of bugs it has discovered, as it is used by developers
when creating new propagators, when large numbers of bugs are found and fixed
during development.

While metamorphic testing has been very useful in Minion, it is not imme-
diately applicable to all solvers. One major limitation is learning solvers, where
new constraints are added during search. Significant metamorphic tests could
still be performed in such solvers by checking that the solver produces the same
set of solutions, and optimisation problems achieve the same optimal solution. It
would be interesting to investigate if more subtle forms of metamorphic testing
would be beneficial in such cases.
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