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Abstract. Recently Fehér and the author have constructed the action-angle dual of the
trigonometric BCn Sutherland system via Hamiltonian reduction. In this paper a reduction-
based calculation is carried out to verify the canonical Poisson bracket relations on the phase
space of this dual model. Hence the material serves complementary purposes whilst it can also
be regarded as a suitable modification of the hyperbolic case previously sorted out by Pusztai.

1. Introduction
The integrable one-dimensional many-body systems of Calogero, Moser, and Sutherland and
generalized versions of them have proven to be a fruitful source of both diverse physical
applications and connections between seemingly distant areas of mathematics. For details, see
e.g. [1, 2, 3]. Among the numerous aspects of these models their duality relations are rather
interesting. Two Liouville integrable many-body Hamiltonian systems (M,ω,H) and (M̃, ω̃, H̃)
with Darboux coordinates q, p and λ, ϑ, respectively, are said to be duals of each other if there
is a global symplectomorphism R : M → M̃ of the phase spaces, which exchanges the canonical
coordinates with the action-angle variables for the Hamiltonians. Practically, this means that
H ◦ R−1 depends only on λ, while H̃ ◦ R only on q. In more detail, q are the particle positions
for H and action variables for H̃, and similarly, λ are the positions of particles modelled by the
Hamiltonian H̃ and action variables for H.

A notable work has been done by Ruijsenaars [4, 5] in constructing action-angle duality maps
for models with rational, hyperbolic, and trigonometric potentials associated with the An root
system. Many of these dualities have been interpreted in terms of Hamiltonian reduction [6, 7].

The suspected existence of action-angle duality between models related other root systems
has been confirmed by Pusztai [8] proving the hyperbolic BCn Sutherland [9] and the rational
BCn Ruijsenaars – Schneider – van Diejen (RSvD) [10] systems to be in duality.

In a recent paper by Fehér and the author [11] earlier results [8, 12] have been generalized to
obtain a new dual pair involving the trigonometric BCn Sutherland system. This was achieved by
applying Hamiltonian reduction to the cotangent bundle T ∗U(2n) with respect to the symmetry
group G+ × G+ with G+ ' U(n) × U(n). The systems in duality arose as two cross sections
of the orbits of the symmetry group in the level surface of the momentum map since these
cross sections were identified with the phase spaces of the trigonometric BCn Sutherland and
a rational BCn RSvD-type systems. The aim of this paper is to provide detailed calculations
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proving that under this identification the coordinates λ, ϑ – introduced on a dense submanifold
of the phase space of the dual model – are canonical (Darboux) coordinates as stated in [11].

Section 2 is a selective review of [11] devoted to establishing context and introducing necessary
notations for succeeding calculations. The core of the paper is Section 3 which contains a series of
lemmas culminating in the main result. Concluding the paper, Section 4 gives a brief discussion
of the outcome and its relation to other cases considered formerly.

2. Context and notations
Choose an arbitrary positive integer, n. Let G and G denote the unitary group U(2n) and its Lie
algebra, respectively. The Lie algebra G can be equipped with the Ad-invariant bilinear form

〈·, ·〉 : G × G → R, (Y1, Y2) 7→ 〈Y1, Y2〉 = tr(Y1Y2), (1)

which allows one to identify G with its dual space G∗ in the usual manner. The cotangent bundle
T ∗G can be trivialized using left-translations

T ∗G ∼= G× G∗ ∼= G× G = {(y, Y ) | y ∈ G, Y ∈ G}. (2)

Then the canonical symplectic form of T ∗G can be written as ΩT ∗G = −d〈y−1dy, Y 〉, and it can
be evaluated locally according to the formula

ΩT ∗G
(y,Y )(∆y ⊕∆Y,∆′y ⊕∆′Y ) = 〈y−1∆y,∆′Y 〉 − 〈y−1∆′y,∆Y 〉+ 〈[y−1∆y, y−1∆′y], Y 〉, (3)

where ∆y ⊕∆Y,∆′y ⊕∆′Y ∈ T(y,Y )T
∗G are arbitrary tangent vectors at a point (y, Y ) ∈ T ∗G.

By introducing the 2n× 2n Hermitian, unitary matrix

C =

[
0n 1n
1n 0n

]
∈ G, (4)

where 1n and 0n denote the identity and null matrices of size n, respectively, an involutive
automorphism of G can be defined as conjugation with C

Γ: G→ G, y 7→ Γ(y) = CyC−1. (5)

The fix-point subgroup of Γ in G is

G+ = {y ∈ G | Γ(y) = y} ∼= U(n)×U(n). (6)

Let Γ stand for the induced involution of the Lie algebra G, too. Hence G can be decomposed as

G = G+ ⊕ G−, Y = Y+ + Y−, (7)

where G± are the eigenspaces of Γ corresponding to the eigenvalues ±1, respectively.
In [11] a reduction of T ∗G based on the symmetry group G+ ×G+ was performed by using

the shifting trick of symplectic reduction [13]. For that a coadjoint orbit of the symmetry group
must be prepared. To any vector V ∈ C2n that satisfies CV + V = 0 associate an element
υ`µ,ν(V ) of G+ by the definition

υ`µ,ν(V ) = iµ
(
V V † − 12n

)
+ i(µ− ν)C, (8)

where µ, ν ∈ R are real parameters. The set

O` =
{
υ` ∈ G+ | ∃ V ∈ C2n, V †V = 2n, CV + V = 0, υ` = υ`µ,ν(V )

}
(9)
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represents a coadjoint orbit of G+ of dimension 2(n− 1). Let Or := {υr} denote the one-point
coadjoint orbit of G+ containing the element υr = −iκC with some constant κ ∈ R and consider

O = O` ⊕Or ⊂ G+ ⊕ G+ ∼= (G+ ⊕ G+)∗, (10)

which is a coadjoint orbit of G+ ×G+. The initial phase space for symplectic reduction is

P = T ∗G×O with the symplectic form Ω = ΩT ∗G + ΩO, (11)

where ΩO is the Kirillov – Kostant – Souriau symplectic form on the coadjoint orbit O.
For any point x = (y, Y, υ`, υr) ∈ P and smooth functions f, f ′ ∈ C∞(P )

Ωx((Xf )x, (Xf ′)x) = ΩT ∗G
(y,Y )(∆y ⊕∆Y,∆′y ⊕∆′Y ) + 〈[Dυ` , D

′
υ` ], υ

`〉, (12)

where (Xf )x = ∆y⊕∆Y ⊕∆υ`⊕0, (Xf ′)x = ∆′y⊕∆′Y ⊕∆′υ`⊕0 ∈ TxP and ∆υ` = [Dυ` , υ
`],

∆′υ` = [D′
υ`
, υ`] with some G+-valued D

υ`
, D′

υ`
. The natural symplectic action of G+ ×G+ on

P is defined by
Φ(gL,gR)(y, Y, υ

`, υr) =
(
gLyg

−1
R , gRY g

−1
R , gLυ

`g−1L , υr
)
. (13)

The corresponding momentum map J : P → G+ ⊕ G+ is given by the formula

J(y, Y, υ`, υr) =
(
(yY y−1)+ + υ`

)
⊕
(
− Y+ + υr

)
. (14)

The reduced phase space is
Pred = J−1(0)/(G+ ×G+), (15)

which is a smooth symplectic manifold.
One of the main results in [11] was the construction of a semi-global cross section of symmetry

group orbits in the momentum constraint surface J−1(0), that is a model of the reduced phase
space (15). This was done by solving the momentum equation J(y, Y, υ`, υr) = 02n⊕02n through
the diagonalization of the (G−)-part of the Lie algebra component. In particular, the following
matrix similarity was demonstrated

Y ∼ ih(λ)Λ(λ)h(λ)−1, (16)

where Λ(λ) = diag(λ,−λ) with λ = (λ1, . . . , λn) ∈ Rn subject to λ1 > · · · > λn > |κ| and h(λ)
is the unitary matrix

h(λ) =

[
α(diag(λ)) β(diag(λ))
−β(diag(λ)) α(diag(λ))

]
, (17)

with the real functions α(x), β(x) defined on the interval [|κ|,∞) ⊂ R by the formulae

α(x) =

√
x+
√
x2 − κ2√

2x
, β(x) = κ

1√
2x

1√
x+
√
x2 − κ2

, (18)

if κ 6= 0. For κ = 0, set h(λ) = 12n. This approach enables one to define the smooth map

L : P0 → Rn, (y, Y, υ`, υr) 7→ λ, (19)

which descends to a smooth map Lred : Pred → Rn. The image of the constraint surface J−1(0)
under the map L (19) turned out to be the closure of the domain

C2 =

{
λ ∈ Rn

∣∣∣∣ λa − λa+1 > 2µ,
(a = 1, . . . , n− 1)

and λn > ν

}
. (20)
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Introduce the vector F ∈ C2n by the formulae

Fa =

[
1− ν

λa

]1
2

n∏
b=1
(b6=a)

[
1− 2µ

λa − λb

]1
2
[
1− 2µ

λa + λb

]1
2
, a ∈ {1, . . . , n},

Fn+a = eiϑa
[
1 +

ν

λa

]1
2

n∏
b=1
(b6=a)

[
1 +

2µ

λa − λb

]1
2
[
1 +

2µ

λa + λb

]1
2
.

(21)

and the 2n× 2n matrices A(λ, ϑ) and B(λ, ϑ) by

Aj,k(λ, ϑ) =
2µFj(CF )k − 2(µ− ν)Cj,k

2µ− Λj + Λk
, j, k ∈ {1, . . . , 2n}, (22)

and
B(λ, ϑ) = −

(
h(λ)A(λ, ϑ)h(λ)

)†
. (23)

These are unitary matrices satisfying Γ(A) = A−1, Γ(B) = B−1. The matrix B can be
diagonalized using some η ∈ G+

B = η diag(exp(2iq), exp(−2iq))η−1, (24)

where q = q(λ, ϑ) ∈ Rn is unique and subject to π/2 > q1 > · · · > qn > 0. Relying on (24) set

y(λ, ϑ) = η diag(exp(iq), exp(−iq))η−1, (25)

and introduce the vector V (λ, ϑ) ∈ C2n by

V (λ, ϑ) = y(λ, ϑ)h(λ)F (λ, ϑ). (26)

It was also shown in [11] that V + CV = 0 and |V |2 = 2n ensuring that υ`µ,ν(V ) ∈ O` (9).
Theorem 4.1 of [11] claims that the set

S̃0 := {(y(λ, ϑ), ih(λ)Λ(λ)h(λ)−1, υ`µ,ν(V (λ, ϑ)), υr) | (λ, eiϑ) ∈ C2 × Tn}. (27)

is contained in the constraint surface J−1(0) and provides a cross-section for the G+×G+-action
restricted to L−1(C2) ⊂ J−1(0). In particular, C2 ⊂ L(J−1(0)) and S̃0 intersects every gauge
orbit in L−1(C2) precisely in one point. Since the elements of S̃0 are parametrized by C2 × Tn
in a smooth and bijective manner, the following identifications were gained

L−1red(C2) ' S̃0 ' C2 × Tn. (28)

Let σ̃0 denote the tautological injection

σ̃0 : S̃0 → P. (29)

This way C2 × Tn yields a model of an open submanifold L−1(C2) of Pred corresponding to the
open submanifold L−1(C2) ⊂ J−1(0) was obtained. The purpose of this paper is to show that
the pull-back σ̃∗0(Ω) of the symplectic form Ω (11) is

σ̃∗0(Ω) =

n∑
a=1

dλa ∧ dϑa (30)
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by computing the Poisson brackets

{λa, λb}, {λa, ϑb}, {ϑa, ϑb}, a, b ∈ {1, . . . , n}. (31)

Now, consider the reduced functions f redj = σ̃∗0(fj) for some fj ∈ C∞(P )G+×G+ (j = 1, 2). Then
the definition of symplectic reduction implies

σ̃∗0({f1, f2}) = {f red1 , f red2 }, (32)

where the Poisson bracket on the left-hand-side is computed on (P,Ω) (11). The idea is to
extract the required Poisson brackets in (31) from equality (32) applied to various choices of
f1, f2. Note that {f1, f2} = Ω(Xf2 ,Xf1) with the corresponding Hamiltonian vector fields.

3. Calculation of Poisson brackets
The following verification is an appropriate adaptation of an argument presented by Pusztai
in [14] which since has been applied in the simpler case of An root system in [15]. Differences
between these earlier results and the calculations below are highlighted in the Discussion.

Consider the following families of real-valued smooth functions on the phase space P (11)

ϕm(y, Y, υ`, υr) :=
1

m
Re
(
tr(Y m)

)
, m ∈ N, (33)

χk(y, Y, υ
`, υr) := Re

(
tr(Y ky−1Z(υ`)yC)

)
, k ∈ N0, (34)

where Z(υ`) = (iµ)−1υ`µ,ν(V ) + 1N − (1− ν/µ)C = V V †. The corresponding reduced functions

on S̃0 are

ϕred
m (λ, ϑ) =


0, if m is odd,

(−1)
m
2

2

m

n∑
j=1

λmj , if m is even,
(35)

and

χred
k (λ, ϑ) =


(−1)

k+1
2 2

n∑
a=1

λka

[
1− κ2

λ2a

]1
2
|Xa| sin(ϑa), if k is odd,

(−1)
k
2 2

n∑
a=1

λka

[
1− κ2

λ2a

]1
2
|Xa| cos(ϑa)− κλk−1a

(
|Fa|2 − |Fn+a|2

)
, if k is even,

(36)
where

Xa = FaFn+a = e−iϑa
[
1− ν2

λ2a

]1
2

n∏
b=1
(b6=a)

[
1− 4µ2

(λa − λb)2

]1
2
[
1− 4µ2

(λa + λb)2

]1
2
. (37)

Now let us take an arbitrary point x = (y, Y, υ`, υr) ∈ P and an arbitrary tangent vector
δx = δy ⊕ δY ⊕ δυ` ⊕ 0 ∈ TxP . The derivative of ϕm can be easily obtained and has the form

(dϕm)x(δx) =

{
0, if m is odd,

〈Y m−1, δY 〉, if m is even.
(38)
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The derivative of χk can be written as

(dχk)x(δx) =

〈[
[Y k, C]±, y

−1Z(υ`)y
]

2
, y−1δy

〉
+

〈 k−1∑
j=0

Y k−j−1[y−1Z(υ`)y, C]±Y
j

2
, δY

〉

+

〈
y[C, Y k]±y

−1 + Cy[C, Y k]±y
−1C

4iµ
, δυ`

〉
,

(39)

where [A,B]± := AB ±BA with the sign of (−1)k. The Hamiltonian vector field of ϕm is

(Xϕm)x = ∆y ⊕∆Y ⊕∆υ` ⊕ 0 = yY m−1 ⊕ 0⊕ 0⊕ 0, (40)

while the Hamiltonian vector field corresponding to χk is

(Xχk
)x = ∆′y ⊕∆′Y ⊕∆′υ` ⊕ 0, (41)

where

∆′y =
y

2

k−1∑
j=0

Y k−j−1[y−1Z(υ`)y, C]±Y
j , (42)

∆′Y =
1

2

[
[Y k, y−1Z(υ`)y]±, C

]
, (43)

∆′υ` =
1

4iµ

[(
y[C, Y k]±y

−1 + Cy[C, Y k]±y
−1C

)
, υ`
]
. (44)

Lemma 1. {λa, λb} = 0 for any a, b ∈ {1, . . . , n}.

Proof. Using (38) one has {ϕm, ϕl} ≡ 0 for any m, l ∈ N which implies that {ϕred
m , ϕred

l } ≡ 0.
Let m, l ∈ N be arbitrary even numbers. Direct calculation of the Poisson bracket {ϕred

m , ϕred
l }

using (35) and the Leibniz rule results in the formula

{ϕred
m , ϕred

l } = (−1)
m+l
2 4

n∑
a,b=1

λm−1a {λa, λb}λl−1b . (45)

By introducing the n× n matrices

P a,b := {λa, λb} and Ua,b := λ2b−1a , a, b ∈ {1, . . . , n} (46)

and choosing m and l from the set {1, . . . , 2n}, the equation {ϕred
m , ϕred

l } ≡ 0 can be cast into
the matrix equation

(−1)
m+l
2 U †PU = 0n. (47)

Since U is an invertible Vandermonde-type matrix it follows from (47) that P = 0n which reads
as {λa, λb} = 0 for all a, b ∈ {1, . . . , n}.

Lemma 2. {λa, ϑb} = δa,b for any a, b ∈ {1, . . . , n}.
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Proof. By choosing two even numbers, k and m, and calculating the Poisson bracket {χk, ϕm}
at an arbitrary point x = (y, Y, υ`, υr) ∈ P the results (40)-(44) imply that

{χk, ϕm}(x) = χk+m−1(x) +
1

2
tr
(
(Y kCY m−1 − Y m−1CY k)y−1Z(υ`)y

)
. (48)

The computation of the reduced form of (48) shows that

{χred
k , ϕred

m } = 2χred
k+m−1. (49)

By utilizing (35), (36) and the result of the previous lemma one can write the l.h.s. of (49) as

{χred
k , ϕred

m } = (−1)
k+m
2 4

n∑
b=1

λkb

[
1− κ2

λ2b

]1
2
|Xb(λ)| sin(ϑb)

n∑
a=1

{λa, ϑb}λm−1a . (50)

Now, returning to equation (49) together with (50) one can obtain the following equivalent form

n∑
b=1

λkb

[
1− κ2

λ2b

]1
2
|Xb(λ)| sin(ϑb)

( n∑
a=1

{λa, ϑb}λm−1a − λm−1b

)
= 0. (51)

By introducing the n× n matrices

V b,d :=

[
1− κ2

λ2b

]1
2
|Xb(λ)| sin(ϑb)

( n∑
a=1

{λa, ϑb}λ2d−1a − λ2d−1b

)
, b, d ∈ {1, . . . , n} (52)

and using the Vandermonde-type matrix U defined in (46) one is able to write (51) into the
matrix equation U †V = 0n. Since U is invertible V = 0n and therefore in the dense subset of
C2 × Tn where sin(ϑb) 6= 0 the following holds

n∑
a=1

{λa, ϑb}λm−1a − λm−1b = 0, ∀ b ∈ {1, . . . , n}. (53)

With the matrices U and

Qb,a := {λa, ϑb}, a, b ∈ {1, . . . , n} (54)

equation (53) can be written equivalently as QU − U = 0n, which immediately implies that
Q = 1n. Due to the continuity of Poisson bracket Q = 1n must hold for every point in C2×Tn,
therefore one has {λa, ϑb} = δa,b for all a, b ∈ {1, . . . , n}.

Lemma 3. {ϑa, ϑb} = 0 for any a, b ∈ {1, . . . , n}.

Proof. Let k and l be two arbitrarily chosen odd integers, and set f = χl and f ′ = χk in (12).
First, one can calculate the Poisson bracket {χred

k , χred
l } indirectly, that is, work out the Poisson

bracket {χk, χl} = Ω(Xχl
,Xχk

) explicitly and restrict it to the gauge (27). The first term on
the right-hand side of equation (12), namely 〈y−1∆y,∆′Y 〉 can be written as

〈y−1∆y,∆′Y 〉 =(−1)
k+l+2

2 2 l

n∑
a=1

λk+l−1a

[
1− κ

λ2a

]
|Xa(λ)|2 sin(2ϑa)

(−1)
k+l+2

2 2
n∑

a,b=1
(a6=b)

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb|

sin(ϑa − ϑb)
λa + λb

(−1)
k−l+2

2 2
n∑

a,b=1
(a6=b)

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb|

sin(ϑa + ϑb)

λa − λb
.

(55)
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Due to antisymmetry in the indices the second term can be gained by interchanging k and l

〈y−1∆′y,∆Y 〉 =(−1)
k+l+2

2 2 k
n∑
a=1

λk+l−1a

[
1− κ

λ2a

]
|Xa(λ)|2 sin(2ϑa)

(−1)
k−l+2

2 2

n∑
a,b=1
(a6=b)

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb|

sin(ϑa − ϑb)
λa + λb

(−1)
k+l+2

2 2

n∑
a,b=1
(a6=b)

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb|

sin(ϑa + ϑb)

λa − λb
.

(56)

One can easily check that the third term in (12) vanishes. The last term of (12) takes the form

〈[Dυ, D
′
υ], υ〉 =(−1)

k+l+2
2 4

n∑
a,b=1
(a6=b)

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb|

sin(ϑa − ϑb)(
4µ2 − (λa + λb)2

)
(λa + λb)

(−1)
k−l+2

2 4
n∑

a,b=1
(a6=b)

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb|

sin(ϑa + ϑb)(
4µ2 − (λa − λb)2

)
(λa − λb)

.

(57)

As a result of this indirect calculation one obtains the following expression for {χred
k , χred

l }

{χred
k , χred

l } = (−1)
k−l+2

2 2(k − l)
n∑
a=1

λk+l−1a

[
1− κ2

λ2a

]
|Xa|2 sin(2ϑa)

(−1)
k+l+2

2 16µ2
n∑

a,b=1
(a6=b)

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb|

sin(ϑa − ϑb)(
4µ2 − (λa + λb)2

)
(λa + λb)

(−1)
k−l+2

2 16µ2
n∑

a,b=1
(a6=b)

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb|

sin(ϑa + ϑb)(
4µ2 − (λa − λb)2

)
(λa − λb)

.

(58)

One can also carry out a direct computation of {χred
k , χred

l } by using basic properties of the
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Poisson bracket and the previous two lemmas

{χred
k , χred

l } = (−1)
k−l+2

2 2(k − l)
n∑
a=1

λk+l−1a

[
1− κ2

λ2a

]
|Xa|2 sin(2ϑa)

(−1)
k+l+2

2 16µ2
n∑

a,b=1
(a6=b)

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb|

sin(ϑa − ϑb)(
4µ2 − (λa + λb)2

)
(λa + λb)

(−1)
k−l+2

2 16µ2
n∑

a,b=1
(a6=b)

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb|

sin(ϑa + ϑb)(
4µ2 − (λa − λb)2

)
(λa − λb)

(−1)
k−l
2 4

n∑
a,b=1

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb| cos(ϑa) cos(ϑb){ϑa, ϑb}.

(59)

Now it is obvious that (58) and (59) must be equal therefore the extra term must vanish

n∑
a,b=1

λkaλ
l
b

[
1− κ2

λ2a

]1
2
[
1− κ2

λ2b

]1
2
|Xa||Xb| cos(ϑa) cos(ϑb){ϑa, ϑb} = 0. (60)

By utilizing the n× n matrices

W a,b = λba

[
1− κ2

λ2a

]1
2
|Xa(λ)| cos(ϑa), Ra,b = {ϑa, ϑb}, a, b ∈ {1, . . . , n} (61)

one can reformulate (60) as the matrix equation

W †RW = 0n. (62)

Since W is easily seen to be invertible in a dense subset of the phase space C2 × Tn, eq. (62)
and the continuity of Poisson bracket imply R = 0n for the full phase space, i.e., {ϑa, ϑb} = 0
for all a, b ∈ {1, . . . , n}.

Lemmas 1, 2, and 3 together imply the following result of [11], whose proof was omitted in
that paper to save space.

Theorem 4. The reduced symplectic structure on S̃0 (27), given by the pull-back of Ω (11) by
the map σ̃0 (29), has the canonical form σ̃∗0(Ω) =

∑n
a=1 dλa ∧ dϑa.

4. Discussion
In this paper an explicit derivation of the Darboux form (30) was given. The Poisson bracket
relations

{λa, λb} = 0, {λa, ϑb} = δa,b, {ϑa, ϑb} = 0, a, b ∈ {1, . . . , n} (63)

were proved in Lemmas 1, 2, and 3, respectively. As a consequence Theorem 4 was proved.
As mentioned before the method used in this paper has been previously applied to the

analogous hyperbolic models associated with the Cn [14] and An [7, 15] root systems. In [8] the
hyperbolic BCn case has been settled by “an almost verbatim computation as in the Cn case”.
In fact, a careful comparison of corresponding equations shows subtle differences as a result of
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the dissimilar characteristics of the underlying systems. For example, most of the expressions
in Section 3 contain factors with the parameter κ which reflects the BCn feature. As one would
expect taking the limit κ → 0 turns these formulae into the ones seen in the Cn case. The
trigonometric nature of the considered systems can be accounted for another difference when
minor complications occur in Lemmas 2 and 3 due to the appearance of trigonometric functions.
These issues have been resolved by using density and continuity arguments.
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