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Abstract

We present a direct construction of compact real forms of the trigonometric and

elliptic n-particle Ruijsenaars–Schneider systems whose completed center-of-mass

phase space is the complex projective space CPn−1 with the Fubini–Study symplectic

structure. These systems are labelled by an integer p ∈ {1, . . . , n−1} relative prime

to n and a coupling parameter y varying in a certain punctured interval around

pπ/n. Our work extends Ruijsenaars’s pioneering study of compactifications that

imposed the restriction 0 < y < π/n, and also builds on an earlier derivation of

more general compact trigonometric systems by Hamiltonian reduction.
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1 Introduction

The investigation of integrable systems of particles moving in one spatial dimension started
decades ago and persistently attracts intense attention due to the fascinating mathematics
and diverse physical applications of these systems, as reviewed in [4, 10, 11, 15, 17, 20].
The Ruijsenaars–Schneider (RS) model [13, 14] occupies a central position in this family,
since many other interesting models of Calogero–Moser–Sutherland and Toda type can
be obtained from it as various limits and analytic continuations [17]. The phase space of
these particle systems is usually the cotangent bundle of the configuration space, which
is never compact due to the infinite range of the canonical momenta. The standard RS
Hamiltonian depends on the momenta φk through the function cosh(φk), but by analytic
continuation this may be replaced by cos(φk), which effectively compactifies the momenta
on a circle. If the dependence on the position variables xk is also through a periodic
function, then the phase space can be taken to be a bounded set. This possibility was
examined in [16], where the Hamiltonian

H(x, φ) =

n
∑

k=1

cos(φk)

√

√

√

√

√

n
∏

j=1
(j 6=k)

[

1−
sin2 y

sin2(xj − xk)

]

(1.1)

containing a real coupling parameter 0 < y < π/2 was considered. Ruijsenaars called
this the IIIb system, with III referring to the trigonometric character of the interaction,
as in [11], and the suffix standing for ‘bounded’. (One may also introduce another real
parameter into the IIIb system, by replacing φk say by βφk.) The domain of the ‘angular
position variables’ {(x1, . . . , xn)} ⊂ [0, π]n must be restricted in such a way that the
Hamiltonian (1.1) is real and smooth. This may be ensured by prescribing

xi+1 − xi > y (i = 1, . . . , n− 1), xn − x1 < π − y, (1.2)

which obviously implies Ruijsenaars’s condition

0 < y <
π

n
. (1.3)

Although the Hamiltonian is then real, its flow is not complete on the naive phase space,
because it may reach the boundary xk+1−xk = y (with xk+n ≡ xk+π) at finite time [16].
Completeness of the commuting flows is a crucial property of any bona fide integrable
system, but one cannot directly add the boundary to the phase space because that would
not yield a smooth manifold. One of the seminal results of [16] is the solution of this
conundrum. In fact, Ruijsenaars constructed a symplectic embedding of the center-of-
mass phase space of the system into the complex projective space CP

n−1, such that the
image of the embedding is a dense open submanifold and the Hamiltonian (1.1) as well
as its commuting family extend to smooth functions on the full CP

n−1. As CP
n−1 is

compact, the corresponding Hamiltonian flows are complete. The resulting ‘compactified
trigonometric RS system’ has been studied at the classical level in detail [16], and after an
initial exploration of the rank 1 case [15], its quantum mechanical version was also solved
[19]. These classical systems are self-dual in the sense that their position and action
variables can be exchanged by a canonical transformation of order 4, somewhat akin to
the mapping (x, φ) 7→ (−φ, x) for a free particle, and their quantum mechanical versions
enjoy the bispectral property [15, 19].
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The possibility of an analogous compactification of the elliptic RS system having the
Hamiltonian

H(x, φ) =

n
∑

k=1

cos(φk)

√

√

√

√

√

n
∏

j=1
(j 6=k)

[

s(y)2
(

℘(y)− ℘(xj − xk)
)]

(1.4)

with functions ℘ (4.1) and s (4.2) was pointed out in [15, 17], although it was not described
in detail.

The restriction (1.3), originally adopted by a heuristic argument1 [15, 17], was also
mentioned in subsequent papers [6, 9, 19] as necessary for the systems to make sense.
However, in a recent work [8] a completion of the IIIb system on a compact phase space
was obtained for any generic parameter

0 < y < π. (1.5)

That paper relied on deriving compactified RS systems in the center-of-mass frame via
reduction of a ‘free system’ on the quasi-Hamiltonian [1] double SU(n)×SU(n). This was
achieved by setting the relevant group-valued moment map equal to the constant matrix
µ0(y) = diag(e2iy, . . . , e2iy, e−2(n−1)iy), and it makes perfect sense for any (generic) y.

The principal motivation for our present work comes from the classification of the
coupling parameter y found in [8]. Namely, it turned out that the reduction is applicable
except for a finite set of y-values, and the rest of the set (0, π) decomposes into two subsets,
containing so-called type (i) and type (ii) y-values. The ‘main reduced Hamiltonian’
always takes the IIIb form (1.1) on a dense open subset of the reduced phase space. In
the type (i) cases the particles cannot collide and the action variables of the reduced
system naturally engender an isomorphism with the Hamiltonian toric manifold CP

n−1.
In type (ii) cases, that exist for any n > 3, the reduction constraints admit solutions
(a, b) ∈ SU(n) × SU(n) for which the eigenvalues of a or b are not all distinct, entailing
that the particles of the reduced system can collide. For a detailed exposition of these
succinct statements, the reader may consult [8].

This Letter is exclusively concerned with the type (i) cases just mentioned. Our first
goal is to reconstruct the corresponding compactification on CP

n−1 using only direct,
elementary methods, i.e., not relying on reduction techniques. Such construction was not
known previously except for the special type (i) cases (1.3), which we shall generalize.
By doing so, we shall gain a better understanding of the structure of these trigonometric
systems. This part of the Letter fills Sections 2 and 3 that follow. In Section 4, we explain
that the direct method is applicable to obtain type (i) compactifications of the elliptic RS
system as well. This new result extends the remarks of Ruijsenaars [15, 17].

It would have been possible to organize our text differently, starting with the elliptic
case and then recovering the trigonometric systems as a limit. We opted for first presenting
the trigonometric case for the reason that in our hope this makes the paper easier to
understand, and also since this actually follows our line of research.

Our results lead to several open questions and possible topics for future work that will
be outlined at the end of the paper.

1The heuristic argument required that the factors of the product under the square root in (1.1) be
separately non-negative. Clearly, this can be relaxed to the requirement that the product be non-negative.
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2 Embedding of the local phase space into CP
n−1

In this section we first recall the local phase space of the IIIb model from [8], and then
present its symplectic embedding into CP

n−1 in every type (i) case.
The IIIb model can be thought of as n interacting particles on the unit circle with

positions δk = e2ixk . We impose the condition
∏n

k=1 δk = 1, which means that we work in
the ‘center-of-mass frame’, and parametrize the positions as

δ1(ξ) = e
2i

n

∑n
j=1

jξj , δk(ξ) = e2iξk−1δk−1(ξ), k = 2, . . . , n, (2.1)

where ξ belongs to a certain open subset A+
y inside the ‘Weyl alcove’

A = {ξ ∈ R
n | ξk ≥ 0 (k = 1, . . . , n), ξ1 + · · ·+ ξn = π}. (2.2)

Note that A is a simplex in the (n− 1)-dimensional affine space

E = {ξ ∈ R
n | ξ1 + · · ·+ ξn = π}. (2.3)

The local phase space can be described as the product manifold

P loc
y = {(ξ, eiθ) | ξ ∈ A+

y , eiθ ∈ T
n−1}, (2.4)

where Tn−1 is the (n− 1)-torus, equipped with the standard symplectic form

ωloc =
n−1
∑

k=1

dθk ∧ dξk. (2.5)

The dynamics is governed by the Hamiltonian

H loc
y (ξ, θ) =

n
∑

j=1

cos(θj − θj−1)

√

√

√

√

j+n−1
∏

m=j+1

[

1−
sin2 y

sin2(
∑m−1

k=j ξk)

]

. (2.6)

Here, θ0 = θn = 0 have been introduced and the indices are understood modulo n, i.e.,

ξm+n = ξm, ∀m. (2.7)

The product under the square root is positive for every ξ ∈ A+
y , and thus H loc

y ∈ C∞(P loc
y ).

This model was considered in [8] for any y chosen from the interval (0, π) except the
excluded values that satisfy e2imy = 1 for some m = 1, . . . , n.

According to [8], there are two different kinds of intervals for y to be in, named type
(i) and (ii). The type (i) couplings can be described as follows. For a fixed positive integer
n ≥ 2, choose p ∈ {1, . . . , n− 1} to be a coprime to n, i.e., gcd(n, p) = 1, and let q denote
the multiplicative inverse of p in the ring Zn, that is pq ≡ 1 (mod n). Then the parameter
y can take its values according to either

(

p

n
−

1

nq

)

π < y <
pπ

n
or

pπ

n
< y <

(

p

n
+

1

(n− q)n

)

π. (2.8)

For such a type (i) parameter y, the local configuration space A+
y is the interior of a

simplex Ay in E (2.3) bounded by the hyperplanes

ξj + · · ·+ ξj+p−1 = y, j = 1, . . . , n, (2.9)
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where (2.7) is understood. To give a more detailed description of Ay, we introduce

M = pπ − ny, (2.10)

and note that (2.8) gives M > 0 and M < 0, respectively. Then any ξ ∈ Ay must satisfy

sgn(M)(ξj + · · ·+ ξj+p−1 − y) ≥ 0, j = 1, . . . , n. (2.11)

In terms of the particle coordinates xk, which are ordered as xk+1 ≥ xk and extended by
the convention xk+n = xk + π, the above condition says that

xj+p − xj ≥ y if M > 0 and xj+p − xj ≤ y if M < 0 (2.12)

for every j. Therefore the distances of the p-th neighbouring particles on the circle are
constrained. The n vertices of the simplex Ay are explicitly given in [8] (Proposition 11
and Lemma 8 op. cit.). Every vertex and thus Ay itself lies inside the larger simplex A
(2.2), entailing that xj+p − xj possesses a positive lower bound in each type (i) case.

The type (ii) cases correspond to those admissible y-values that do not satisfy (2.8)
for any p relative prime to n. In such cases A+

y has a different structure [8]. Type (ii)
cases exist for every n ≥ 4. See Figure 1 for an illustration.
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Figure 1: The range of y/π for n = 4, 5, 6, 7. The displayed numbers are excluded values.
Admissible values of y form intervals of type (i) (solid) and type (ii) (dashed) couplings.

We further continue with the assumption that y satisfies (2.8). Motivated by [16, 6],
we now introduce the map

E : A+
y × T

n−1 → C
n, (ξ, eiθ) 7→ (u1, . . . , un) (2.13)

with the complex coordinates having the squared absolute values

|uj|
2 = sgn(M)(ξj + · · ·+ ξj+p−1 − y), j = 1, . . . , n, (2.14)

and the arguments

arg(uj) = sgn(M)

n−1
∑

k=1

Ωj,kθk, j = 1, . . . , n− 1, arg(un) = 0, (2.15)
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where the Ωj,k (j, k = 1, . . . , n− 1) are integers chosen in such a way that

E∗

(

i

n
∑

j=1

dūj ∧ duj

)

=

n−1
∑

k=1

dθk ∧ dξk. (2.16)

In order for (2.16) to be achieved Ω has to be the inverse transpose of the (n−1)× (n−1)
coefficient matrix of ξ1, . . . , ξn−1 extracted from eqs. (2.14) by applying ξ1 + · · ·+ ξn = π.
In other words, the squared absolute values |uj|

2 are written as

|uj|
2 =

{

sgn(M)
(
∑n−1

k=1 Aj,kξk − y
)

, if 1 ≤ j ≤ n− p,

sgn(M)
(
∑n−1

k=1 Aj,kξk − y + π
)

, if n− p < j ≤ n− 1,
(2.17)

where A stands for the above-mentioned coefficient matrix, which has the components

Aj,k =











+1, if 1 ≤ j ≤ n− p and j ≤ k < j + p,

−1, if n− p < j ≤ n− 1 and j + p− n ≤ k < j,

0, otherwise.

(2.18)

A close inspection of the structure of A reveals that

det(A) = (−1)(n−p)(p−1)

n−p
∏

j=1

Aj,j+p−1

p−1
∏

k=1

An−p+k,k = (−1)(n−p+1)(p−1) = +1, (2.19)

therefore Ω = (A−1)⊤ exists and consists of integers, as required in (2.15). Next, we give
Ω explicitly.

Proposition 2.1. The transpose of the inverse of the matrix A (2.18) can be written as

Ω = B − C, (2.20)

where B is a (0, 1)-matrix of size (n− 1) with zeros along certain diagonals given by

Bm,k =

{

0, if k −m ≡ ℓp (mod n) for some ℓ ∈ {1, . . . , n− q},

1, otherwise,
(2.21)

and C is also a binary matrix of size (n− 1) with zeros along columns given by

Cm,k =

{

0, if k ≡ ℓp (mod n) for some ℓ ∈ {1, . . . , n− q},

1, otherwise.
(2.22)

Proof. We start by presenting a useful auxiliary statement. Let us introduce the subsets
S and Si of the ring Zn as

S = {ℓp (mod n) | ℓ = 1, . . . , n− q}, Si = {i+ ℓ (mod n) | ℓ = 0, . . . , p− 1}, (2.23)

for any i ∈ Zn. Then define Ii ∈ N to be the number of elements in the intersection Si∩S.
Notice that i ∈ S if and only if (i+ p) ∈ S except for i ≡ (n− 1) ≡ (n− q)p (mod n), for
which (n− 1) + p ≡ (n− q + 1)p (mod n) does not belong to S. It follows that

I1 = · · · = In−1 = In + 1. (2.24)
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Our aim is to show that (AΩ⊤)j,m = δj,m (∀j,m) with Ω defined by (2.20)-(2.22).
First, by the formula of A (2.18) for any 1 ≤ j ≤ n− p and 1 ≤ m ≤ n− 1 we have

(AΩ⊤)j,m =

n−1
∑

k=1

Aj,kΩm,k =

j+p−1
∑

k=j

Ωm,k =

j+p−1
∑

k=j

(Bm,k − Cm,k). (2.25)

The definition of the matrices B (2.21) and C (2.22) gives directly that

j+p−1
∑

k=j

Bm,k = p− Ij−m,

j+p−1
∑

k=j

Cm,k = p− Ij . (2.26)

By using (2.24), this readily implies that (AΩ⊤)j,m = δj,m holds for the case at hand.
Second, for any n− p < j ≤ n− 1 and 1 ≤ m ≤ n− 1 we have

(AΩ⊤)j,m =

n−1
∑

k=1

Aj,kΩm,k =

j−1
∑

k=j+p−n

(−1)Ωm,k =

j−1
∑

k=j+p−n

(Cm,k − Bm,k). (2.27)

From this point on the reasoning is quite similar to the previous case, and we obtain that
(AΩ⊤)j,m = δj,m always holds.

To enlighten the geometric meaning of the map E (2.13), notice from (2.14) that

n
∑

j=1

|uj|
2 = sgn(M)

(

p(ξ1 + · · ·+ ξn)− ny
)

= sgn(M)
(

pπ − ny
)

= |M |. (2.28)

Then represent the complex projective space CP
n−1 as

CP
n−1 = S2n−1

|M | /U(1) (2.29)

with
S2n−1
|M | = {(u1, . . . , un) ∈ C

n | |u1|
2 + · · ·+ |un|

2 = |M |}. (2.30)

Correspondingly, let
π|M | : S

2n−1
|M | → CP

n−1 (2.31)

denote the natural projection and equip CP
n−1 with the rescaled Fubini–Study symplectic

form |M |ωFS characterized by the relation

π∗
|M |(|M |ωFS) = i

n
∑

j=1

dūj ∧ duj, (2.32)

where the uj’s are regarded as functions on S2n−1
|M | . It is readily seen from the definitions

that the map
π|M | ◦ E : A

+
y × T

n−1 → CP
n−1 (2.33)

is smooth, injective and its image is the open submanifold for which
∏n

j=1 |uj|
2 6= 0.

Equations (2.5), (2.16) and (2.32) together imply the symplectic property

(π|M | ◦ E)
∗(|M |ωFS) = ωloc, (2.34)

from which it follows that this map is an embedding.
To summarize, in this section we have constructed the symplectic diffeomorphism

π|M | ◦ E between the local phase space P loc
y (2.4) and the dense open submanifold of

CP
n−1 on which the product of the homogeneous coordinates is nowhere zero. If desired,

the explicit formula of the smooth inverse mapping can be easily found as well.
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3 Global extension of the trigonometric Lax matrix

It was proved in [8] with the aid of quasi-Hamiltonian reduction that the global phase
space of the IIIb model is CPn−1 for the type (i) couplings, which we continue to consider.
Here, we utilize the symplectic embedding (2.33) to construct a global Lax matrix on
CP

n−1 explicitly, starting from the local RS Lax matrix defined on A+
y ×Tn−1. This issue

was not investigated previously except for the p = 1 case of (2.8), see [16, 6, 8].
The local Lax matrix Lloc

y (ξ, eiθ) ∈ SU(n) used in [8] contains the trigonometric Cauchy
matrix Cy given with the help of (2.1) by

Cy(ξ)j,ℓ =
eiy − e−iy

eiyδj(ξ)1/2δℓ(ξ)−1/2 − e−iyδj(ξ)−1/2δℓ(ξ)1/2
. (3.1)

Thanks to the relation δk(ξ) = e2ixk , this is equivalent to

Cy(ξ)j,ℓ =
sin(y)

sin(xj − xℓ + y)
. (3.2)

Then we have

Lloc
y (ξ, eiθ)j,ℓ = Cy(ξ)j,ℓvj(ξ, y)vℓ(ξ,−y)ρ(θ)ℓ, ∀(ξ, eiθ) ∈ A+

y × T
n−1, (3.3)

where ρ(θ)ℓ = ei(θℓ−1−θℓ) (applying θ0 = θn = 0) and

vℓ(ξ,±y) =
√

zℓ(ξ,±y) with zℓ(ξ,±y) = sgn(sin(ny))

ℓ+n−1
∏

m=ℓ+1

sin(
∑m−1

k=ℓ ξk ∓ y)

sin(
∑m−1

k=ℓ ξk)
. (3.4)

A key point [8] (which is detailed below) is that zℓ(ξ,±y) is positive for any ξ ∈ A+
y . We

note for clarity that zℓ and vℓ above differ from those in [8] by a harmless multiplicative
constant, and also mention that Lloc

y is a specialization of (a similarity transform of) the
standard RS Lax matrix [17].

The spectral invariants of Lloc
y (3.3) yield a Poisson commuting family of functional

dimension (n− 1) [17, 8], containing the Hamiltonian H loc
y (2.6) due to the equation

Re
(

trLloc
y (ξ, eiθ)

)

= H loc
y (ξ, θ). (3.5)

There are two important observations to be made here. First, for each 1 ≤ ℓ ≤ n, there
is only one factor in zℓ(ξ,±y) (3.4) that (up to sign) contains the sine of the squared
absolute value (2.14) of one of the complex variables in its numerator:

• For zℓ(ξ, y), it is the factor corresponding to m = ℓ+ p, whose numerator is

sgn(M) sin(|uℓ|
2). (3.6)

• For zℓ(ξ,−y), it is the factor with m = ℓ+ n− p, whose the numerator is either

sin(π − sgn(M)|uℓ+n−p|
2) = sgn(M) sin(|uℓ+n−p|

2), if 1 ≤ ℓ ≤ p, (3.7)

or
sin(π − sgn(M)|uℓ−p|

2) = sgn(M) sin(|uℓ−p|
2), if p < ℓ ≤ n. (3.8)

Here we made use of ξ1+ · · ·+ ξn = π, sin(π−α) = sin(α) and sin(−α) = − sin(α).
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Second, the (p−1) factors in zℓ(ξ,±y) with m < ℓ+p and m > ℓ+n−p, respectively, are
strictly negative and the factors corresponding to m > ℓ+p and m < ℓ+n−p, respectively,
are strictly positive for all ξ in the closed simplex Ay. In particular, for any ξ ∈ A+

y the
sign of the ξ-dependent product in (3.4) equals (−1)p−1 sgn(M) = sgn(sin(ny)), and
therefore

zℓ(ξ,±y) ≥ 0, ∀ξ ∈ Ay, ℓ = 1, . . . , n. (3.9)

We saw that zℓ can only vanish due to the numerators (3.6) and (3.7), (3.8), respectively.
Consequently, in (3.4) the positive square root of zℓ(ξ,±y) can be taken for any ξ ∈ A+

y .
Now notice that, for all ξ ∈ A+

y , we have

vj(ξ, y) = |uj|wj(ξ, y), 1 ≤ j ≤ n, (3.10)

where the wj(ξ, y) are positive and smooth functions of the form

wj(ξ, y) =

[

sin(|uj|
2)

|uj|2
(−1)p−1

sin(
∑j+p−1

k=j ξk)

j+n−1
∏

m=j+1
(m6=j+p)

sin(
∑m−1

k=j ξk − y)

sin(
∑m−1

k=j ξk)

]

1
2

. (3.11)

Similarly, we have

vℓ(ξ,−y) =

{

|uℓ+n−p|wℓ(ξ,−y), if 1 ≤ ℓ ≤ p,

|uℓ−p|wℓ(ξ,−y), if p < ℓ ≤ n
(3.12)

with the positive and smooth functions

wℓ(ξ,−y) =

[

sin(|uℓ+n−p|
2)

|uℓ+n−p|2
(−1)p−1

sin(
∑ℓ+n−p−1

k=ℓ ξk)

ℓ+n−1
∏

m=ℓ+1
(m6=ℓ+n−p)

sin(
∑m−1

k=ℓ ξk + y)

sin(
∑m−1

k=ℓ ξk)

]

1
2

(3.13)

for 1 ≤ ℓ ≤ p, and

wℓ(ξ,−y) =

[

sin(|uℓ−p|
2)

|uℓ−p|2
(−1)p−1

sin(
∑ℓ+n−p−1

k=ℓ ξk)

ℓ+n−1
∏

m=ℓ+1
(m6=ℓ+n−p)

sin(
∑m−1

k=ℓ ξk + y)

sin(
∑m−1

k=ℓ ξk)

]

1
2

(3.14)

for p < ℓ ≤ n.
The relation (2.17) allows us to express the ξk in terms of the complex variables for

k = 1, . . . , n− 1 as

ξk(u) =
n−1
∑

j=1

Ωj,k

(

sgn(M)|uj |
2 + cj

)

, with cj =

{

y, if 1 ≤ j ≤ n− p,

y − π, if n− p < j ≤ n− 1,
(3.15)

and ξn(u) = π − ξ1(u)− · · · − ξn−1(u). These formulas extend to U(1)-invariant smooth
functions on S2n−1

|M | , which represent smooth functions on CP
n−1 on account of (2.29).

By applying these, the above expressions wj(ξ(u),±y) (j = 1, . . . , n) give rise to smooth

functions on CP
n−1.
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Definition 3.1. By setting θk = 0 (∀k) in the local Lax matrix Lloc
y (3.3) with y (2.8),

we define the functions Λy
j,ℓ : A

+
y → R (j, ℓ = 1, . . . , n) via the equations

Λy
j,j+p(ξ) = Lloc

y (ξ, 1n−1)j,j+p, 1 ≤ j ≤ n− p, (3.16)

Λy
j,j+p−n(ξ) = Lloc

y (ξ, 1n−1)j,j+p−n, n− p < j ≤ n, (3.17)

Λy
j,ℓ(ξ) = Lloc

y (ξ, 1n−1)j,ℓ(|uj||uℓ+n−p|)
−1, 1 ≤ j ≤ n, 1 ≤ ℓ ≤ p (ℓ 6= j+ p−n), (3.18)

Λy
j,ℓ(ξ) = Lloc

y (ξ, 1n−1)j,ℓ(|uj||uℓ−p|)
−1, 1 ≤ j ≤ n, p < ℓ ≤ n (ℓ 6= j + p). (3.19)

The foregoing results lead to explicit formulas for Λy
j,ℓ (see Appendix A). Using the

identification (2.29) and (3.15), it is readily seen that the Λy
j,ℓ(ξ(u)) given by Definition

3.1 extend to smooth functions on CP
n−1.

Remark 3.2. The explicit formulas of Λy
j,ℓ(ξ(u)) contain products of square roots of

strictly positive functions depending on |uk|
2 ∈ C∞(S2n−1

|M | )U(1) for k = 1, . . . , n. In par-
ticular, they contain the square root of the function J given by

J(|uk|
2) =

sin(|uk|
2)

|uk|2
, (3.20)

which remains smooth (even real-analytic) at |uk|
2 = 0 and is positive since we have

0 ≤ |uk|
2 ≤ |M | < π. Indeed, |M | < π/q and |M | < π/(n− q), respectively, for the two

intervals of the type (i) couplings in (2.8).

The above observations allow us to introduce the following functions, which will be
used to construct the global Lax matrix.

Definition 3.3. For M > 0 (2.10), define the smooth functions Ly,+
j,ℓ : CPn−1 → C by

Ly,+
j,ℓ ◦ π|M |(u) =



















Λy
j,j+p(ξ(u)), if 1 ≤ j ≤ n− p, ℓ = j + p,

Λy
j,j+p−n(ξ(u)), if n− p < j ≤ n, ℓ = j + p− n,

ūjuℓ+n−pΛ
y
j,ℓ(ξ(u)), if 1 ≤ j ≤ n, 1 ≤ ℓ ≤ p, ℓ 6= j + p− n,

ūjuℓ−pΛ
y
j,ℓ(ξ(u)), if 1 ≤ j ≤ n, p < ℓ ≤ n, ℓ 6= j + p,

(3.21)

where u varies in S2n−1
|M | . Then, for M < 0, define Ly,−

j,ℓ : CPn−1 → C by

Ly,−
j,ℓ ◦ π|M |(u) = Ly,+

j,ℓ ◦ π|M |(ū), (3.22)

referring to the right-hand-side of (3.21) with the understanding that now y > pπ/n.

Next, we prove that the matrices Lloc
y and Ly,± ◦ π|M | ◦ E , are similar and can be

transformed into each other by a unitary matrix. This is one of our main results.

Theorem 3.4. The smooth matrix function Ly,± : CPn−1 → C
n×n with components Ly,±

j,ℓ

given by (3.21),(3.22) satisfies the following identity

(Ly,± ◦ π|M | ◦ E)(ξ, e
iθ) = ∆(eiθ)−1Lloc

y (ξ, eiθ)∆(eiθ), ∀(ξ, eiθ) ∈ A+
y × T

n−1, (3.23)

where ∆(eiθ) = diag(∆1, . . . ,∆n) ∈ U(n) with

∆j = exp

(

i

n−1
∑

k=1

Ωj,kθk

)

, j = 1, . . . , n− 1, ∆n = 1. (3.24)

Consequently, Ly,±(π|M |(u)) ∈ SU(n) for every u ∈ S2n−1
|M | , and Ly,± provides an extension

of the local Lax matrix Lloc
y (3.3) to the global phase space CP

n−1.
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Proof. The form of the local Lax matrix Lloc
y (3.3) and Definitions 3.1 and 3.3 show that

(3.23) is equivalent to the equations

∆j =

{

∆j+pρj+p, if 1 ≤ j ≤ n− p,

∆j+p−nρj+p−n, if n− p < j ≤ n.
(3.25)

The two sides of (3.25) can be written as exponentials of linear combinations of the
variables θk (1 ≤ k ≤ n − 1). We next spell out the relations that ensure the exact
matching of the coefficients of the θk in these exponentials. Plugging the components of
∆ and ρ into (3.25), the case 1 ≤ j < n− p gives

Ωj,j+p−1 = Ωj+p,j+p−1 + 1, (coefficients of θj+p−1)

Ωj,j+p = Ωj+p,j+p − 1, (coefficients of θj+p)

Ωj,k = Ωj+p,k, (coefficients of θk, k 6= j + p− 1, j + p),

(3.26)

while for j = n− p we get

Ωn−p,n−1 = 1, (coefficients of θn−1)

Ωn−p,k = 0, (coefficients of θk, k 6= n− 1).
(3.27)

The case n− p < j < n (and p > 1) leads to

Ωj,j+p−n−1 = Ωj+p−n,j+p−n−1 + 1, (coefficients of θj+p−n−1)

Ωj,j+p−n = Ωj+p−n,j+p−n − 1, (coefficients of θj+p−n)

Ωj,k = Ωj+p−n,k, (coefficients of θk, k 6= j + p− n− 1, j + p− n).

(3.28)

For j = n there are two possibilities. If p = 1 then we obtain

Ω1,1 = 1, (coefficients of θ1)

Ω1,k = 0, (coefficients of θk, k 6= 1),
(3.29)

and if p > 1 then we require

Ωp,p−1 = −1, (coefficients of θp−1)

Ωp,p = 1, (coefficients of θp)

Ωp,k = 0, (coefficients of θk, k 6= p− 1, p).

(3.30)

Using the explicit formula given by Proposition 2.1, we now show that Ω satisfies (3.26).
Since Ωj,k = Bj,k − Cj,k for all j, k, where Bj,k (2.21) depends on (k − j) and Cj,k (2.22)
depends only on k, the equations (3.26) reduce to

Bj,j+p−1 = Bj+p,j+p−1 + 1,

Bj,j+p = Bj+p,j+p − 1,

Bj,k = Bj+p,k, k 6= j + p− 1, j + p.

(3.31)

The first equation holds, because (j + p− 1)− j = p− 1 ≡ (n− q + 1)p (mod n) implies
Bj,j+p−1 = 1 and (j+p−1)−(j+p) = −1 ≡ (n−q)p (mod n) implies Bj+p,j+p−1 = 0. For
the second equation, we plainly have Bj,j+p = 0, and (j + p)− (j + p) = 0 ≡ np (mod n)
gives Bj+p,j+p = 1. Regarding the third equation, notice that Bj,k = 0 in (3.31) when
k−j ≡ ℓp (mod n) for some ℓ ∈ {2, . . . , n−q}, and then Bj+p,k = 0 holds, too. Conversely,
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Bj+p,k = 0 in (3.31) means that (k− j)− p ≡ ℓp (mod n) for some ℓ ∈ {1, . . . , n− q− 1},
from which (k− j) ≡ (ℓ+1)p (mod n) and thus Bj,k = 0 follows. As B is a (0, 1)-matrix,
we conclude that (3.31) is valid. Proceeding in a similar manner, we have verified the rest
of the relations (3.27)–(3.30) as well. Since the relations (3.26)–(3.30) imply (3.25), the
proof is complete.

It is an immediate consequence of Theorem 3.4 that the spectral invariants of the
global Lax matrix Ly,± ∈ C∞(CPn−1, SU(n)) yield a Liouville integrable system. Because
of (3.5) the corresponding Poisson commuting family contains the extension of the IIIb
Hamiltonian H loc

y to CP
n−1 for any type (i) coupling. The self-duality of this compactified

RS system was established in [8], and it will be studied in more detail elsewhere.

4 Compact forms of the elliptic RS system

In this section we explain that type (i) compactifications of the elliptic RS system can be
constructed in exactly the same way as we saw for the trigonometric system. This is due
to the fact that the local elliptic Lax matrix is built from the s-function (4.2) similarly as
its trigonometric counterpart is built from the sine function, and on the real axis these
two functions have the same zeros, signs, parity and antiperiodicity property.

We start by recalling some formulas of the relevant elliptic functions. First, let ω, ω′

stand for the half-periods of the Weierstrass ℘ function defined by

℘(z;ω, ω′) =
1

z2
+

∞
∑

m,m′=−∞
(m,m′)6=(0,0)

[

1

(z − ωm,m′)2
−

1

ω2
m,m′

]

, (4.1)

with ωm,m′ = 2mω + 2m′ω′. We adopt the convention ω,−iω′ ∈ (0,∞), which ensures
that ℘ is positive on the real axis. Next, introduce the following ‘s-function’:

s(z;ω, ω′) =
2ω

π
sin

(πz

2ω

)

∞
∏

m=1

[

1 +
sin2(πz/(2ω))

sinh2(mπ|ω′|/ω)

]

, (4.2)

related to the Weierstrass σ and ζ functions by s(z) = σ(z) exp(−ηz2/(2ω)) with the
constant η = ζ(ω). A useful identity connecting ℘ and s is

s(z + z′) s(z − z′)

s2(z) s2(z′)
= ℘(z′)− ℘(z), z, z′ ∈ C. (4.3)

The s-function is odd, has simple zeros at ωm,m′ (m,m′ ∈ Z) and enjoys the scaling
property s(tz; tω, tω′) = t s(z;ω, ω′). From now on we take

ω =
π

2
, (4.4)

whereby s(z+π) = − s(z) holds as well. The trigonometric limit is obtained according to

lim
−iω′→∞

℘(z; π/2, ω′) =
1

sin2(z)
−

1

3
, lim

−iω′→∞
s(z; π/2, ω′) = sin(z). (4.5)

Let us now pick a type (i) coupling parameter y (2.8) and choose the domain of the
dynamical variables to be the same A+

y ×Tn−1 as in the trigonometric case. Then consider
the following IVb variant of the standard [14, 17] elliptic RS Lax matrix:

Lloc
y (ξ, eiθ|λ)j,ℓ =

s(y)

s(λ)

s(xj − xℓ + λ)

s(xj − xℓ + y)
vj(ξ, y)vℓ(ξ,−y)ρ(θ)ℓ, ∀(ξ, eiθ) ∈ A+

y × T
n−1, (4.6)
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where λ ∈ C \ {ωm,m′ : m,m′ ∈ Z} is a spectral parameter and vℓ(ξ,±y) =
√

zℓ(ξ,±y)
with

zℓ(ξ,±y) = sgn(s(ny))
ℓ+n−1
∏

m=ℓ+1

s(
∑m−1

k=ℓ ξk ∓ y)

s(
∑m−1

k=ℓ ξk)
. (4.7)

These formulas are to be compared with the trigonometric case. Since s(z) and sin(z)
have matching properties on the real line, we can repeat the arguments presented in
Section 3 to verify that zℓ(ξ,±y) > 0 for every ξ ∈ A+

y . Taking positive square roots, and
applying the relation xk+1 − xk = ξk to express xj − xℓ in terms of ξ, we conclude that
the above local Lax matrix is a smooth function on A+

y ×T
n−1 for every allowed value of

the spectral parameter. The fact that it is a specialization of the standard elliptic Lax
matrix ensures [14, 17] that its characteristic polynomial generates (n − 1) independent
real Hamiltonians in involution with respect to the symplectic form (2.5). Indeed, the
characteristic polynomial has the form

det
(

Lloc
y (ξ, eiθ|λ)− α1n

)

=
n

∑

k=0

(−α)n−kck(λ, y)S
loc
k (ξ, eiθ, y), (4.8)

where the functions S loc
k as well as their real and imaginary parts Poisson commute, and

Re(S loc
k ) for k = 1, . . . , n − 1 are functionally independent. Explicit formulas of the ck

(that do not depend on the phase space variables) and S loc
k (that do not depend on λ)

can be found in [14, 17]. The function Re(S loc
1 ) is the RS Hamiltonian of IVb type

Re
(

trLloc
y (ξ, eiθ|λ)

)

=
n

∑

j=1

cos(θj − θj−1)

√

√

√

√

j+n−1
∏

m=j+1

[

s(y)2(℘(y)− ℘(
∑m−1

k=j ξk))
]

. (4.9)

We note in passing that in Ruijsenaars’s papers [14, 17] one finds the elliptic Lax
matrix V Lloc

y V −1, where V is the diagonal matrix V = ρ(θ)diag(v1(ξ,−y), . . . , vn(ξ,−y)).
This difference is irrelevant, since it has no effect on the generated spectral invariants.
Another difference is that we work in the center-of-mass frame.

Now the complete train of thought applied in the previous section remains valid if we
simply replace the sine function with the s-function everywhere. In particular, the direct
analogues of the formulas (3.10)–(3.14) hold with smooth functions wk(ξ,±y) > 0, for
ξ ∈ Ay. Due to this fact, we can introduce a smooth elliptic Lax matrix defined on the
global phase space CP

n−1. The subsequent definition refers to the explicit formulas of
Appendix A, which in the elliptic case contain the function

J (|uk|
2) =

s(|uk|
2)

|uk|2
. (4.10)

This has the same smoothness and positivity properties at and around zero as J (3.20)
does. We also use ξ(u) (3.15) and the functions (xj−xℓ)(ξ) determined by xk+1−xk = ξk.

Definition 4.1. Take a type (i) y from (2.8) and represent the points of CPn−1 as π|M |(u)
with u ∈ S2n−1

|M | . For M > 0 (2.10), define the smooth functions Ly,+
j,ℓ on CP

n−1 by

Ly,+
j,ℓ (π|M |(u)) =



















Λy
j,j+p(ξ(u)), if 1 ≤ j ≤ n− p, ℓ = j + p,

Λy
j,j+p−n(ξ(u)), if n− p < j ≤ n, ℓ = j + p− n,

ūjuℓ+n−pΛ
y
j,ℓ(ξ(u)), if 1 ≤ j ≤ n, 1 ≤ ℓ ≤ p, ℓ 6= j + p− n,

ūjuℓ−pΛ
y
j,ℓ(ξ(u)), if 1 ≤ j ≤ n, p < ℓ ≤ n, ℓ 6= j + p,

(4.11)
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with Λy
j,ℓ given in Appendix A. For M < 0, set Ly,−

j,ℓ to be

Ly,−
j,ℓ (π|M |(u)) = Ly,+

j,ℓ (π|M |(ū)) (4.12)

with the understanding that in this case y > pπ/n. Finally, define the λ-dependent elliptic
Lax matrix Ly,± on CP

n−1 by

Ly,±
j,ℓ (π|M |(u)|λ) =

s((xj − xℓ)(ξ(u)) + λ)

s(λ)
Ly,±

j,ℓ (π|M |(u)), (4.13)

where u runs over S2n−1
|M | and the spectral parameter λ varies in C \ {ωm,m′ : m,m′ ∈ Z}.

Theorem 4.2. The spectral parameter dependent elliptic Lax matrix Ly,±(π|M |(u)|λ)
(4.13) is a smooth global extension of Lloc

y (ξ, eiθ|λ) (4.6) to the complex projective space

CP
n−1 since it satisfies

Ly,±((π|M | ◦ E)(ξ, e
iθ)|λ) = ∆(eiθ)−1Lloc

y (ξ, eiθ|λ)∆(eiθ), ∀(ξ, eiθ) ∈ A+
y × T

n−1, (4.14)

where ∆ is given by (3.24) and π|M | ◦E : A
+
y ×Tn−1 → CP

n−1 is the symplectic embedding

defined in Section 2.

The proof of Theorem 4.2 follows the lines of the proof of Theorem 3.4. The character-
istic polynomial det

(

Ly,±(π|M |(u)|λ)− α1n

)

of the global Lax matrix depends smoothly
on π|M |(u) ∈ CP

n−1 and as a consequence of (4.14) it satisfies

det
(

Ly,±((π|M | ◦ E)(ξ, e
iθ)|λ)− α1n

)

= det
(

Lloc
y (ξ, eiθ|λ)− α1n

)

. (4.15)

Since this holds for all α and λ, we see that the local IVb Hamiltonian (4.9) together
with its constants of motion Re(S loc

k ), k = 2, . . . , n − 1 extends to an integrable system
on CP

n−1. This was pointed out previously [17] for the special case 0 < y < π/n in (2.8).
In the trigonometric limit −iω′ → ∞ the s-function becomes the sine function, and

we obtain a spectral parameter dependent trigonometric Lax matrix from the elliptic
one. Then, setting the spectral parameter to be on the imaginary axis and taking the
limit −iλ → ∞ reproduces, up to conjugation by a diagonal matrix, the trigonometric
global Lax matrix of Definition 3.3. Correspondingly, the global extension of the IVb

Hamiltonian (4.9) and its commuting family reduces to the global extension of the IIIb
Hamiltonian (2.6) and its constants of motion.

5 Conclusion and outlook

In this paper we have demonstrated by direct construction that the local phase space
A+

y ×T
n−1 of the IIIb and IVb RS models (where A+

y is the interior of the simplex (2.11))

can be embedded into CP
n−1 for any type (i) coupling y (2.8) in such a way that a suitable

conjugate of the local Lax matrix extends to a smooth (actually real-analytic) function.
Theorems 3.4 and 4.2 together with Appendix A provide explicit formulas for the resulting
global Lax matrices. Their characteristic polynomials give rise to Poisson commuting real
Hamiltonians on CP

n−1 that yield the Liouville integrable compactified trigonometric and
elliptic RS systems.

Our direct construction was inspired by the earlier derivation of compactified IIIb
systems by quasi-Hamiltonian reduction [8]. The reduction identifies the IIIb system with
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a topological Chern-Simons field theory for any generic coupling parameter y. It appears
natural to ask if an analogous derivation and relation to some topological field theory
could exist for IVb systems, too. We also would like to obtain a better understanding of
the type (ii) trigonometric systems and their possible elliptic analogues.

In the near future, we wish to explore the classical dynamics and quantization of
the IIIb systems. This is partially motivated by the possibility to associate new random
matrix ensembles with these systems, extending the work of [3] beyond the standard
regime (1.3). For arbitrary type (i) couplings, geometric quantization yields the joint
spectra of the quantized action variables effortlessly [7]. (It is necessary to introduce a
second parameter into the systems before quantization, which can be achieved by taking
an arbitrary multiple of the symplectic form.) The joint eigenfunctions of the quantized
RS Hamiltonian and its commuting family should be derived by generalizing the results
of van Diejen and Vinet [19].

Besides further studying the systems that we described, it would be also interesting to
search for compactifications of generalized RS systems. We have in mind especially the
BCn systems due to van Diejen [18] and the recently introduced supersymmetric systems
[2]. Regarding the former case, and even for general root systems, the results of [21] could
be relevant, as well as the construction of Lax matrices for some of the BCn systems
reported in [12].

Throughout the text, we worked in the ‘center-of-mass frame’ and now we end by
a comment on how the center-of-mass coordinate can be introduced into our systems.
One possibility is to take the full phase space to be the Cartesian product of CPn−1 with
U(1)×U(1) = {(e2iX , eiΦ)} endowed with the symplectic form |M |ωFS + dX ∧ dΦ. Here,
e2iX is interpreted as a center-of-mass variable for the n particles on the circle. Then
n functions in involution result by adding an arbitrary function of eiΦ to the (n − 1)
commuting Hamiltonians generated by the ‘total Lax matrix’ e−iΦLy,±. On the dense
open domain the total Lax matrix is obtained by replacing ρ(θ) in (4.6) by ρ(θ)e−iΦ.
By setting eiΦ to 1 and quotienting by the canonical transformations generated by the
functions of eiΦ one recovers the phase space of the relative motion, CPn−1. There are
also several other possibilities, as was discussed for analogous situations in [16, 5]. For
example, one may replace U(1)× U(1) by its covering space R× R.

Acknowledgements. We thank B.G. Pusztai for helpful comments and S. Ruijsenaars
for useful discussions. This work was supported in part by the Hungarian Scientific
Research Fund (OTKA) under the grant K-111697 and by COST (European Cooperation
in Science and Technology) in COST Action MP1405 QSPACE.
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A Explicit form of the functions Λ
y
j,ℓ

In this appendix we display the building blocks (4.11) of the global elliptic Lax matrix
explicitly. Below, ξ varies in the closed simplex Ay associated with a type (i) coupling y
(2.8) for fixed p and M . The function J was defined in (4.10). The trigonometric case is
obtained by simply replacing the s-function (4.2) everywhere by the sine function.

Special components: For 1 ≤ j ≤ n− p

Λy
j,j+p(ξ) = − sgn(M) s(y)

[
∏n−1

m=1
(m6=p)

s(
∑j+m−1

k=j ξk − y) s(
∑j+p+n−m−1

k=j+p ξk + y)
]

1
2

∏n−1
m=1

[

s(
∑j+m−1

k=j ξk) s(
∑j+p+m−1

k=j+p ξk)
]

1
2

.

For n− p < j ≤ n

Λy
j,j+p−n(ξ) = sgn(M) s(y)

[
∏n−1

m=1
(m6=p)

s(
∑j+m−1

k=j ξk − y) s(
∑j+p−m−1

k=j+p−n ξk + y)
]

1
2

∏n−1
m=1

[

s(
∑j+m−1

k=j ξk) s(
∑j+p−m−1

k=j+p−n ξk)
]

1
2

.

Diagonal components: For 1 ≤ j = ℓ ≤ p

Λy
j,j(ξ) =

[

J (|uj|
2)J (|uj+n−p|

2)
]

1
2

[
∏n−1

m=1
(m6=p)

s(
∑j+m−1

k=j ξk − y) s(
∑j+n−m−1

k=j ξk + y)
]

1
2

∏n−1
m=1 s(

∑j+m−1
k=j ξk)

.

For p < j = ℓ ≤ n

Λy
j,j(ξ) =

[

J (|uj|
2)J (|uj−p|

2)
]

1
2

[
∏n−1

m=1
(m6=p)

s(
∑j+m−1

k=j ξk − y) s(
∑j+n−m−1

k=j ξk + y)
]

1
2

∏n−1
m=1 s(

∑j+m−1
k=j ξk)

.

Components above the diagonal: For 1 ≤ j < ℓ ≤ p

Λy
j,ℓ(ξ) = s(y)

[

J (|uj|
2)J (|uℓ+n−p|

2)
]

1
2

[
∏n−1

m=1
(m6=ℓ−j,p)

s(
∑j+m−1

k=j ξk − y) s(
∑ℓ+n−m−1

k=ℓ ξk + y)
]

1
2

∏n−1
m=1

[

s(
∑j+m−1

k=j ξk) s(
∑ℓ+m−1

k=ℓ ξk)
]

1
2

.

For 1 ≤ j < ℓ ≤ n with p < ℓ and ℓ 6= j + p

Λy
j,ℓ(ξ) =

s(y)
[

J (|uj|
2)J (|uℓ−p|

2)
]

1
2

sgn(j + p− ℓ)

[
∏n−1

m=1
(m6=ℓ−j,p)

s(
∑j+m−1

k=j ξk − y) s(
∑ℓ+n−m−1

k=ℓ ξk + y)
]

1
2

∏n−1
m=1

[

s(
∑j+m−1

k=j ξk) s(
∑ℓ+m−1

k=ℓ ξk)
]

1
2

.

Components below the diagonal: For 1 ≤ ℓ < j ≤ n with ℓ ≤ p and ℓ 6= j + p− n

Λy
j,ℓ(ξ) =

s(y)
[

J (|uj|
2)J (|uℓ+n−p|

2)
]

1
2

sgn(ℓ+ n− j − p)

[
∏n−1

m=1
(m6=j−ℓ,p)

s(
∑j+n−m−1

k=j ξk − y) s(
∑ℓ+m−1

k=ℓ ξk + y)
]

1
2

∏n−1
m=1

[

s(
∑j+m−1

k=j ξk) s(
∑ℓ+m−1

k=ℓ ξk)
]

1
2

.

For p < ℓ < j ≤ n

Λy
j,ℓ(ξ) = s(y)

[

J (|uj|
2)J (|uℓ−p|

2)
]

1
2

[
∏n−1

m=1
(m6=j−ℓ,p)

s(
∑j+n−m−1

k=j ξk − y) s(
∑ℓ+m−1

k=ℓ ξk + y)
]

1
2

∏n−1
m=1

[

s(
∑j+m−1

k=j ξk) s(
∑ℓ+m−1

k=ℓ ξk)
]

1
2

.
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