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Abstract. We consider the noisy thermal amplifier channel, where signal modes are amplified together with
environmental thermal modes. We focus on the secret-key capacity of this channel, which is the maximum
amount of secret bits that two remote parties can generate by means of the most general adaptive protocol,
assisted by unlimited and two-way classical communication. For this channel only upper and lower bounds
are known, and in this work we improve the lower bound. We consider a protocol based on squeezed states
and homodyne detections, in both direct and reverse reconciliation. In particular, we assume that trusted
thermal noise is mixed on beam splitters controlled by the parties in a way to assist their homodyne
detections. The new improved lower bounds to the secret-key capacity are obtained by optimizing the key
rates over the variance of the trusted noise injected, and the transmissivity of the parties’ beam splitters.
Our results confirm that there is a separation between the coherent information of the thermal amplifier
channel and its secret key capacity.

1 Introduction

In the past decades, quantum information science [1,2]
has successfully achieved a huge amount of goals. In par-
ticular, quantum key distribution (QKD) has emerged as
the most mature quantum technology. The aim of QKD
is to distribute secret keys between two parties, a sender
(Alice) and a receiver (Bob), who perform a communi-
cation scheme in two stages. The first stage is quantum
communication over a quantum channel controlled by an
eavesdropper (Eve), ending with Alice and Bob sharing
a raw key. During the second stage of classical communi-
cation (CC), the parties run a classical protocol of error
correction, sifting and privacy amplification. In this way,
they extract a shorter key over which Eve only has a negli-
gible amount of knowledge. The fundamental mechanism
ensuring security is the no-cloning theorem [3], which for-
bids a perfect copy of the non-orthogonal signal states sent
by Alice.
Two main designs of QKD exist. One is based on

qubits [4], the other is based on continuous-variable
(CV) quantum systems [5,6], which are described by
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Sergei Kulik, and Olivier Pfister.
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an infinite-dimensional Hilbert space. In particular,
Gaussian CV QKD [6] received a lot of attention for
the relative simplicity of its theoretical analysis, and the
simplicity of its experimental realization based on cheap,
off-the-shelf, linear optical elements and highly efficient
homodyne detectors, even at non-standard frequencies [7].
During the past years, the research in Gaussian QKD
has led to the design and experimental implementa-
tion of a number of protocols, including one-way [8–23],
and two-way [24–31] schemes, as well as the study of
measurement-device-independent [32–38] schemes.
An important goal in this research area is to determine

the optimal secret key rate, or secret-key capacity, over
the various models of quantum communication channels.
This computation is generally complicated due to the fact
that feedback has to be taken into account. More precisely,
one has to optimize the key-rate over adaptive LOCCs,
i.e., local operations (LOs) assisted by unlimited two-way
CC. The combined use of the relative entropy of entangle-
ment (REE) and teleportation stretching allowed PLOB
[39] to upperbound the secret-key capacities of Pauli
channels, erasure channels, amplitude damping channels,
and bosonic Gaussian channels (see also the follow-up
works [40–44]). Among the Gaussian channels, the ther-
mal loss channel and the thermal amplifier are the most
interesting and important. In a previous work [45], we
showed how the lower bound to the secret key capacity
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of the thermal loss channel can be improved by exploit-
ing the benefits of injecting trusted thermal noise [12,18].
This type of analysis has not been yet performed for the
thermal amplifier channel.

In this work, we improve the lower bound to the
secret-key capacity of the thermal amplifier channel by
computing the achievable rate of a QKD protocol based
on squeezed states and homodyne detections. We assume
that the parties possess quantum memory so that they
do not need to reconcilate their bases, i.e., the choices of
the q or the p quadrature. We also assume that trusted
thermal noise is locally used by Alice or Bob, depending
on whether the protocol is implemented in direct recon-
cilation (DR) or reverse reconciliation (RR). Under these
conditions, the lower bound based on the coherent infor-
mation [46,47] is always beaten by the rate in DR (and
also outperformed by the RR rate in a small region for
low gains and high thermal noise).

2 Upper and lower bounds to the secret-key

capacity of the thermal amplifier

Consider two parties, Alice and Bob, performing an adap-
tive protocol over a quantum channel E . After n uses,
they share the output state ρn := ρ (E⊗) which depends
on the sequence of adaptive LOCCs performed, i.e., L =
{Λ0,Λ1, ...,Λn}. Let φn be a private target state [48]
with information content equal to nRn secret bits. The
output state ρn and φn fulfill the ǫ-security relation
||ρn − φn|| ≤ ǫ. Now, the generic two-way capacity of the
channel can be obtained by optimizing over all the possi-
ble LOCC-sequences L, and by taking the limit of infinite
channel uses, i.e., n → ∞. In formulas, we can define the
secret key capacity as follows

K(E) := sup
L

lim
n→∞

Rn. (1)

This quantity gives the maximum achievable number of
secret bits that can be transmitted per channel use.
Let us introduce the quadrature vector x̂ := (q, p)T .

Then, a thermal amplifier channel Eg,n̄ corresponds to the
transformation

x̂ → √
gx̂+

√

g − 1x̂E (2)

where g > 1 is the gain, and x̂E are the quadratures of
a thermal environment mode E with n̄ mean number of
photons. Let us set ω = 2n̄+ 1 and

h(x) :=
x+ 1

2
log2

x+ 1

2
− x− 1

2
log2

x− 1

2
. (3)

Then, we may write the secret-key capacity of the thermal
amplifier channel K(Eg,n̄) as

Ω(g, n̄) ≤ K(Eg,n̄) ≤ Φ(g, n̄), (4)

where the lower bound [49] is given by

Ω(g, n̄) = log2

(

g

g − 1

)

− h(ω) (5)

and corresponds to the coherent information of the chan-
nel, which is defined as the coherent information of its
(asymptotic) Choi matrix [39,50]. In equation (4), the
upper bound is computed from the REE [51–53] of the
(asymptotic) Choi matrix and is equal to [39]

Φ(g, n̄) =











log2

(

gn̄+1

g−1

)

− h(ω), for n̄ < (g − 1)−1

0, otherwise.

(6)

3 Improving the lower bound

We now present a QKD protocol whose key rate in DR
and RR improves the lower bound in equation (4). Even
though the improvement found is small, it is meaning-
ful because it shows that the coherent information of the
thermal amplifier channel cannot be its secret key capac-
ity. For instance, when Eve has n̄ = 1 photon, the key rate
drops to 0 when transmissivity is approximately 1.33 for
the previously known lower bound in equation (5), while
drops to 0 when transmissivity is 1.38 for the improved
lower bound. First we derive the new achievable rates in
Sections 3.1 and 3.2. Then we numerically compare the
results in Section 3.3.

3.1 Achievable rate in direct reconciliation

We show the following result.

Theorem 1. Consider a thermal amplifier channel, with
gain g and thermal noise ω. Its secret key rate is lower-
bounded by the achievable DR rate

R◮(g, ω) = max
ηA,γ

R◮ (g, ω, ηA, γ) , (7)

where

R◮(g, ω, ηA, γ) :=
1

2
log2

g[gηAω + γ(g − 1)(1− ηA)]

(g − 1)[gγ(1− ηA) + ηAω(g − 1)]

+h

(
√

ω[gηA + γω(g − 1)(1− ηA)]

gηAω + γ(g − 1)(1− ηA)

)

−h(ω), (8)

and the maximization is over transmissivity ηA of a beam
splitter at Alice’s side, and the thermal variance γ ≥ 1.

Proof. Consider the Gaussian CV-QKD protocol
described in Figure 1. We study its security in
the entanglement-based (EB) representation. Thus, we
assume that Alice has a two-mode squeezed vacuum
(TMSV) state Φµ of modes A0 and B0. The covariance
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matrix (CM) describing this zero mean Gaussian state is
the following [6]

VA0B0
= VTMSV(µ) :=

(

µI
√

µ2 − 1Z
√

µ2 − 1Z µI

)

, (9)

where I =diag(1, 1) and Z =diag(1,−1), and µ is the vari-
ance of the TMSV state. Alice’s local mode A0 is processed
by a beam splitter with transmissivity ηA, together with
mode v in a thermal state of variance γ, and CM Vv = γI.
One of the outputs, A′, is discarded, while the other, A,
is homodyned randomly switching between quadrature
q and p. This operation prepares thermal states in the
travelling mode B0.

Mode B0 is sent through the thermal amplifier chan-
nel with gain g > 1 and thermal noise ω = 2n̄ + 1. The
thermal input mode E is part of Eve’s TMSV state with
CM VeE = VTMSV(ω) as in Figure 1. Eve’s output modes
e and E′ are stored in a quantum memory, which is
coherently measured at the end of the protocol (collec-
tive attack). The channel output B, travelling to Bob, is
stored in Bob’s quantum memory (BQM) for later mea-
surements. After many uses of the channel (n ≫ 1), Alice
communicates which quadrature she has measured in each
round, thus Bob can perform exactly the same sequence of
homodyne detections on the stored modes, and then infer
the outcomes of Alice’s preparation stage.

The initial global state ρ0 of Alice, Bob and Eve is given
by the tensor product ρ0 = ρA0B0

⊗ ρeE ⊗ ρv, having CM
V

◮

0 = VA0B0
⊕VeE⊕Vv = V

◮

A0B0eEv. For convenience,

we rearrange the state as V
◮

0 = VA0vB0Ee, and process
it by a sequence of symplectic transformation describing
the evolution throughout the beam splitter (ηA) and the
amplifier (g). We first process mode A0 and v, by applying

the symplectic transformation Ṽ
◮ = SηA

V0S
T
ηA

, where
SηA

:= TBS(ηA)⊕ I⊕ I⊕ I, with

TBS(ηA) :=

( √
ηAI

√
1− ηAI

−√
1− ηAI

√
ηAI

)

. (10)

Then, we process the CM Ṽ
◮ to consider the evolution

of the state through the thermal amplifier, by apply-
ing the symplectic transformation SgṼ

◮
S
T
g , where Sg :=

I⊕ I⊕TAMP (g)⊕ I, and

TAMP (g) :=

( √
gI

√
g − 1Z√

g − 1Z
√
gI

)

. (11)

Thus, we can compute the CM V
◮, corresponding to the

quantum state ρAA′BE′e. Then we can trace out mode
A′ to obtain the output state ρABE′e = TrA′(ρAA′BE′e)
with CM V

◮

ABE′e. From this CM, we may compute
Alice’s and Bob’s mutual information IAB as well as
Eve’s Holevo function χAE , bounding Eve’s knowledge on
Alice’s encoding variables.
Under ideal conditions of perfect reconciliation effi-

ciency, the key rate in DR is given by R◮ := IAB − χAE .
We can derive the analytical expression of the asymptotic
key rate, when the Gaussian modulation is large µ → ∞.

Fig. 1. Protocol with trusted thermal noise in DR. Alice has a
TMSV state, whose mode B0 is sent to Bob through a thermal
amplifier channel with gain g. Mode A0 is processed by a beam
splitter (BS) with transmissivity ηA together with a thermal
mode v with variance γ, and then measured by a homodyne
detector in q or p. The attack is performed by Eve, who exploits
modes e and E in a TMSV state (with variance ω) and stores
the output in Eve’s quantum memory (EQM). The signals from
Alice are stored by Bob in his quantum memory (BQM) and
homodyned after Alice has sent to Bob the correct sequence of
homodyne detections to perform.

To compute IAB , let us first consider the CM describing
modes A and B. This is given by the following expression

V
◮

AB =

(

[ηAµ+ (1− ηA)γ]I
√

gηA(µ2 − 1)Z
√

gηA(µ2 − 1)Z [gµ+ (g − 1)ω]I

)

, (12)

from which we can extract Alice’s variance VA = ηAµ +
(1 − ηA)γ. Applying homodyne detection on mode B
we obtain the following expression for Alice’s variance
conditioned to Bob outcomes

VA|β =
gγ (1− ηA) + ηAω (g − 1)

g
. (13)

From the expression of VA and VA|β , and using the def-

inition of mutual information IAB = 1
2
log2 VAV

−1
A|β , we

obtain the asymptotic Alice and Bob’s mutual informa-
tion, which is given by

IAB
µ→∞
=

1

2
log2

gηAµ

gγ(1− ηA) + ηAω(g − 1)
. (14)

We then compute Eve’s Holevo function, defined as
χAE := ST − S◮

C , where ST is the von Neumann entropy
of ρE′e, and SC is that of the conditional state ρE′e|A. We
consider the block of CM V given by

V
◮

E′eA =

(

V
◮

E′e C

C VA

)

, (15)

where VA = [ηAµ+ (1− ηA)γ]I, and

V
◮

E′e =

(

[(g − 1)µ+ gω]I
√

g(ω2 − 1)Z
√

g(ω2 − 1)Z ωI

)

,

C =

(
√

(g − 1)ηA(µ2 − 1)I
0I

)

. (16)
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We then compute the asymptotic symplectic spectrum of
V

◮

E′e, obtaining the following symplectic eigenvalues

{ν1, ν2}
µ→∞→ {(g − 1)µ, ω}. (17)

The total von Neumann entropy is ST = h(ν1) + h(ν2).
Considering that h(x) = log2(ex/2) for x → ∞, we can
obtain the following asymptotic formula

ST
µ→∞
= log2

e

2
(g − 1)µ+ h(ω). (18)

After Alice’s homodyne detection of quadrature q (or p)
on mode A, we also obtain Eve’s conditional CM

V
◮

E′e|A = V
◮

E′e −C (ΠVAΠ)
−1

C
T , (19)

where Π = diag(1, 0) for homodyne detection on q and
Π = diag(0, 1) for homodyne detection on p. From
equation (19) we can compute the symplectic spectrum
of V◮

E′e|A. After some algebra and working in the limit

of large modulation (µ → ∞), we obtain the analytical
expressions of the symplectic eigenvalues

ν̄◮1
µ→∞
=

√

(g − 1)[gηAω + γ(g − 1)(1− ηA)]

ηA
µ,

ν̄◮2
µ→∞
=

√

ω[gηA + γω(g − 1)(1− ηA)]

gηAω + γ(g − 1)(1− ηA)
. (20)

From this symplectic spectrum we can compute the con-
ditional von Neumann entropy SC = h(ν̄1) + h(ν̄2). For
large µ, it becomes

S◮

C

µ→∞
=

1

2
log2

e2

4

(g − 1)[gηAω + γ(g − 1)(1− ηA)]

ηA
µ

+h
(

ν̄◮2
)

. (21)

Combining equations (18) and (21) in the definition of the
Holevo function χAE := ST − S◮

C , we derive

χAE
µ→∞
=

1

2
log2

(g − 1)ηAµ

gηAω + γ(g − 1)(1− ηA)
+h(ω)−h(ν̄◮2 ).

(22)

Finally, using equations (14) and (22), we obtain the ana-
lytic expression of the asymptotic key rate in DR, which
is given in equation (8). �

The secret key rate of equation (8) can be optimized
over Alice’s free parameters, which are the transmissivity
ηA ∈ [0, 1] and the variance γ ≥ 1. When ηA = 1, which
means we have no trusted noise injected by Alice, it is easy
to verify that R◮(g, ω, 1, γ) = log2[g/(g − 1)]− h(ω), cor-
responding to the previous lower bound Ω in equation (5).
It is therefore clear that the optimized achievable rate R◮

in equation (7) is ≥ Ω for any value of the gain. In the
numerical comparison below (Sec. 3.3) we explicitly show
that there is a strict separation, so that we have R◮ > Ω
in a wide range.

Fig. 2. Protocol with trusted thermal noise in RR. Alice starts
from a TMSV where mode B0 is sent to Bob through a ther-
mal amplifier channel with gain g (and thermal noise ω), while
mode A0 is stored in Alice’s quantum memory (AQM), wait-
ing for the correct sequence of homodyne detections, which is
announced by Bob at the end of the protocol. The attack is
assumed to be collective, with Eve using a TMSV state, whose
output modes, e and E′, are stored in her quantum memory
(EQM). At the channel output, the signals are processed within
Bob’s private space, by a beam splitter (BS) with transmissiv-
ity ηB and a thermal mode v with variance γ. The signal modes
are then homodynes either in q or p. At the end, Bob publicly
declares to Alice his sequence of homodynes. At this point,
Alice performs the correct sequence of homodyne detections
on the modes A she stored in her quantum memory.

3.2 Achievable rate in reverse reconciliation

We now show the following.

Theorem 2. Consider a thermal amplifier channel with
gain g and thermal noise ω. Its secret key rate is lower-
bounded by the achievable RR rate

R◭(g, ω) = max
ηB ,γ

R◭ (g, ω, ηB , γ) , (23)

where

R◭(g, ω, ηB , γ) :=
1

2
log2

ηBω + γ(g − 1)(1− ηB)

(g − 1)[γ(1− ηB) + ηBω(g − 1)]

+h

(
√

ω[ηB − γω(g − 1)(1− ηB)]

ηBω + γ(g − 1)(1− ηB)

)

−h(ω), (24)

and the maximization is over the transmissivity ηB of
Bob’s beam splitter, and the thermal variance γ ≥ 1.

Proof. The proof is similar to the DR discussed in pre-
vious section. Consider the Gaussian protocol in Figure 2.
Alice starts from the same TMSV state Φµ, of modes A0

and B0, given in equation (9). Now, it is Alice’s mode A
that is stored in Alice’s quantum memory (AQM) for later
measurements, while mode B0 travels to Bob through the
amplifier channel. Bob implements a noisy detection, mix-
ing the input mode with a thermal mode v with variance γ
via a beam splitter whose transmissivity is ηB . Then Bob
measures the q or the p quadrature (communicating his
choices at the end of the quantum communication after
n ≫ 1 rounds).
The initial global state of Alice, Bob and Eve has

CM V
◭

0 = VAB0
⊕VeE⊕Vv = V

◭

A0B0eEv, and we again
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Fig. 3. Comparison between the previous lower bound and the new improved results. In the left panel, we consider a thermal
amplifier channel with n̄ = 1 photons and arbitrary gain g. We then compare the new lower bound R◮ of equation (7) (red-
dashed line) with the coherent information of the channel Ω of equation (5) (solid-black line). We also show the upper bound
Φ of equation (6) (black-dashed line). In the right panel, we show the optimal variance of the trusted noise.

rearrange the modes so that V◭

0 = V
◭

A0vB0Ee. This state
is processed by the amplifier (g) and then the beam

splitter (ηB). First we obtain Ṽ
◭ = SgV

◭

0 S
T
g , where Sg

has been defined above, and then we compute V
◭ =

SηB
Ṽ

◭
S
T
ηB

, where SηB
:= I⊕TBS(ηB) ⊕ I⊕ I, with

TBS(·) and TAMP (·) given in equations (10) and (11).
Discarding Bob’s mode B′, we compute the output state
ρ◭ABE′e = TrB′(ρAB′BE′e) with CM V

◭

ABE′e. From this
CM, we may compute the secret key rate in RR, i.e.,

R◭ = IAB − χBE , (25)

where χBE is Eve’s Holevo information on Bob’s out-
comes. The analytical form of R◭ is obtained under the
assumption of large modulation µ → ∞.
The CM describing Alice’s and Bob’s output modes A

and B is the following

V
◭

AB
=

(

µI

√

gηB(µ2
− 1)Z

√

gηB(µ2
− 1)Z [ηB(gµ+ (g − 1)ω) + (1− ηB)γ]I

)

.

(26)

We can therefore compute Alice and Bob’s mutual
information

I◭AB

µ→∞
=

1

2
log2

gηBµ

γ(1− ηB) + (g − 1)ηBω
. (27)

Eve’s Holevo information can be written as χBE = S◭

T −
S◭

C , where S◭

T is the von Neumann entropy for Eve’s
total state ρE′e, while S

◭

C is obtained from the conditional
quantum state ρE′e|B . For its computation, consider the
following CMs

V
◭

BE′e =

(

V
◭

E′e C̄

C̄ VB

)

,

V
◭

E′e =

(

[(g − 1)µ+ gω]I
√

g(ω2 − 1)Z
√

g(ω2 − 1)Z ωI

)

,

Fig. 4. Comparison of the security threshold ǫΩ(g) (black-solid
line), ǫ◮(g) (red-solid line) and ǫ◭(g) (black-dashed line).

C̄ =

(√

g(g − 1)ηB(µ+ ω)Z
√

(g − 1)ηB(ω2 − 1)I

)

, (28)

where VB = [ηB(gµ + (g − 1)ω) + (1 − ηB)γ]I. Clearly,
we need to compute only Eve’s conditional symplec-
tic spectrum, obtained from Eve and Bob’s CM, V◭

BE′e
by applying homodyne detection on Bob mode B. This
provides the conditional CM

V
◭

E′e|B = V
◭

E′e − C̄ (ΠVBΠ)
−1

C̄
T , (29)

whose symplectic eigenvalues have the following asymp-
totic expressions

ν̄◭1
µ→∞
=

√

(g − 1)[ηBω + γ(g − 1)(1− ηB)]

gηB
µ,

ν̄◭2
µ→∞
=

√

ω[ηB + γω(g − 1)(1− ηB)]

ηBω + γ(g − 1)(1− ηB)
. (30)
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Therefore, the asymptotic Eve’s Holevo information is
given by

χBE
µ→∞
=

1

2
log2

(g − 1)µ

ηBω + γ(g − 1)(1− ηB)
+ h(ω)− h(ν̄2).

(31)

Combining equations (27) and (31), in equation (25), we
find the formula of the asymptotic key rate in RR in
the asymptotic limit of large Gaussian modulation, which
coincides with that given in equation (24). The secret key
rate of equation (24) is then optimized over Bob’s free
parameters ηB ∈ [0, 1] and γ ≥ 1. �

3.3 Comparison

The performances of the new lower bounds are summa-
rized in Figure 3. The left panel compares the improved
lower bound in the DR R◮ of equation (7) (red-dashed
line) with respect to the previous lower bound Ω of
equation (5) given by the coherent information of the
channel (black-solid line). We also show the upper bound
Φ of equation (6) denoted by the black-dashed line. Then,
the right panel of Figure 3 shows the optimal variance of
the trusted noise used in the improved lower bound R◮.
Further, we compare the security thresholds in Figure 4.

Let us define the excess noise of the thermal amplifier
channel as ǫ = (g − 1)(ω − 1)/g. Then, we may write the
rates as R = R(g, ǫ). Setting R = 0, we therefore find the
maximally tolerable excess noise as a function of the gain,
i.e., ǫ = ǫ(g). Starting from Ω and the two optimized rates
R◮ and R◭, we therefore compute the corresponding secu-
rity thresholds ǫΩ(g), ǫ

◮(g) and ǫ◭(g) which are plotted in
the right panel of Figure 3. As we can see, ǫ◮(g) > ǫΩ(g)
for any g, while ǫ◭(g) outperforms ǫΩ(g) only for small
gains.

4 Conclusions

In this work, we have studied a QKD protocol whose
rate is able to improve the lower bound to the secret-
key capacity of the thermal amplifier channel. In DR this
improvement occurs for any value of the gain g and the
thermal noise n̄ of the channel. Our protocol is based
on randomly switched squeezed states and homodyne
detections, which are perfectly reconciliated by resorting
to a quantum memory. Most importantly, we employ a
beam-splitter and trusted thermal noise just before the
homodyne detector. The large-modulation (µ → ∞) and
asymptotic (n → ∞) secret key rate is then optimized
over the free parameters of the over-all noisy detection.
Even though the gap between the new lower bounds and
the upper bound is still quite large, our work confirms the
fact that the coherent information of the thermal amplifier
channel is well separated from its secret key capacity. This
also seems to suggest that the distribution of secret keys
over this quantum channel might occur at higher rates
than the distribution of entanglement or the transmission
of quantum information.
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