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Abstract

We complete the recent derivation of a Ruijsenaars type system that arises as a
reduction of the natural free system on the Heisenberg double of SU(n, n). The previous
analysis by Marshall focused on a dense open submanifold of the reduced phase space,
and here we describe the full phase space wherein Liouville integrability of the system
holds by construction.
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1 Introduction

The method of Hamiltonian reduction belongs to the set of standard toolkits applicable
to study a great variety of problems ranging from geometric mechanics to field theory and
harmonic analysis [1, 2]. It is especially useful in the theory of integrable Hamiltonian systems
[3], where one of the maxims is that one should view the systems of interests as reductions
of obviously solvable ‘free’ systems [4]. This is often advantageous, for example since the
reduction produces global phase spaces on which the reduced free flows are automatically
complete, which is an indispensable property of any integrable system.

An interesting application of this method appeared in the recent paper [5] by Marshall,
where a deformation of the classical hyperbolic BCn Sutherland system [4] was derived by
reduction of a free system on the Heisenberg double [6] of the Poisson-Lie group SU(n, n).
In a closely related work [7], we investigated the analogous reduction of the Heisenberg
double of SU(2n) and thereby obtained a deformation of the trigonometric variant of the BCn

Sutherland system. In the course of our analysis [7] we noticed that Marshall’s considerations
were restricted to a proper open submanifold of the reduced phase space. Although this
submanifold forms a dense subset, the reduced Hamiltonian flows are complete only on the
full phase space. The goal of this paper is to provide a globally valid model of the relevant
reduced phase space.

Our motivation basically stems from the fact that the global description of the reduced
phase space is a necessary ingredient of the characterization of any Hamiltonian reduction.
Besides, we also intend this complement to the papers [5, 7] to serve as a starting point for a
future work where the duality aspects of the SU(n, n) and the SU(2n) cases should be treated
together. Based on experience [8, 9], ideas for finding the pertinent dual systems are readily
available, but their technical implementation poses a challenging open problem.

Below, we concentrate on the essential points referring to [5, 7] for more details. In
Section 2 the necessary preliminaries are summarized. Then in Section 3 we describe the
reduced phase space. In Subsection 3.1, we present the local picture of Marshall using a
shortcut that leads to it, and give the global picture in Subsection 3.2. The reader may go
directly to Theorem 3.6 to see the result. The reduced Hamiltonians and their integrability
is briefly discussed in the last section, and two appendices are included to help readability.
Appendix A contains some auxiliary explicit formulas, while Appendix B details a property
of the reduced Hamiltonians.

2 Definitions and first steps

All of the material presented in this section is adapted from [5] and [7].
Fix an integer n > 1 and introduce the group

SU(n, n) = {g ∈ SL(2n,C) | g†Jg = J} (2.1)

with J = diag(1n,−1n). Then consider the open submanifold SL(2n,C)′ ⊂ SL(2n,C) con-
sisting of those elements, K, that admit both Iwasawa-like decompositions of the form

K = gLb
−1
R = bLg

−1
R , gL, gR ∈ SU(n, n), bL, bR ∈ SB(2n), (2.2)

where SB(2n) < SL(2n,C) is the group of upper triangular matrices having positive entries
along the diagonal. Both decompositions are unique and the constituent factors depend
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smoothly on K ∈ SL(2n,C)′. The manifold SL(2n,C)′ carries the symplectic form [10]

ω =
1

2
ℑtr(dbLb−1

L ∧ dgLg
−1
L ) +

1

2
ℑtr(dbRb−1

R ∧ dgRg
−1
R ). (2.3)

On this symplectic manifold, which is a symplectic leaf of the Heisenberg double of the
Poisson-Lie group SU(n, n), one has the pairwise Poisson commuting Hamiltonians

Hj(K) =
1

2j
tr(KJK†

J)j , j ∈ Z
∗. (2.4)

They generate complete flows that can be written down explicitly (see Section 4). We are
concerned with a reduction of these Hamiltonians based on the symmetry group G+ × G+,
where

G+ = S(U(n)× U(n)) < SU(n, n) (2.5)

is the block-diagonal subgroup. Throughout, we refer to the obvious 2 × 2 block-matrix
structure corresponding to J . The action of G+ ×G+ on SL(2n,C)′ is given by the map

G+ ×G+ × SL(2n,C)′ → SL(2n,C)′ (2.6)

that works according to
(ηL, ηR, K) 7→ ηLKη−1

R . (2.7)

One can check that this map is well-defined, i.e. ηLKη−1
R stays in SL(2n,C)′, and has the

Poisson property with respect to the product Poisson structure on the left-hand side [6, 10],
where on G+ the standard Sklyanin bracket is used and the Poisson structure on SL(2n,C)′ is
engendered by ω. Moreover, this G+×G+ action is associated with a momentum map in the
sense of Lu [11]. The momentum map can be written as Φ+ : SL(2n,C)′ → G∗

+ ×G∗
+, where

G∗
+ is the subgroup of SB(2n) containing the elements with vanishing off-diagonal blocks.

By utilizing the obvious projection π : SB(2n) → G∗
+, which replaces the block off-diagonal

components by zeroes, the momentum map obeys the formula

Φ+(K) =
(
π(bL), π(bR)

)
. (2.8)

The Hamiltonians Hj (2.4) are invariant with respect to the symmetry group G+ ×G+ and
Φ+ is constant along their flows.

The general theory [11] ensures that one can now perform Marsden-Weinstein type re-
duction. This amounts to imposing the constraint

Φ+(K) = µ = (µL, µR) (2.9)

with some constant µ ∈ G∗
+×G∗

+ and then taking the quotient of Φ−1
+ (µ) by the corresponding

isotropy group, denoted below as Gµ.
We pick the following value µ of the momentum map,

µL =

[
euν(x) 0n

0n e−u1n

]
, µR =

[
ev1n 0n

0n e−v1n

]
, (2.10)

where u, v, and x are real constants satisfying

u+ v 6= 0, x > 0, (2.11)
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and ν(x) is the n× n upper triangular matrix defined by

ν(x)jj = 1, ν(x)jk = (1− e−x)e
(k−j)x

2 , j < k. (2.12)

The essential property of ν(x) is that ν(x)ν(x)† has only two different eigenvalues, one of
them with multiplicity 1. (This also holds for x < 0 and our assumption x > 0 only serves
to keep the text shorter.) The corresponding isotropy group Gµ is

Gµ = G+(µL)×G+, (2.13)

where the elements ηL ∈ G+(µL) have the form

ηL =

[
ηL(1) 0n

0n ηL(2)

]
(2.14)

with ηL(1) ∈ U(n) satisfying

ηL(1)ν(x)ν(x)
†ηL(1)

−1 = ν(x)ν(x)† (2.15)

and ηL(2) ∈ U(n), coupled by det(ηL) = 1. It will turn out that the reduced phase space

M = Φ−1
+ (µ)/Gµ (2.16)

is a smooth manifold. Our task is to characterize this manifold, which carries the reduced
symplectic form ωM defined by the relation

ι∗µω = π∗
µωM , (2.17)

where ιµ : Φ
−1
+ (µ) → SL(2n,C)′ is the tautological injection and πµ : Φ

−1
+ (µ) → M is the

natural projection.
Consider the following central subgroup Z2n of G+ ×G+,

Z2n = {(w12n, w12n) | w ∈ C, w2n = 1}, (2.18)

which acts trivially according to (2.7) and is contained in Gµ. Later we shall refer to the
factor group

Ḡµ = Gµ/Z2n (2.19)

as the ‘effective gauge group’. Obviously, we have Φ−1
+ (µ)/Gµ = Φ−1

+ (µ)/Ḡµ.
In the end, we shall obtain a model of the quotient space M by explicitly exhibiting a

global cross-section of the orbits of Gµ in Φ−1
+ (µ). The construction uses the generalized

Cartan decomposition of SU(n, n), which says that every g ∈ SU(n, n) can be written as

g = g+

[
cosh q sinh q
sinh q cosh q

]
h+, (2.20)

where g+, h+ ∈ G+ and q = diag(q1, . . . , qn) is a real diagonal matrix verifying

q1 ≥ · · · ≥ qn ≥ 0. (2.21)
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The components qi are uniquely determined by g, and yield smooth functions on the locus
where they are all distinct. In what follows we shall often identify diagonal matrices like q
with the corresponding elements of Rn.

As the first step towards describing M , we apply the decomposition (2.20) to gL in
K = gLb

−1
R and impose the right-handed momentum constraint π(bR) = µR. It is then

easily seen that up to Gµ-transformations every element of Φ−1
+ (µ) can be represented in the

following form:

K =

[
ρ 0n

0n 1n

] [
cosh q sinh q
sinh q cosh q

] [
e−v1n α
0n ev1n

]
. (2.22)

Here ρ ∈ SU(n) and α is an n × n complex matrix. Referring to the 2 × 2 block-matrix
notation, we introduce Ω = K22 and record from (2.22) that

Ω = (sinh q)α+ ev cosh q. (2.23)

It will prove advantageous to seek for Ω in the polar-decomposed form,

Ω = ΛT, (2.24)

where T ∈ U(n) and Λ is a Hermitian, positive semi-definite matrix.
The next step is to implement the left-handed momentum constraint π(bL) = µL by

writing K = bLg
−1
R with

bL =

[
euν(x) χ
0n e−u1n

]
, (2.25)

where χ is an unknown n × n matrix. Then we inspect the components of the 2 × 2 block-
matrix identity

KJK† = bLJb
†
L, (2.26)

which results by substituting K from (2.22). We find that the (22) component of this identity
is equivalent to

ΩΩ† = Λ2 = e−2u1n + e−2v(sinh q)2. (2.27)

This uniquely determines Λ in terms of q and also shows that Λ is invertible. An important
consequence of the first condition in (2.11) is that we must have

qn > 0, (2.28)

and therefore sinh q is an invertible diagonal matrix. Indeed, if qn = 0, then from (2.23) and
(2.27) we would get (ΩΩ†)nn = e2v = e−2u, which is excluded by (2.11).

By using the above relations, it is simple algebra to convert the (12) and the (21) com-
ponents of the identity (2.26) into the equation

χ = ρ(sinh q)−1[e−u cosh q − eu+vΩ†]. (2.29)

Finally, the (11) entry of the identity (2.26) translates into the following crucial equation:

ρ(sinh q)−1T †(sinh q)2T (sinh q)−1ρ† = ν(x)ν(x)†. (2.30)

This is to be satisfied by q subject to (2.21), (2.28) and T ∈ U(n), ρ ∈ SU(n). After finding
q, T and ρ, one can reconstruct K (2.22) by applying the formulas derived above.
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From our viewpoint, a key observation is that (2.30) coincides completely with equation
(5.7) in the paper [8], where its general solution was found. The correspondence between the
notations used here and in [8] is

(ρ, T, sinh q)⇐⇒ (kL, k
†
R, e

p̂). (2.31)

For this reason, we introduce the new variable p̂ ∈ Rn by the definition

sinh qk = ep̂k , k = 1, . . . , n. (2.32)

Because of (2.21) and (2.28), the variables p̂k satisfy

p̂1 ≥ · · · ≥ p̂n. (2.33)

We do not see an a priori reason why the very different reduction procedures led to the
same equation (2.30) here and in [8]. However, we are going to take full advantage of this
situation. We note that essentially every formula written in this section appears in [5] as
well (with slightly different notations), but in Marshall’s work the previously obtained results
about the solutions of (2.30) were not used.

3 The reduced phase space

The statement of Proposition 3.3 characterizes a submanifold of M (2.16), which was erro-
neously claimed in [5] to be equal to M . After describing this ‘local picture’, we shall present
a globally valid model of M .

3.1 The local picture

By applying results of [8, 12] in the same way as in [7], one can prove the following lemma.

Lemma 3.1. The constraint surface Φ−1
+ (µ) contains an element of the form (2.22) if and

only if p̂ defined by (2.32) lies in the closed polyhedron

C̄x = {p̂ ∈ R
n | p̂k − p̂k+1 ≥ x/2 (k = 1, . . . , n− 1)}. (3.1)

The polyhedron C̄x is the closure of its interior, Cx, defined by strict inequalities. We note
that in [5] the elements of the boundary C̄x \ Cx were omitted.

For any fixed p̂ ∈ C̄x, one can write down the solutions of (2.30) for T and ρ explicitly
[8]. By inserting those into the formula (2.22), using the relations (2.23), (2.24), (2.27) to
determine the matrix α, one arrives at the next lemma. It refers to the n× n real matrices

θ(x, p̂), ζ(x, p̂), κ(x), (3.2)

which belong to the group SO(n) and are defined by explicit formulas that can be found,
for example, at the beginning of Section 3.2 in [7]. For the reader’s convenience, we append
these formulas at the end of the text.
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Proposition 3.2. For any parameters u, v, x subject to (2.11), and variables p̂ ∈ C̄x and eiq̂

from the n-torus Tn, define the matrix

K(p̂, eiq̂) =

[
ρ 0n

0n 1n

] [√
1n + e2p̂ ep̂

ep̂
√
1n + e2p̂

] [
e−v1n α
0n ev1n

]
(3.3)

by employing
ρ = ρ(x, p̂) = κ(x)ζ(x, p̂)−1 (3.4)

and
α = α(x, u, v, p̂, eiq̂) = eiq̂

√
e−2ue−2p̂ + e−2v1n θ(x, p̂)

−1 − ev
√

e−2p̂ + 1n. (3.5)

Then K(p̂, eiq̂) resides in the constraint surface Φ−1
+ (µ) and the set

S = {K(p̂, eiq̂) | (p̂, eiq̂) ∈ C̄x × Tn} (3.6)

intersects every orbit of Gµ in Φ−1
+ (µ).

By arguing verbatim along the lines of [7], and referring to [5] for the calculation of the
reduced symplectic form, one can establish the validity of the subsequent proposition.

Proposition 3.3. The effective gauge group Ḡµ (2.19) acts freely on Φ−1
+ (µ) and thus the

quotient space M (2.16) is a smooth manifold. The restriction of the natural projection
πµ : Φ

−1
+ (µ)→M to

So = {K(p̂, eiq̂) | (p̂, eiq̂) ∈ Cx × Tn} (3.7)

gives rise to a diffeomorphism between Cx × Tn and the open, dense submanifold of M pro-
vided by πµ(S

o). Taking So as model of πµ(S
o), the corresponding restriction of the reduced

symplectic form ωM becomes the Darboux form

ωSo =

n∑

k=1

dq̂k ∧ dp̂k. (3.8)

Remark 3.4. In the formula (3.3) K(p̂, eiq̂) appears in the decomposed form K = gLb
−1
R and

it is not immediately obvious that it belongs to SL(2n,C)′, i.e., that it can be decomposed
alternatively as bLg

−1
R . However, by defining bL(p̂, e

iq̂) ∈ SB(2n) by the formula (2.25) using
χ in (2.29) with the change of variables sinh q = ep̂, the matrix ρ as given above, and
T = eiq̂θ(x, p̂)−1 that enters (3.3), we can verify that for these elements g−1

R = b−1
L K satisfies

the defining relation of SU(n, n) (2.1), as required. The reader may perform this verification,
which relies only on the constraint equations displayed in Section 2.

3.2 The global picture

The train of thought leading to the construction below can be outlined as follows. Proposition
3.3 tells us, in particular, that any Gµ-orbit passing through So intersects So in a single point.
Direct inspection shows that the analogous statement is false for S \So, which corresponds to
(C̄x \Cx)×Tn in a one-to-one manner. Thus a global model of M should result by identifying
those points of S \So that lie on the same Gµ-orbit. By using the bijective map from C̄x×Tn

onto S given by the formula (3.3), the desired identification will be achieved by constructing
such complex variables out of (p̂, eiq̂) ∈ C̄x × Tn that coincide precisely for gauge equivalent
elements of S.
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Turning to the implementation of the above plan, we introduce the space of complex
variables

M̂c = C
n−1 × C

×, (C× = C \ {0}), (3.9)

carrying the symplectic form

ω̂c = i
n−1∑

j=1

dzj ∧ dz̄j +
idzn ∧ dz̄n
2znz̄n

. (3.10)

We also define the surjective map

Ẑx : C̄x × Tn → M̂c, (p̂, eiq̂) 7→ z(p̂, eiq̂) (3.11)

by setting

zj(p̂, e
iq̂) = (p̂j − p̂j+1 − x/2)

1
2

n∏

k=j+1

eiq̂k , j = 1, . . . , n− 1,

zn(p̂, e
iq̂) = e−p̂1

n∏

k=1

eiq̂k .

(3.12)

The restriction Zx of Ẑx to Cx × Tn is a diffeomorphism onto the open subset

M̂o
c =

{
z ∈ M̂c

∣∣∣∣
n−1∏

j=1

zj 6= 0

}
, (3.13)

and it verifies the relation

Z∗
xω̂c =

n∑

k=1

dq̂k ∧ dp̂k. (3.14)

Thus we manufactured a change of variables Cx×Tn ←→ M̂o
c . The inverse Z−1

x : M̂o
c → Cx×Tn

involves the functions

p̂1(z) = − log |zn|, p̂j(z) = − log |zn| −
j−1∑

k=1

(|zk|2 + x/2) (j = 2, . . . , n). (3.15)

These extend smoothly to M̂c wherein M̂o
c sits as a dense submanifold.

Now we state a lemma, which is a simple adaptation from [8, 13].

Lemma 3.5. By using the shorthand σj =
∏n

k=j+1 e
iq̂k for j = 1, . . . , n − 1 (cf. (3.12)), let

us define

σ+(e
iq̂) = diag(σ1, . . . , σn−1, 1) and σ−(e

iq̂) = diag(1, σ−1
1 , . . . , σ−1

n−1). (3.16)

Then there exist unique smooth functions ζ̂(x, z), θ̂(x, z) and α̂(x, u, v, z) of z ∈ M̂c that
satisfy the following identities for any (p̂, eiq̂) ∈ C̄x × Tn:

ζ̂(x, z(p̂, eiq̂)) = σ+(e
iq̂)ζ(x, p̂)σ+(e

iq̂)−1, (3.17)

θ̂(x, z(p̂, eiq̂)) = σ+(e
iq̂)θ(x, p̂)σ−(e

iq̂), (3.18)

α̂(x, u, v, z(p̂, eiq̂)) = σ+(e
iq̂)α(x, u, v, p̂, eiq̂)σ+(e

iq̂)−1. (3.19)

Here we refer to the functions on C̄x × Tn displayed in equations (3.2) and (3.5).
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The explicit formulas of the functions on M̂c that appear in the above identities are easily
found by first determining them on M̂o

c using the change of variables Zx, and then noticing
that they automatically extend to M̂c. The expressions of the functions ζ̂ and θ̂, which depend
only on z1, . . . , zn−1, are the same as given in Definition 3.3 in [8]. (For most purposes the
above definitions and the formulas of Appendix A suffice.) As for α̂, by defining

∆(z) = diag(zn, e
−p̂2(z), . . . , e−p̂n(z)) (3.20)

we have

α̂(x, u, v, z) =
√

e−2ve2p̂(z) + e−2u1n ∆(z)θ̂(x, z)−1 − ev
√
e−2p̂(z) + 1n (3.21)

that satisfies relation (3.19) due to the identity

∆(z(p̂, eiq̂)) = e−p̂eiq̂σ+(e
iq̂)σ−(e

iq̂), ∀(p̂, eiq̂) ∈ C̄x × Tn. (3.22)

With these preparations at hand, we can formulate the main result of this paper.

Theorem 3.6. Define the smooth map K̂ : M̂c → SL(2n,C)′ by the formula

K̂(z) =

[
κ(x)ζ̂(x, z)−1 0n

0n 1n

] [√
1n + e2p̂(z) ep̂(z)

ep̂(z)
√

1n + e2p̂(z)

][
e−v1n α̂(x, u, v, z)
0n ev1n

]
. (3.23)

The image of K̂ belongs to the submanifold Φ−1
+ (µ) and the induced mapping πµ ◦K̂, obtained

by using the natural projection πµ : Φ
−1
+ (µ) → M = Φ−1(µ)/Gµ, is a symplectomorphism

between (M̂c, ω̂c), defined by (3.9)-(3.10), and the reduced phase space (M,ωM).

Proof. We start by pointing out that for any (p̂, eiq̂) ∈ C̄x × Tn the identity

K̂(z(p̂, eiq̂)) =

[
κ(x)σ+(e

iq̂)κ(x)−1 0n

0n σ+(e
iq̂)

]
K(p̂, eiq̂)

[
σ+(e

iq̂) 0n

0n σ+(e
iq̂)

]−1

(3.24)

is equivalent to the identities listed in Lemma 3.5. We see from this that K̂(z(p̂, eiq̂)) is a
Gµ-transform of K(p̂, eiq̂) (3.3), and thus K̂(z) belongs to Φ−1

+ (µ). Indeed, the right-hand
side of (3.24) can be written as ηLK(p̂, eiq̂)η−1

R with

ηL = c

[
κ(x)σ+(e

iq̂)κ(x)−1 0n

0n σ+(e
iq̂)

]
, ηR = c

[
σ+(e

iq̂) 0n

0n σ+(e
iq̂)

]
, (3.25)

where c is a scalar ensuring det(ηL) = det(ηR) = 1, and one can check (see the last paragraph
of Appendix A) that this (ηL, ηR) lies in the group Gµ (2.13).

To proceed further, we let K̂o denote the restriction of K̂ to the dense open subset M̂o
c and

also let Ko : Cx × Tn → SL(2n,C)′ denote the map defined by the corresponding restriction
of the formula (3.3). Notice that, in addition to (2.17), we have the relations

πµ ◦ K̂0 = πµ ◦Ko ◦ Z−1
x and (πµ ◦Ko)

∗ωM =
n∑

k=1

dq̂k ∧ dp̂k, (3.26)

which follow from (3.24) and the last sentence of Proposition 3.3. By using (3.14) (together
with K̂o = ιµ ◦ K̂o and Ko = ιµ ◦Ko) the above relations imply the restriction of the equality

(πµ ◦ K̂)∗ωM = ω̂c (3.27)
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on M̂o
c . This equality is then valid on the full M̂c since the 2-forms concerned are smooth.

It is a direct consequence of (3.24) and Proposition 3.2 that πµ ◦ K̂ is surjective. Since,
on account of (3.27), it is a local diffeomorphism, it only remains to demonstrate that the
map πµ ◦ K̂ is injective. The relation πµ(K̂(z)) = πµ(K̂(z′)) for z, z′ ∈ M̂c requires that

K̂(z′) =

[
ηL(1) 0n

0n ηL(2)

]
K̂(z)

[
ηR(1) 0n

0n ηR(2)

]−1

(3.28)

for some (ηL, ηR) ∈ Gµ. Supposing that (3.28) holds, application of the decomposition

K̂(z) = gL(z)bR(z)
−1 to the formula (3.23) implies that

α̂(z′) = ηR(1)α̂(z)ηR(2)
−1 (3.29)

and
gL(z

′) = ηLgL(z)η
−1
R . (3.30)

The matrices on the two sides of (3.30) appear in the form (2.20), and standard uniqueness
properties of the constituents in this generalized Cartan decomposition now imply that

p̂(z′) = p̂(z) (3.31)

and
ηR(1) = ηR(2) = m ∈ Tn. (3.32)

We continue by looking at the (k+1, k) components of the equality (3.29) for k = 1, . . . , n−1
using that α̂k+1,k depends on z only through p̂(z) and it never vanishes. (This follows from

(3.20)-(3.21) by utilizing that θ̂(x, z)k,k+1 = θ(x, p̂(z))k,k+1 by (3.18), which is nonzero for
each p̂(z) ∈ C̄x as seen from (A.1).) Putting (3.32) into (3.29), we obtain that m = C1n with
a scalar C, and therefore

α̂(z′) = α̂(z). (3.33)

The rest is an inspection of this matrix equality. In view of (3.31) and the forms of ∆(z)
(3.20) and α̂(z) (3.21), the last column of the equality (3.33) entails that

θ̂(x, z)nk = θ̂(x, z′)nk, k = 2, . . . , n, (3.34)

where we re-instated the dependence on x that was suppressed above. One can check directly
from the formulas (3.12), (3.18) and (A.1), (A.2) that

θ̂(x, z)nk = z̄k−1Fk(x, p̂(z)), k = 2, . . . , n, (3.35)

where Fk(x, p̂(z)) is a smooth, strictly positive function. Hence we obtain that zj = z′j for
j = 1, . . . , n− 1. With this in hand, since the variable zn appears only in ∆(z), we conclude
from (3.33) that ∆(z) = ∆(z′). This plainly implies that zn = z′n, whereby the proof is
complete.

We note in passing that by continuing the above line of arguments the free action of
Gµ is easily confirmed. Indeed, for z′ = z (3.30) also implies, besides (3.32), the equalities

ηL(2) = m and ηL(1)κ(x)ζ̂(x, z)
−1 = κ(x)ζ̂(x, z)−1m. Since m = C1n, as was already

established, we must have (ηL, ηR) = C(12n, 12n) ∈ Z2n (2.18). By using that the image of
K̂ intersects every Gµ-orbit, we can conclude that Ḡµ (2.19) acts freely on Φ−1

+ (µ).

Remark 3.7. Observe from Theorem 3.6 that Ŝ = {K̂(z) | z ∈ M̂c} is a global cross-section
for the action of Gµ on Φ−1

+ (µ). Hence Ŝ carrying the pull-back of ω as well as (M̂c, ω̂c)

yield globally valid models of the reduced phase space (M,ωM). The submanifold of Ŝ
corresponding to M̂o

c (3.13) is gauge equivalent to So (3.7) that features in Proposition 3.3.
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4 Discussion

In this paper we clarified the global structure of the reduced phase space M (2.16), and thus
completed the previous analysis [5] that dealt with the submanifold parametrized by Cx×Tn.
In terms of the model M̂c (3.9) ofM , the complement of the submanifold in question is simply
the zero set of the product of the complex variables. The phase space M̂c and the embedding
of Cx × Tn into it coincides with what occurs for the so-called ĨII-system of Ruijsenaars
[13, 8], which is the action-angle dual of the standard trigonometric Ruijsenaars-Schneider
system. This circumstance is not surprising in light of the fact [5] that the reduced ‘main

Hamiltonian’ arising from H1 (2.4) is a ĨII-type Hamiltonian coupled to external fields. We
display this Hamiltonian below after exhibiting the corresponding Lax matrices.

The unreduced free Hamiltonians Hj , for any j ∈ Z∗, mentioned in Section 2, can be
written alternatively as

Hj(K) =
1

2j
tr(KJK†

J)j =
1

2j
tr(K†

JKJ)j . (4.1)

One can verify (for example by using the standard r-matrix formula of the Poisson bracket
on the Heisenberg double [6]) that the Hamiltonian flow generated by Hj reads

K(tj) = exp

[
itj

(
(K(0)JK(0)†J)j − 1

2n
tr(K(0)JK(0)†J)j12n

)]
K(0) (4.2)

= K(0) exp

[
itj

(
(JK(0)†JK(0))j − 1

2n
tr(JK(0)†JK(0))j12n

)]
. (4.3)

Since the exponentiated elements reside in the Lie algebra su(n, n), these alternative formulas
show that the flow stays in SL(2n,C)′, as it must, and imply that the building blocks gL and
gR of K = bLg

−1
R = gLb

−1
R follow geodesics on SU(n, n), while bL and bR provide constants of

motion. Equivalently, the last statement means that

KJK†
J = bLJb

†
LJ and K†

JKJ = (b−1
R )†Jb−1

R J (4.4)

stay constant along the unreduced free flows.
To elaborate the reduced Hamiltonians, note that for an element K of the form (2.22) we

have

(b−1
R )†Jb−1

R J =

[
e−2v1n −e−vα
e−vα† e2v1n − α†α

]
. (4.5)

By using this, as explained in Appendix B, one can prove that on Φ−1
+ (µ) the HamiltoniansHj

can be written (for all j), up to additive constants, as linear combinations of the expressions

hk = tr(α†α)k, k = 1, . . . , n. (4.6)

Since in this way the Hermitian matrix L = α†α generates the commuting reduced Hamilto-
nians, it provides a Lax matrix for the reduced system. By inserting α from (3.5), we obtain
the explicit formula

L(p̂, eiq̂) =(e2v + e−2u)e−2p̂ + (e2v + e−2v)1n

−
√

e−2ue−2p̂ + e−2v1ne
iq̂θ(x, p̂)−1ev

√
e−2p̂ + 1n

− ev
√

e−2p̂ + 1nθ(x, p̂)e
−iq̂

√
e−2ue−2p̂ + e−2v1n.

(4.7)
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On the other hand, the Lax matrix of Ruijsenaars’s ĨII-system can be taken to be [13, 8]

L̃(p̂, eiq̂) = eiq̂θ(x, p̂)−1 + θ(x, p̂)e−iq̂. (4.8)

The similarity of the structures of these Lax matrices as well as the presence of the external
field couplings in (4.7) is clear upon comparison. The extension of the Lax matrix α†α (4.7)
to the full phase space M ≃ M̂c is of course given by α̂†α̂ by means of (3.21).

The main reduced Hamiltonian found in [5] reads as follows:

H1(K(p̂, eiq̂)) = −e
−2u + e2v

2

n∑

j=1

e−2p̂j+

+

n∑

j=1

cos(q̂j)
[
1 + (1 + e2(v−u))e−2p̂j + e2(v−u)e−4p̂j

]1
2

n∏

k=1
(k 6=j)

[
1− sinh2

(
x
2

)

sinh2(p̂j − p̂k)

]1
2

. (4.9)

Liouville integrability holds since the functional independence of the involutive family ob-
tained by reducing H1, . . . ,Hn (4.1) is readily established and the projections of the free flows
(4.3) to M are automatically complete. Similarly to its analogue in [7], the Hamiltonian (4.9)
can be identified as an Inozemtsev type limit of a specialization of van Diejen’s 5-coupling
deformation of the hyperbolic BCn Sutherland Hamiltonian [14]. This fact suggests that it
should be possible to extract the local form of dual Hamiltonians from [15] and references
therein, which contain interesting results about closely related quantum mechanical systems
and their bispectral properties. Indeed, in several examples, classical Hamiltonians enjoying
action-angle duality correspond to bispectral pairs of Hamiltonian operators after quantiza-
tion. In a future work, we wish to explore the action-angle dual of the Hamiltonian (4.9)
in the reduction framework and employ the duality together with the traditional projection
method for studying the associated dynamics.

Acknowledgements. This work was supported in part by the Hungarian Scientific Research
Fund (OTKA) under the grant K-111697. The work was also partially supported by COST
(European Cooperation in Science and Technology) in COST Action MP1405 QSPACE.

A Explicit formulas for the matrices θ, ζ, and κ

In this appendix we collect the explicit expressions of the matrices θ, ζ , and κ for the reader’s
convenience. More detailed information about these matrices can be found in the paper [8].
At an arbitrary point p̂ ∈ C̄x (3.1) the components of θ(x, p̂) are defined as follows

θ(x, p̂)jk =
sinh

(
x
2

)

sinh(p̂k − p̂j)

n∏

m=1
(m6=j,k)

[
sinh(p̂j − p̂m − x

2
) sinh(p̂k − p̂m + x

2
)

sinh(p̂j − p̂m) sinh(p̂k − p̂m)

]1
2

, j 6= k, (A.1)

and

θ(x, p̂)jj =
n∏

m=1
(m6=j)

[
sinh(p̂j − p̂m − x

2
) sinh(p̂j − p̂m + x

2
)

sinh2(p̂j − p̂m)

]1
2

. (A.2)
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Note that θ(x, p̂) is an orthogonal matrix of determinant 1. Next, with the help of the vector
r(x, p̂) ∈ Rn defined by

r(x, p̂)j =

[
1− e−x

1− e−nx

]1
2

n∏

k=1
(k 6=j)

[
1− e2p̂j−2p̂k−x

1− e2p̂j−2p̂k

]1
2

, j = 1, . . . , n, (A.3)

the entries of the real n× n matrix ζ(x, p̂) can be written as

ζ(x, p̂)nn = r(x, p̂)n, ζ(x, p̂)ij = δij −
r(x, p̂)ir(x, p̂)j
1 + r(x, p̂)n

,

ζ(x, p̂)in = −ζ(x, p̂)ni = r(x, p̂)i, i, j 6= n.

(A.4)

Finally, by introducing the vector v = v(x):

v(x)j =

[
n(ex − 1)

1− e−nx

]1
2

e−
jx

2 , j = 1, . . . , n, (A.5)

the elements of the n× n matrix κ(x) read

κ(x)nn =
v(x)n√

n
, κ(x)ij = δij −

v(x)iv(x)j
n +
√
nv(x)n

,

κ(x)in = −κ(x)ni =
v(x)i√

n
, i, j 6= n.

(A.6)

It can be shown that both κ(x) and ζ(x, p̂) are orthogonal matrices of determinant 1. The
main feature of κ(x) is that (with ν(x) in (2.12)) the matrix κ(x)−1ν(x)ν(x)†κ(x) is diagonal.
This implies that ηL(1) = κ(x)τκ(x)−1 ∈ U(n) satisfies (2.15) for any τ ∈ Tn, which we used
in the main text (see (3.25)). In the above we assumed that x > 0, otherwise the definition
of the matrices ζ and κ would need different formulas.

B On the reduced Hamiltonians

In this appendix we prove the claim, made in Section 4, that on the momentum surface
Φ−1

+ (µ) the Hamiltonians Hj , j ∈ Z∗ (4.1) are linear combinations of hk, k = 1, . . . , n (4.6).
This will be achieved by establishing the form of the integer powers of the matrix displayed
in (4.5), which we denote here by L, i.e.

L =

[
e−2v1n −e−vα
e−vα† e2v1n − α†α

]
. (B.1)

Lemma B.1. For any positive integer j, the j-th power of the 2n× 2n matrix L (B.1) reads

Lj =

[
Lj

11 Lj
12

Lj
21 Lj

22

]
, (B.2)
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where Lj
11,Lj

12,Lj
21,Lj

22 are n× n blocks of the form

Lj
11 =

j∑

m=1

a(j)m (αα†)j−m, Lj
12 = α

j∑

m=1

b(j)m (α†α)j−m,

Lj
21 = α†

j∑

m=1

c(j)m (αα†)j−m, Lj
22 = (−1)j(α†α)j +

j∑

m=1

d(j)m (α†α)j−m,

(B.3)

with the 4j coefficients a
(j)
m , b

(j)
m , c

(j)
m , d

(j)
m , m = 1, . . . , j depending only on the parameter v.

Proof. We proceed by induction on j. For j = 1 the statement clearly holds, and supposing
that (B.2)-(B.3) is valid for some fixed integer j > 0 we simply calculate the (j+1)-th power
Lj+1 = LLj. This proves the statement.

Our claim of linear expressibility follows at once, that is for any positive integer j we have

Hj = (−1)jhj +

j−1∑

k=1

k

j
(a

(j)
j−k + d

(j)
j−k)hk +

n

2j
(a

(j)
j + d

(j)
j ). (B.4)

Incidentally, one also obtains a recursion for the coefficients a
(j)
m , b

(j)
m , c

(j)
m , d

(j)
m from the proof

of Lemma B.1. If they are required, this should enable one to establish the values of the
constants that occur in (B.4).

As for the negative powers of L, one readily checks that the inverse of L is

L−1 =

[
e2v1n − αα† e−vα
−e−vα† e−2v1n

]
, (B.5)

which has essentially the same form as L does, thus the blocks of L−j (j > 0) can be expressed
similarly as in Lemma B.1. In fact, conjugating L−1 with the 2n×2n involutory block-matrix

C =

[
0n 1n

1n 0n

]
, (B.6)

leads to the following formula

CL−1
C =

[
e−2v1n −e−vα†

e−vα e2v1n − αα†

]
, (B.7)

which implies that the blocks of L−j are obtained from those of Lj by reversing their order
and interchanging the role of α and α†. Furthermore, since tr((αα†)k) = tr((α†α)k) we get

H−j = −Hj ∀j ∈ Z
∗. (B.8)
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