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We present a new case of duality between integrable many-body systems, where
two systems live on the action-angle phase spaces of each other in such a way that
the action variables of each system serve as the particle positions of the other one.
Our investigation utilizes an idea that was exploited previously to provide group-
theoretic interpretation for several dualities discovered originally by Ruijsenaars. In
the group-theoretic framework, one applies Hamiltonian reduction to two Abelian
Poisson algebras of invariants on a higher dimensional phase space and identifies
their reductions as action and position variables of two integrable systems living on
two different models of the single reduced phase space. Taking the cotangent bundle
of U(2n) as the upstairs space, we demonstrate how this mechanism leads to a new
dual pair involving the BCn trigonometric Sutherland system. Thereby, we generalize
earlier results pertaining to the An trigonometric Sutherland system as well as a recent
work by Pusztai on the hyperbolic BCn Sutherland system. C© 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4898077]

I. INTRODUCTION

The integrable one-dimensional many-body systems of Calogero–Sutherland–Toda type and
their generalizations are very important because they are ubiquitous in physical applications and
have close ties to several topics of mathematics. See, for example, the reviews in Refs. 4,18,22,31,33,
and 34. We here focus on their fascinating duality relations, which were first studied by Ruijsenaars.27

We shall uncover a new case of duality between two systems of this type.
Duality between two Liouville integrable Hamiltonian systems (M, ω, H) and (M̃, ω̃, H̃ ) requires

the existence of Darboux coordinates qi, pi on M and λj, ϑ j on M̃ (or on dense open submanifolds
of M and M̃) and a global symplectomorphism R : M → M̃ such that (λ, ϑ) ◦ R are action-angle
variables for the Hamiltonian H and (q, p) ◦ R−1 are action-angle variables for the Hamiltonian H̃ .
This means that H ◦ R−1 depends only on λ and H̃ ◦ R only on q. Then one says that (M, ω, H) and
(M̃, ω̃, H̃ ) are in action-angle duality. In addition, for the systems of our interest it also happens that
when expressed in the coordinates (q, p) the Hamiltonian H(q, p) admits interpretation in terms of
interaction of n “particles” with position variables qi, and H̃ (λ, ϑ) similarly describes the interaction
of n points with positions λi. Thus, the qi are particle positions for H and action variables for H̃ , and
the λi are positions for H̃ and actions for H. The significance of this curious property is clear, for
instance, from the fact that it persists at the quantum mechanical level as the bispectral character of
the wave functions,3, 29 which are important special functions.
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Dual pairs of many-body systems were exhibited by Ruijsenaars in the course of his direct con-
struction of action-angle variables for the many-body systems (of non-elliptic Calogero–Sutherland
type and non-periodic Toda type) associated with the An root system.27, 28, 30, 31 It is natural to expect
that action-angle duality also exists for many-body systems associated with other root systems.
Substantial evidence to support this expectation was given in a recent paper by Pusztai,26 where
action-angle duality between the hyperbolic BCn Sutherland16, 19 and the rational Ruijsenaars–
Schneider–van Diejen (RSvD) systems35 was established. The specific goal of the present work is
to find out how this result can be generalized if one replaces the hyperbolic BCn system with its
trigonometric analogue. A similar problem has been studied previously in the An case, where it was
found that the dual of the trigonometric Sutherland system possesses intricate global structure.6, 30

The global description of the duality necessitates a separate investigation also in the BCn case, since
it cannot be derived by naı̈ve analytic continuation between trigonometric and hyperbolic functions.
This problem turns out to be considerably more complicated than those studied in Refs. 6 and 26.

The trigonometric BCn Sutherland system is defined by the Hamiltonian

H (q, p) = 1

2

n∑
j=1

p2
j +

∑
1≤ j<k≤n

[
γ

sin2(q j − qk)
+ γ

sin2(q j + qk)

]
+

n∑
j=1

γ1

sin2(q j )
+

n∑
j=1

γ2

sin2(2q j )
.

(1.1)
Here, (q, p) varies in the cotangent bundle M = T ∗C1 = C1 × Rn of the domain

C1 =
{

q ∈ Rn

∣∣∣∣π2 > q1 > · · · > qn > 0

}
, (1.2)

and the three independent real coupling constants γ , γ 1, γ 2 are supposed to satisfy

γ > 0, γ2 > 0, 4γ1 + γ2 > 0. (1.3)

The inequalities in (1.3) guarantee that the n particles with coordinates qj cannot leave the open
interval (0, π

2 ) and they cannot collide. At a “semi-global” level, the dual system will be shown to
have the Hamiltonian

H̃ 0(λ, ϑ) =
n∑

j=1

cos(ϑ j )

[
1 − ν2

λ2
j

] 1
2
[

1 − κ2

λ2
j

] 1
2

n∏
k = 1

(k �= j)

[
1 − 4μ2

(λ j − λk)2

] 1
2
[

1 − 4μ2

(λ j + λk)2

] 1
2

− νκ

4μ2

n∏
j=1

[
1 − 4μ2

λ2
j

]
+ νκ

4μ2
. (1.4)

Here, μ > 0, ν, κ are real constants, ϑ1, . . . , ϑn are angular variables, and λ varies in the Weyl
chamber with thick walls

C2 =
{
λ ∈ Rn

∣∣∣∣ λa − λa+1 > 2μ,

(a = 1, . . . , n − 1)
and λn > max{|ν|, |κ|}

}
. (1.5)

The inequalities defining C2 ensure the reality and the smoothness of H̃ 0 on the phase space
M̃0 := C2 × T n , which is equipped with the symplectic form

ω̃0 =
n∑

k=1

dλk ∧ dϑk . (1.6)

Duality will be established under the following relation between the coupling parameters:

γ = μ2, γ1 = νκ

2
, γ2 = (ν − κ)2

2
, (1.7)

where in addition to μ > 0 we also adopt the condition

ν > |κ| ≥ 0. (1.8)
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This entails that Eq. (1.7) gives a one-to-one correspondence between the parameters (γ , γ 1, γ 2)
subject to (1.3) and (μ, ν, κ), and also serves to simplify our analysis. In the above, the qualification
“semi-global” indicates that M̃0 represents a dense open submanifold of the full dual phase space,
M̃ . The completion of M̃0 into M̃ guarantees both the completeness of the Hamiltonian flows of the
dual system and the global nature of the symplectomorphism between M and M̃ . The structure of M̃
will be clarified in the paper. For example, we shall see that the action variables of the Sutherland
system fill the closure of the domain C2 ⊂ Rn , with the boundary points corresponding to degenerate
Liouville tori.

The integrable systems (M, ω, H) and (M̃, ω̃, H̃ ) as well as their duality relation will emerge from
an appropriate Hamiltonian reduction. Specifically, we will reduce the cotangent bundle T∗U(2n)
with respect to the symmetry group G+ × G+ , where G+ ∼= U(n) × U(n) is the fix-point
subgroup of an involution of U(2n). This enlarges the range of the reduction approach to action-
angle dualities,11, 12, 18 which realizes5–9 the following scenario. Pick a higher dimensional symplectic
manifold (P, 	) equipped with two Abelian Poisson algebras Q1 and Q2 formed by invariants
under a symmetry group acting on P. Then perform Hamiltonian reduction leading to the reduced
manifold (Pred, 	red) carrying the reduced Abelian Poisson algebras Q1

red and Q2
red. Under favorable

circumstances, it is possible to construct two models (M, ω) and (M̃, ω̃) of (Pred, 	red) in such
a way that when expressed in terms of (M, ω) Q1

red and Q2
red coincide with the Abelian Poisson

algebras generated by the position and action variables of an integrable many-body Hamiltonian
H, respectively, and one finds a similar picture from the dual perspective of (M̃, ω̃, H̃ ) except that
the roles of Q1

red and Q2
red are interchanged. In particular, the many-body Hamiltonian H on M is

engendered by an element of Q2
red and the many-body Hamiltonian H̃ on M̃ is born from an element

of Q1
red. For a relatively simple and enlightening example, we recommend the reader to have a glance

at the duality between the hyperbolic An Sutherland and rational Ruijsenaars–Schneider systems as
described in Ref. 7.

The rest of the paper is organized as follows. In Sec. II, we present the necessary group-theoretic
preliminaries together with the definition of the unreduced Abelian Poisson algebras Q1,Q2 and the
symplectic reduction to be performed. Then Sec. III is devoted to the derivation of the first model
(M, ω) of the reduced phase space that carries the Sutherland Hamiltonian obtained as the reduction
of the free Hamiltonian governing geodesic motion on U(2n). The content of this section, and even its
quantum analogue, is fairly standard.10 The heart of the paper is Sec. IV, where we develop the dual
model (M̃, ω̃) of the reduced phase space and explain how the Hamiltonian H̃ arises. This section
relies on a blend of ideas from Refs. 6 and 24–26, and also requires the solution of a number of rather
non-trivial technical problems. Some technical details are relegated to the Appendix. Our main new
results are given by Theorem 4.1 and Theorem 4.10, which yield, respectively, the “semi-global”
and a fully global characterization of the reduced phase space. Finally, in Sec. V, we pull together
the previous developments and discuss the duality between the two systems mentioned in the title of
the paper. Here, we shall also use the action angle-duality to establish interesting properties of these
Hamiltonian systems.

II. PREPARATIONS

We next describe the starting data which will lead to integrable many-body systems in duality
by means of the mechanism outlined in the Introduction. We then summarize some group-theoretic
facts that will be used in the demonstration of this claim.

A. Definition of the Hamiltonian reduction

Let us choose an arbitrary positive integer, n, and also introduce N := 2n. Our investigation
requires the unitary group of degree N

G := U(N ) = {y ∈ GL(N ,C) | y† y = 1N }, (2.1)
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and its Lie algebra

G := u(N ) = {Y ∈ gl(N ,C) | Y † + Y = 0N }, (2.2)

where 1N and 0N denote the identity and null matrices of size N, respectively. We endow the Lie
algebra G with the Ad-invariant bilinear form

〈·, ·〉 : G × G → R, (Y1, Y2) �→ 〈Y1, Y2〉 := tr(Y1Y2), (2.3)

and identify G with the dual space G∗ in the usual manner. By using left-translations to trivialize the
cotangent bundle T∗G, we also adopt the identification

T ∗G ∼= G × G∗ ∼= G × G = {(y, Y ) | y ∈ G, Y ∈ G}. (2.4)

Then the canonical symplectic form of T∗G can be written as

	T ∗G := −d〈y−1dy, Y 〉. (2.5)

It can be evaluated according to the formula

	T ∗G
(y,Y )(
y ⊕ 
Y,
′y ⊕ 
′Y ) = 〈y−1
y,
′Y 〉 − 〈y−1
′y,
Y 〉 + 〈[y−1
y, y−1
′y], Y 〉,

(2.6)
where 
y ⊕ 
Y, 
′y ⊕ 
′Y ∈ T(y, Y)T∗G are arbitrary tangent vectors at a point (y, Y) ∈ T∗G.

Let us introduce the N × N Hermitian, unitary matrix partitioned into four n × n blocks

C :=
[

0n 1n

1n 0n

]
∈ G, (2.7)

and the involutive automorphism of G defined as conjugation with C

� : G → G, y �→ �(y) := CyC−1. (2.8)

The set of fix-points of � forms the subgroup of G consisting of N × N unitary matrices with
centro-symmetric block structure,

G+ = {y ∈ G | �(y) = y} =
{[

a b
b a

]
∈ G

}
∼= U(n) × U(n). (2.9)

We also introduce the closed submanifold G− of G by the definition

G− = {y ∈ G | �(y) = y−1} =
{[

a b
c a†

]
∈ G

∣∣∣∣ b, c ∈ iu(n)

}
. (2.10)

By slight abuse of notation, we let � stand for the induced involution of the Lie algebra G, too. We
can decompose G as

G = G+ ⊕ G−, Y = Y+ + Y−, (2.11)

where G± are the eigenspaces of � corresponding to the eigenvalues ± 1, respectively, i.e.,

G+ = ker(� − id) =
{[

A B
B A

]∣∣∣∣ A, B ∈ u(n)

}
,

G− = ker(� + id) =
{[

A B
−B −A

]∣∣∣∣ A ∈ u(n), B ∈ iu(n)

}
.

(2.12)

We are interested in a reduction of T∗G based on the symmetry group G+ × G+ . We shall use the
shifting trick of symplectic reduction,21 and thus we first prepare a coadjoint orbit of the symmetry
group. To do this, we take any vector V ∈ CN that satisfies CV + V = 0, and associate to it the
element υ


μ,ν(V ) of G+ by the definition

υ

μ,ν(V ) := iμ

(
V V † − 1N

) + i(μ − ν)C, (2.13)

where μ, ν ∈ R are real parameters. The set

O
 := {
υ
 ∈ G+ | ∃ V ∈ CN , V †V = N , CV + V = 0, υ
 = υ


μ,ν(V )
}

(2.14)
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represents a coadjoint orbit of G+ of dimension 2(n − 1). We let Or := {υr } denote the one-point
coadjoint orbit of G+ containing the element

υr := −iκC with some constant κ ∈ R, (2.15)

and consider

O := O
 ⊕ Or ⊂ G+ ⊕ G+ ∼= (G+ ⊕ G+)∗, (2.16)

which is a coadjoint orbit of G+ × G+ . The same coadjoint orbit was used in Ref. 26. Our starting
point for symplectic reduction will be the phase space (P, 	) with

P := T ∗G × O and 	 := 	T ∗G + 	O, (2.17)

where 	O denotes the Kirillov–Kostant–Souriau symplectic form on O. The natural symplectic
action of G+ × G+ on P is defined by

�(gL ,gR )(y, Y, υ
 ⊕ υr ) = (
gL yg−1

R , gRY g−1
R , gLυ
g−1

L ⊕ υr
)
. (2.18)

The corresponding momentum map J : P → G+ ⊕ G+ is given by the formula

J (y, Y, υ
 ⊕ υr ) = (
(yY y−1)+ + υ


) ⊕ ( − Y+ + υr
)
. (2.19)

We shall see that the reduced phase space

Pred = P0/(G+ × G+), P0 := J−1(0), (2.20)

is a smooth symplectic manifold, which inherits two Abelian Poisson algebras from P.
Using the identification G∗ ∼= G, the invariant functions C∞(G)G form the center of the Lie–

Poisson bracket. Denote by C∞(G)G+×G+ the set of smooth functions on G that are invariant under
the (G+ × G+ )-action on G that appears in the first component of (2.18). Let us also introduce the
maps

π1 : P → G, (y, Y, υ
, υr ) �→ y, (2.21)

and

π2 : P → G, (y, Y, υ
, υr ) �→ Y. (2.22)

It is clear that

Q1 := π∗
1 (C∞(G)G+×G+) and Q2 := π∗

2 (C∞(G)G) (2.23)

are two Abelian subalgebras in the Poisson algebra of smooth functions on (P, 	) and these Abelian
Poisson algebras descend to the reduced phase space Pred.

Later we shall construct two models of Pred by exhibiting two global cross-sections for the
action of G+ × G+ on P0. For this, we shall apply two different methods for solving the constraint
equations that, according to (2.19), define the level surface P0 ⊂ P

(yY y−1)+ + υ
 = 0N and − Y+ + υr = 0N , (2.24)

where υ
 = υ

μ,λ(V ) (2.13) for some vector V ∈ CN subject to CV + V = 0, V †V = N and υr =

− iκC. We below collect the group-theoretic results needed for our constructions.

B. Recall of group-theoretic results

To start, let us associate the diagonal N × N matrix

Q(q) := diag(q,−q) (2.25)

with any q ∈ Rn . Notice that the set

A := {iQ(q) | q ∈ Rn} ⊂ G− (2.26)

is a maximal Abelian subalgebra in G−. The corresponding subgroup of G has the form

exp(A) = {
eiQ(q) = diag

(
eiq1 , . . . , eiqn , e−iq1 , . . . , e−iqn

) | q ∈ Rn
}
. (2.27)
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The centralizer of A inside G+ (2.9) (with respect to conjugation) is the Abelian subgroup

Z := ZG+(A) = {
eiξ = diag

(
eix1 , . . . , eixn , eix1 , . . . , eixn

) | x ∈ Rn
}

< G+. (2.28)

The Lie algebra of Z is

Z = {iξ = i diag(x, x) | x ∈ Rn} < G+. (2.29)

The results that we now recall (see, e.g., Refs. 15,17, and 32) will be used later. First, for any y
∈ G there exist elements yL, yR from G+ and unique q ∈ Rn satisfying

π

2
≥ q1 ≥ · · · ≥ qn ≥ 0 (2.30)

such that
y = yLeiQ(q) y−1

R . (2.31)

If all components of q satisfy strict inequalities, then the pair yL, yR is unique precisely up to the
replacements (yL, yR) → (yLζ , yRζ ) with arbitrary ζ ∈ Z. The decomposition (2.31) is referred to as
the generalized Cartan decomposition corresponding to the involution �.

Second, every element g ∈ G− can be written in the form

g = ηe2iQ(q)η−1 (2.32)

with some η ∈ G+ and uniquely determined q ∈ Rn subject to (2.30). In the case of strict inequalities
for q, the freedom in η is given precisely by the replacements η → ηζ , ∀ ζ ∈ Z.

Third, every element Y− ∈ G− can be written in the form

Y− = gRiDg−1
R , D = diag(d1, . . . , dn,−d1, . . . ,−dn), (2.33)

with gR ∈ G+ and uniquely determined real di satisfying

d1 ≥ · · · ≥ dn ≥ 0. (2.34)

If the di satisfy strict inequalities, then the freedom in gR is exhausted by the replacements
gR → gRζ , ∀ ζ ∈ Z.

The first and the second statements are essentially equivalent since the map

G → G−, y �→ y−1CyC (2.35)

descends to a diffeomorphism from

G/G+ = {G+g | g ∈ G} (2.36)

onto G− .15

III. THE SUTHERLAND PICTURE

We here exhibit a symplectomorphism between the reduced phase space (Pred, 	red) and the
Sutherland phase space

M = T ∗C1 = C1 × Rn (3.1)

equipped with its canonical symplectic form, where C1 was defined in (1.2). As preparation, we
associate with any (q, p) ∈ M the G-element

Y (q, p) := K (q, p) − iκC, (3.2)

where K(q, p) is the N × N matrix

K j,k = −Kn+ j,n+k = ip jδ j,k − μ(1 − δ j,k)/ sin(q j − qk),
K j,n+k = −Kn+ j,k = (ν/ sin(2q j ) + κ cot(2q j ))δ j,k + μ(1 − δ j,k)/ sin(q j + qk),

(3.3)

with j, k = 1, . . . , n. We also introduce the N-component vector

VR := (1, . . . , 1︸ ︷︷ ︸
n times

,−1, . . . ,−1︸ ︷︷ ︸
n times

)�. (3.4)

Notice from (2.12) that K (q, p) ∈ G−.
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Throughout the paper we adopt the conditions (1.8) and take μ > 0, although the next result
requires only that the real parameters μ, ν, κ satisfy

μ �= 0 and |ν| �= |κ|. (3.5)

Theorem 3.1. Using the notations introduced in (2.13), (2.25), and (3.2), the subset S of the
phase space P (2.17) given by

S := {
(eiQ(q), Y (q, p), υ


μ,ν(VR), υr ) | (q, p) ∈ M
}
, (3.6)

is a global cross-section for the action of G+ × G+ on P0 = J− 1(0). Identifying Pred with S,
the reduced symplectic form is equal to the Darboux form ω = ∑n

k=1 dqk ∧ dpk . Thus, the obvious
identification between S and M provides a symplectomorphism

(Pred,	red) � (M, ω). (3.7)

Proof. We saw in Sec. II that the points of the level surface P0 satisfy the equations

(yY y−1)+ + υ

μ,ν(V ) = 0N and − Y+ − iκC = 0N , (3.8)

for some vector V ∈ CN subject to CV + V = 0, V †V = N . Remember that the block-form of any
Lie algebra element Y ∈ G is

Y =
[

A B
−B† D

]
with A + A† = 0n = D + D†, B ∈ Cn×n. (3.9)

Now the second constraint equation in (3.8) can be written as

2Y+ =
[

A + D B − B†

B − B† A + D

]
=

[
0n −2iκ1n

−2iκ1n 0n

]
= −2iκC, (3.10)

which implies that

D = −A and B† = B + 2iκ1n. (3.11)

Thus, every point of P0 has G-component Y of the form

Y =
[

A B

−B − 2iκ1n −A

]
with A + A† = 0n, B ∈ Cn×n. (3.12)

By using the generalized Cartan decomposition (2.31) and applying a gauge transformation (the
action of G+ × G+ on P0), we may assume that y = eiQ(q) with some q satisfying (2.30). Then the
first equation of the momentum map constraint (3.8) yields the matrix equation

1

2i

(
eiQ(q)Y e−iQ(q) + e−iQ(q)CY CeiQ(q)

) + μ(V V † − 1N ) + (μ − ν)C = 0N . (3.13)

If we introduce the notation V = (u,−u)�, u ∈ Cn , and assume that Y has the form (3.12) then
(3.13) turns into the following equations for A and B:

1

2i

(
eiq Ae−iq − e−iq Aeiq

) + μ(uu† − 1n) = 0n, (3.14)

and

1

2i

(
eiq Beiq − e−iq Be−iq

) − κe−2iq − μuu† + (μ − ν)1n = 0n. (3.15)

Since μ �= 0, Eq. (3.14) implies that |uj|2 = 1 for all j = 1, . . . , n. Therefore, we can apply a
“residual” gauge transformation by an element (gL, gR) = (eiξ (x), eiξ (x)), with suitable eiξ (x) ∈ Z (2.28)
to transform υ


μ,ν(V ) into υ

μ,ν(VR). This amounts to setting uj = 1 for all j = 1, . . . , n. After having

done this, we return to Eqs. (3.14) and (3.15). By writing out the equations entry-wise, we obtain
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that the diagonal components of A are arbitrary imaginary numbers (which we denote by ip1, . . . ,
ipn) and we also obtain the following system of equations

A j,k sin(q j − qk) = −μ = −B j,k sin(q j + qk), j �= k,

B j, j sin(2q j ) = ν + κ cos(2q j ) − iκ sin(2q j ), j, k = 1, . . . , n.
(3.16)

So far we only knew that q satisfies π /2 ≥ q1 ≥ . . . ≥ qn ≥ 0. By virtue of the conditions (3.5), the
system (3.16) can be solved if and only if π /2 > q1 > · · · > qn > 0. Substituting the unique solution
for A and B back into (3.12) gives the formula Y = Y(q, p) as displayed in (3.2).

The above arguments show that every gauge orbit in P0 contains a point of S (3.6), and it is
immediate by turning the equations backwards that every point of S belongs to P0. By using that q
satisfies strict inequalities and that all components of VR are non-zero, it is also readily seen that
no two different points of S are gauge equivalent. Moreover, the effectively acting symmetry group,
which is given by

(G+ × G+)/U(1)diag, (3.17)

where U(1) contains the scalar unitary matrices, acts freely on P0.
It follows from the above that Pred is a smooth manifold diffeomorphic to M. Now the proof is

finished by direct computation of the pull-back of the symplectic form 	 of P (2.17) onto the global
cross-section S. �

Let us recall that the Abelian Poisson algebras Q1 and Q2 (2.23) consist of (G+ × G+ )-
invariant functions on P, and thus descend to Abelian Poisson algebras on the reduced phase space
Pred. In terms of the model M � S � Pred, the Poisson algebra Q2

red is obviously generated by the
functions (q, p) �→ tr((−iY(q, p)))m for m = 1, . . . , N. It will be shown in Sec. IV that these functions
vanish identically for the odd integers, and functionally independent generators of Q2

red are provided
by the functions

Hk(q, p) := 1

4k
tr(−iY (q, p))2k, k = 1, . . . , n. (3.18)

(In fact, we shall see that Y(q, p) is conjugate to a diagonal matrix i� of the form in Eq. (4.7).) The
first of these functions reads

H1(q, p) = 1

4
tr(−iY (q, p))2 =1

2

n∑
j=1

p2
j +

∑
1≤ j<k≤n

(
μ2

sin2(q j − qk)
+ μ2

sin2(q j + qk)

)

+ 1

2

n∑
j=1

νκ

sin2(q j )
+ 1

2

n∑
j=1

(ν − κ)2

sin2(2q j )
.

(3.19)

That is, upon the identification (1.7) it coincides with the Sutherland Hamiltonian (1.1). This
implies the Liouville integrability of the Hamiltonian (1.1). Since its spectral invariants yield a
commuting family of n independent functions in involution that include the Sutherland Hamiltonian,
the Hermitian matrix function − iY(q, p) (3.2) serves as a Lax matrix for the Sutherland system
(M, ω, H).

As for the reduced Abelian Poisson algebra Q1
red, we notice that the cross-section S permits to

identify it with the Abelian Poisson algebra of the smooth functions of the variables q1, . . . , qn.
This is so since the level set P0 lies completely in the “regular part” of the phase space P, where
the G-component y of (y, Y, υ
, υr) is such that Q(q) in its decomposition (2.31) satisfies strict
inequalities π /2 > q1 > · · · > qn > 0. It is a well-known fact that in the regular part the components
of q are smooth (actually real-analytic) functions of y (while globally they are only continuous
functions). To see that every smooth function depending on q ∈ C1 is contained in Q1

red, one may
further use that every (G+ × G+ )-invariant smooth function on P0 can be extended to an invariant
smooth function on P. Indeed, this holds since G+ × G+ is compact and P0 ⊂ P is a regular sub-
manifold, which itself follows from the free action property established in the course of the proof of
Theorem 3.1.
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We can summarize the outcome of the foregoing discussion as follows. Below, the generators
of Poisson algebras are understood in the functional sense, i.e., if some f1, . . . , fn are generators then
all smooth functions of them belong to the Poisson algebra.

Corollary 3.2. By using the model (M, ω) of the reduced phase space (Pred, 	red) provided by
Theorem 3.1, the Abelian Poisson algebra Q2

red (2.23) can be identified with the Poisson algebra
generated by the spectral invariants (3.18) of the “Sutherland Lax matrix” − iY(q, p) (3.2), which
according to (3.19) include the many-body Hamiltonian H(q, p) (1.1), and Q1

red can be identified
with the algebra generated by the corresponding position variables qi (i = 1, . . . , n).

IV. THE DUAL PICTURE

It follows from the group-theoretic results quoted in Sec. II B that the Abelian Poisson algebra
Q1 is generated by the functions

H̃k(y, Y, υ
, υr ) := (−1)k

2k
tr
(
y−1CyC

)k
, k = 1, . . . , n, (4.1)

and thus the unitary and Hermitian matrix

L := −y−1CyC (4.2)

serves as an “unreduced Lax matrix.” It is readily seen in the Sutherland gauge (3.6) that these n
functions remain functionally independent after reduction. Here, we shall prove that the evaluation
of the invariant function H̃1 in another gauge reproduces the dual Hamiltonian (1.4). The reduction
of the matrix function L will provide a Lax matrix for the corresponding integrable system. Before
turning to details, we advance the group-theoretic interpretation of the dual position variable λ that
features in the Hamiltonian (1.4), and sketch the plan of this section.

To begin, recall that on the constraint surface Y = Y− − iκC, and for any Y− ∈ G− there is an
element gR ∈ G+ such that

g−1
R Y−gR = diag(id1, . . . , idn,−id1, . . . ,−idn) = iD ∈ A with d1 ≥ · · · ≥ dn ≥ 0. (4.3)

Then introduce the real matrix λ = diag(λ1, . . . , λn) whose diagonal components are

λ j :=
√

d2
j + κ2, j ∈ Nn. (4.4)

In this equation, we use the notation Nn := {1, . . . , n}, which will be frequently applied below
together with NN := {1, . . . , N }. One can diagonalize the matrix D − κC by conjugation with the
unitary matrix

h(λ) =
[

α(λ) β(λ)

−β(λ) α(λ)

]
, (4.5)

where the real functions α(x), β(x) are defined on the interval [|κ|,∞) ⊂ R by the formulae

α(x) =
√

x + √
x2 − κ2

√
2x

, β(x) = κ
1√
2x

1√
x + √

x2 − κ2
, (4.6)

at least if κ �= 0. If κ = 0, then we set α(x) = 1 and β(x) = 0. Indeed, it is easy to check that

h(λ)�h(λ)−1 = D − κC with � = diag(λ1, . . . , λn,−λ1, . . . ,−λn). (4.7)

Note that h(λ) belongs to the subset G− of G (2.10).
The above diagonalization procedure can be used to define the map

L : P0 → Rn, (y, Y, υ
, υr ) �→ λ. (4.8)

This is clearly a continuous map, which descends to a continuous map Lred : Pred → Rn . One readily
also sees that these maps are smooth (even real-analytic) on the open submanifolds P reg

0 ⊂ P0 and
P reg

red ⊂ Pred, where the N eigenvalues of Y− are pairwise different.
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The image of the constraint surface P0 under the map L will turn out to be the closure of the
domain

C2 =
{
λ ∈ Rn

∣∣∣∣ λa − λa+1 > 2μ,

(a = 1, . . . , n − 1)
and λn > ν

}
. (4.9)

By solving the constrains through the diagonalization of Y, we shall construct a model of the open
submanifold of Pred corresponding to the open submanifold L−1(C2) ⊂ P0. This model will be
symplectomorphic to the semi-global phase-space C2 × T n of the dual Hamiltonian (1.4).

In Subsection IV A, we present the construction of the aforementioned model of L
−1
red(C2) ⊂ Pred.

The proof that also enlightens the origin of the construction is given in Subsection IV B. In Subsection
IV C, we demonstrate that L−1

red(C2) is a dense subset of Pred and finally, in Subsection IV D we present
the global characterization of the dual model of Pred.

Many of the local formulae that appear in this section have analogues in Ref. 24–26, which
inspired our considerations. However, the global structure is different.

A. The dual model of the open subset L−1
red(C2) ⊂ Pred

We first prepare some functions on C2 × T n . Denoting the elements of this domain as pairs

(λ, eiϑ ) with λ = (λ1, . . . , λn) ∈ C2, eiϑ = (eiϑ1 , . . . , eiϑn ) ∈ T n, (4.10)

we let

fc :=
[

1 − ν

λc

] 1
2

n∏
a=1

(a �=c)

[
1 − 2μ

λc − λa

] 1
2
[

1 − 2μ

λc + λa

] 1
2

, ∀c ∈ Nn,

fn+c := eiϑc

[
1 + ν

λc

] 1
2

n∏
a=1

(a �=c)

[
1 + 2μ

λc − λa

] 1
2
[

1 + 2μ

λc + λa

] 1
2

. (4.11)

For λ ∈ C2 (4.9), all factors under the square roots are positive. Using the column vector f := (f1,
. . . , f2n)� together with �c = λc and �c + n = − λc for c ∈ Nn , we define the N × N matrices
Ǎ(λ, ϑ) and B(λ, ϑ) by

Ǎ j,k = 2μ f j (C f )k − 2(μ − ν)C j,k

2μ + �k − � j
, j, k ∈ NN , (4.12)

and

B(λ, ϑ) := −(
h(λ) Ǎ(λ, ϑ)h(λ)

)†
. (4.13)

We shall see that these are unitary matrices from G− ⊂ G (2.10). Then we write B in the form

B = ηe2iQ(q)η−1 (4.14)

with some η ∈ G+ and unique q = q(λ, ϑ) subject to (2.30). (It turns out that q(λ, ϑ) ∈ C1 (1.2) and
thus η is unique up to replacements η → ηζ with arbitrary ζ ∈ Z (2.28).) Relying on (4.14), we set

y(λ, ϑ) := ηeiQ(q(λ,ϑ))η−1 (4.15)

and introduce the vector V (λ, ϑ) ∈ CN by

V (λ, ϑ) := y(λ, ϑ)h(λ) f (λ, ϑ). (4.16)

It will be shown that V + CV = 0 and |V |2 = N , which ensures that υ

μ,ν(V ) ∈ O
 (2.14).

Note that Ǎ, y, and V given above depend on ϑ only through eiϑ and are C∞ functions on
C2 × T n . It should be remarked that although the matrix element Ǎn,2n (4.12) has an apparent
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singularity at λn = μ, the zero of the denominator cancels. Thus, Ǎ extends by continuity to λn = μ

and remains smooth there, which then also implies the smoothness of y and V .

Theorem 4.1. By using the above notations, consider the set

S̃0 := {(y(λ, ϑ), ih(λ)�(λ)h(λ)−1, υ

μ,ν(V (λ, ϑ)), υr ) | (λ, eiϑ ) ∈ C2 × T n}. (4.17)

This set is contained in the constraint surface P0 = J− 1(0) and it provides a cross-section for the
G+ × G+ -action restricted to L−1(C2) ⊂ P0. In particular, C2 ⊂ L(P0) and S̃0 intersects every
gauge orbit in L−1(C2) precisely in one point. Since the elements of S̃0 are parametrized by C2 × T n

in a smooth and bijective manner, we obtain the identifications

L
−1
red(C2) � S̃0 � C2 × T n. (4.18)

Letting σ̃0 : S̃0 → P denote the tautological injection, the pull-backs of the symplectic form 	 (2.17)
and the function H̃1 (4.1) obey

σ̃ ∗
0 (	) =

n∑
c=1

dλc ∧ dϑc, (H̃1 ◦ σ̃0)(λ, ϑ) = 1

2
tr
(
h(λ) Ǎ(λ, ϑ)h(λ)

) = H̃ 0(λ, ϑ) (4.19)

with the RSvD type Hamiltonian H̃ 0 in (1.4). Consequently, the Hamiltonian reduction of the system
(P,	, H̃1) followed by restriction to the open submanifold L

−1
red(C2) ⊂ Pred reproduces the system

(M̃0, ω̃0, H̃ 0) defined in the Introduction.

Remark 4.2. Referring to (4.2), we have the Lax matrix

L(y(λ, ϑ)) = h(λ) Ǎ(λ, ϑ)h(λ). (4.20)

Later we shall also prove that L
−1
red(C2) is a dense subset of Pred, whereby the reduction of (P,	, H̃1)

may be viewed as a completion of (M̃0, ω̃0, H̃ 0).

B. Proof of Theorem 4.1

The proof will emerge from a series of lemmas. Our immediate aim is to construct gauge invariant
functions that will be used for parametrizing the orbits of G+ × G+ in (an open submanifold of)
P0. For introducing gauge invariants, we can restrict ourselves to the submanifold P1 ⊂ P0 where Y
in (y, Y, υ
, υr) has the form

Y = h(λ)i�(λ)h(λ)−1 (4.21)

with some λ ∈ Rn for which

λ1 ≥ · · · ≥ λn ≥ |κ|. (4.22)

Indeed, every element of P0 can be gauge transformed into P1. It will be advantageous to further
restrict attention to P reg

1 ⊂ P1 where we have

λ1 > · · · > λn > |κ|. (4.23)

The residual gauge transformations that map P reg
1 to itself belong to the group G+ × Z < G+ ×

G+ with Z defined in (2.28). Since υr is constant and υ
 = υ

μ,ν(V ), we may label the elements of

P1 by triples (y, Y, V ), with the understanding that V matters up to phase. Then the gauge action of
(gL, ζ ) ∈ G+ × Z operates by

(y, V ) �→ (gL yζ−1, gL V ), (4.24)

while Y is already invariant. Now we can factor out the residual G+ -action by introducing the
G− -valued function

Ǎ(y, Y, V ) := h(λ)−1L(y)h(λ)−1 (4.25)
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and the CN -valued function

F(y, Y, V ) := h(λ)−1 y−1V . (4.26)

Here, λ = L(y, Y, V ), which means that (4.21) holds, and we used L(y) in (4.2). Like V , F is defined
only up to a U(1) phase. We obtain the transformation rules

Ǎ(gL yζ−1, Y, gL V ) = ζ Ǎ(y, Y, V )ζ−1, (4.27)

F(gL yζ−1, Y, gL V ) = ζ F(y, Y, V ), (4.28)

and therefore the functions

Fk(y, Y, V ) := |Fk(y, Y, V )|2, k = 1, . . . , N (4.29)

are well-defined, gauge invariant, smooth functions on P reg
1 . They represent (G+ × G+ )-invariant

smooth functions on P reg
0 . We shall see shortly that the functions Fk depend only on λ = L(y, Y, V )

and shall derive explicit formulae for this dependence. Then the non-negativity of Fk will be used
to gain information about the set L(P0) of λ values that actually occurs.

Before turning to the inspection of the functions Fk , we present a crucial lemma.

Lemma 4.3. Fix λ ∈ Rn subject to (4.22) and set � := diag(λ, − λ) and Y := h(λ)i�h(λ)− 1. If
y ∈ G and υ


μ,ν(V ) ∈ O
 solve the momentum map constraint given according to the first equation
in (3.8) by

yY y−1 + CyY y−1C + 2υ

μ,ν(V ) = 0, (4.30)

then Ǎ ∈ G− and F ∈ CN defined by (4.25) and (4.26) solve the following equation:

2μ Ǎ + Ǎ� − � Ǎ = 2μF(C F)† − 2(μ − ν)C. (4.31)

Conversely, for any Ǎ ∈ G−, F ∈ CN that satisfy |F|2 = N and Eq. (4.31), pick y ∈ G such
that L(y) = h(λ) Ǎh(λ) and define V := yh(λ)F . Then CV + V = 0 and (y, Y, υ


μ,ν(V )) solve the
momentum map constraint (4.30).

Proof. If Eq. (4.30) holds, then we multiply it by h(λ)− 1y− 1 on the left and by CyCh(λ)− 1 on
the right. Using (3.13), with CV + V = 0 and |V |2 = N , and the notations (4.25) and (4.26), this
immediately gives (4.31). Conversely, suppose that (4.31) holds for some Ǎ ∈ G− and F ∈ CN with
|F|2 = N. Since h(λ) Ǎh(λ) belongs to G− , there exists y ∈ G such that

h(λ) Ǎh(λ) = L(y). (4.32)

Such y is unique up to left-multiplication by an arbitrary element of G+ (whereby one may bring y
into G− if one wishes to do so). Picking y according to (4.32), and then setting

V := yh(λ)F, (4.33)

it is an elementary matter to show that (4.31) implies the following equation:

yY y−1 + CyY y−1C + 2iμ(−V (CV )† − 1N ) + 2i(μ − ν)C = 0. (4.34)

It is a consequence of this equation that

(V (CV )†)† = (CV )V † = V (CV )†. (4.35)

This entails that CV = αV for some α ∈ U(1). Then V † = α(CV )† also holds, and thus we must
have α2 = 1. Hence, α is either + 1 or − 1. Taking the trace of the equality (4.34), and using that
|V |2 = N on account of |F|2 = N, we obtain that α = − 1, i.e., CV + V = 0. This means that
Eq. (4.34) reproduces (4.30). �
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To make progress, now we restrict our attention to the subset of P reg
1 where the eigenvalue-

parameter λ of Y verifies in addition to (4.23) also the conditions

|λa ± λb| �= 2μ and (λa − ν)(λa − |2μ − ν|) �= 0, ∀a, b ∈ Nn. (4.36)

We call such λ values “strongly regular,” and let Psreg
1 ⊂ P1 and P sreg

0 ⊂ P0 denote the corresponding
open subsets. Later we shall prove that Psreg

0 is dense in P0. The above conditions will enable us to
perform calculations that will lead to a description of a dense subset of the reduced phase space.
They ensure that we never divide by zero in relevant steps of our arguments. The first such step is
the derivation of the following consequence of Eq. (4.31).

Lemma 4.4. The restriction of the matrix function Ǎ (4.25) to P sreg
1 has the form

Ǎ j,k = 2μFj (C F)k − 2(μ − ν)C j,k

2μ + �k − � j
, j, k ∈ NN , (4.37)

where F ∈ CN satisfies |F|2 = N and � = diag(λ, − λ) varies on Psreg
1 according to (4.21).

Lemma 4.5. For any strongly regular λ and a ∈ Nn define

wa :=
n∏

b = 1
(b �= a)

(λa − λb)(λa + λb)

(2μ − (λa − λb))(2μ − (λa + λb))
,

(4.38)

wa+n :=
n∏

b = 1
(b �= a)

(λa − λb)(λa + λb)

(2μ + λa − λb)(2μ + λa + λb)
,

and set Wk := wkFk with Fk = |Fk |2. Then the unitarity of the matrix Ǎ as given by (4.37) implies
the following system of equations for the pairs of functions Wc and Wc+n for any c ∈ Nn:

(μ + λc)Wc + (μ − λc)Wn+c − 2(μ − ν) = 0, (4.39)

λ2
c WcWn+c − μ(μ − ν)(Wc + Wn+c) + (μ − ν)2 + μ2 − λ2

c = 0. (4.40)

For fixed c ∈ Nn and strongly regular λ, this system of equations admits two solutions, which are
given by

(Wc, Wn+c) = (W +
c , W +

n+c) = (wcF+
c , wc+nF+

c+n) = (1 + ν

λc
, 1 − ν

λc
), (4.41)

and by

(Wc, Wn+c) = (W −
c , W −

n+c) = (wcF−
c , wc+nF−

c+n) = (−1 + 2μ − ν

λc
,−1 − 2μ − ν

λc
). (4.42)

The functions F±
k satisfy the identities

N∑
k=1

F+
k (λ) = N and

N∑
k=1

F−
k (λ) = −N . (4.43)

Proof. The derivation of Eqs. (4.39) and (4.40) follows a similar derivation due to Pusztai,24 and
is summarized in the Appendix. We then solve the linear equation (4.39) say for Wc+n and substitute
it into (4.40). This gives a quadratic equation for Wc whose two solutions we can write down. We
note that the derivation of Eqs. (4.39) and (4.40) presented in the Appendix utilizes the full set of
the conditions (4.36).

To verify the identities (4.43), we first extend λ to vary in the open subset of Cn subject to
the conditions λ2

a �= λ2
b and λc �= 0, and then consider the sums that appear in (4.43) as functions
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of a chosen component of λ with the other components fixed. These explicitly given sums are
meromorphic functions having only first order poles, and one may check that all residues at the
apparent poles vanish. Hence, the sums are constant over Cn , and the values of the constants can be
established by looking at a suitable asymptotic limit in the domain C2 (4.9), whereby all wk tend to
1 and the pre-factors in (4.41) and (4.42) tend to 1 and − 1, respectively. �

Observe that neither any wk nor any F±
k (k ∈ NN ) can vanish if λ is strongly regular. We know

that the value of Fk (4.29) is uniquely defined at every point of P reg
1 . Therefore, only one of the

solutions (F±
c ,F±

c+n) can be acceptable at any λ ∈ L(P sreg
1 ). The identities in (4.43) and analyticity

arguments strongly suggest that the acceptable solutions are provided by F+
k . The first statement of

the following lemma confirms that this is the case for λ ∈ C2 (4.9).

Lemma 4.6. The formulae (4.41) and (4.42) can be used to define F±
k as smooth real functions

on the domain C2, and none of these functions vanishes at any λ ∈ C2. Then for any λ ∈ C2 and
c ∈ Nn at least one out of F−

c and F−
c+n is negative, while F+

k > 0 for all k ∈ NN . Hence, for
λ ∈ C2 ∩ L(P0) only F+

k (λ) can give the value of the function Fk as defined in (4.29). Taking any
λ ∈ C2 and any F ∈ CN satisfying |Fk |2 = F+

k (λ), the formula (4.37) yields a unitary matrix that
belongs to G− (2.10). This matrix Ǎ and vector F ∈ CN solve Eq. (4.31).

Proof. It is easily seen that wk(λ) > 0 for all λ ∈ C2 and k ∈ NN . The statement about the
negativity of either F−

c or F−
c+n thus follows from the identity W −

c + W −
n+c = −2. The positivity of

F+
k is easily checked. It is also readily verified that Ǎ† = C ǍC , which entails that Ǎ ∈ G− once we

know that Ǎ is unitary. For λ ∈ C2 and |Fk |2 = F+
k (λ), the unitarity of Ǎ (4.37) can be shown by

almost verbatim adaptation of the arguments proving Proposition 6 in Ref. 25.
If λ ∈ C2 is such that the denominators in (4.37) do not vanish, then the formula (4.37) is

plainly equivalent to (4.31). Observe that only those elements λ ∈ C2 for which λn = μ fail to satisfy
this condition. At such λ the matrix element Ǎn,2n has an apparent “first order pole,” but one can
check by inspection of the formula (4.12) that Ǎn,2n actually remains finite and smooth even at such
exceptional points, and thus solves also (4.31) because of continuity. �

Before presenting the proof of Theorem 4.1, note that at the point of S̃0 labeled by (λ, eiϑ ) the
value of the function F (4.26) is equal to f (λ, eiϑ ) given in (4.11).

Proof of Theorem 4.1. It follows from Lemma 4.3 and Lemma 4.6 that S̃0 is a subset of P reg
1

and L(S̃0) = C2. Taking into account Theorem 3.1, this implies that y(λ, ϑ) (4.15) and V (λ, ϑ)
(4.16) are well-defined smooth functions on C2 × T n . We next show that S̃0 is a cross-section for
the residual gauge action on L−1(C2) ∩ P1. To do this, pick an arbitrary element

(ỹ, h(λ)i�h(λ)−1, υ

μ,ν(Ṽ ), υr ) ∈ L−1(C2) ∩ P1. (4.44)

Because Fk(λ) �= 0, we can find a unique element eiϑ ∈ T n and an element ζ ∈ Z (2.28) (which is
unique up to scalar multiple) such that

Fk(ỹζ−1, h(λ)i�h(λ)−1, Ṽ ) = fk(λ, eiϑ ), ∀k ∈ NN , (4.45)

up to a k-independent phase. We then see from (4.31) that L(ỹζ−1) = L(y(λ, ϑ)), which in turn
implies the existence of some (unique after ζ was chosen) η+ ∈ G+ for which

η+ ỹζ−1 = y(λ, ϑ). (4.46)

Using also that ζ − 1h(λ)ζ = h(λ), we conclude from the last two equations that

η+Ṽ = η+ ỹh(λ)F(ỹ, h(λ)i�h(λ)−1, Ṽ ) = y(λ, ϑ)h(λ) f (λ, ϑ) = V (λ, eiϑ ). (4.47)

Thus, we have shown that the element (4.44) can be gauge transformed into a point of S̃0, and this
point is uniquely determined since (4.45) fixes eiϑ uniquely. In other words, S̃0 intersects every orbit
of the residual gauge action on L−1(C2) ∩ P1 in precisely one point.
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The map from C2 into P, given by the parametrization of S̃0, is obviously smooth, and hence
we obtain the identifications

C2 � S̃0 � (L−1(C2) ∩ P1)/(G+ × Z ) � L−1(C2)/(G+ × G+) = L
−1
red(C2). (4.48)

To establish the formula (4.19) of the reduced symplectic structure, we proceed as follows. We define
G+ × G+ invariant real functions on P by

ϕm(y, Y, V ) := 1

m
Re

(
tr(Y m)

)
, m ∈ N, (4.49)

and

χk(y, Y, υ) := Re
(
tr(Y k y−1V V † yC)

)
, k ∈ N ∪ {0}. (4.50)

The restrictions of these functions to S̃0 are the respective functions ϕred
m and χ red

k

ϕred
m (λ, ϑ) =

⎧⎪⎨
⎪⎩

0, if m is odd,

(−1)
m
2

2

m

n∑
j=1

λm
j , if m is even,

(4.51)

and

χ red
k (λ, ϑ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−2(−1)
k−1

2

n∑
j=1

λk
j

[
1 − κ2

λ2
j

] 1
2

X j sin(ϑ j ), if k is odd,

2(−1)
k
2

n∑
j=1

λk
j

[
1 − κ2

λ2
j

] 1
2

X j cos(ϑ j ) − κλk−1
j

(
F j − Fn+ j

)
, if k is even,

(4.52)

where X j = √
F jFn+ j . Then we calculate the pairwise Poisson brackets of the set of functions ϕm,

χ k on P and restrict the results to S̃0. This must coincide with the results of the direct calculation of
the Poisson brackets of the reduced functions ϕred

m , χ red
k based on the pull-back of the symplectic form

	 onto S̃0 ⊂ P . Inspection shows that the required equalities hold if and only if we have the formula
in (4.19) for the pull-back in question. This reasoning is very similar to that used in Ref. 25 to find
the corresponding reduced symplectic form. Since the underlying calculations are straightforward,
although rather laborious, we here omit the details. As for the formula for the restriction of H̃1 to
S̃0 displayed in (4.19), this is a matter of direct verification. �
C. Density properties

So far we dealt with the open subset L
−1
red(C2) of the reduced phase space. Here, we show that

Theorem 4.1 contains “almost all” information about the dual system since L
−1
red(C2) ⊂ Pred is a

dense subset. This key result will be proved by combining two lemmas.

Lemma 4.7. The subset Psreg
0 ⊂ P0 of the constraint surface where the range of the eigenvalue

map L (4.8) satisfies the conditions (4.23) and (4.36) is dense.

Proof. Let us first of all note that P0 is a connected regular analytic submanifold of P. In fact, it
is a regular (embedded) analytic submanifold of the analytic manifold P since the momentum map
is analytic and zero is its regular value (because the effectively acting gauge group (3.17) acts freely
on P0). The connectedness follows from Theorem 3.1, which implies that P0 is diffeomorphic to the
product of S (3.6) and the group (3.17), and both are connected.

For any Y ∈ G denote by {i�a}N
a=1 the set of its eigenvalues counted with multiplicities. Then

the following formulae

R(y, Y, V ) :=
N∏

a,b=1
(a �=b)

(�a − �b)
N∏

a=1

(�2
a − κ2), (4.53)
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S(y, Y, V ) :=
N∏

a,b=1
(a �=b)

[(�a − �b)2 − 4μ2]
N∏

a=1

[
(�2

a − μ2)(�2
a − ν2)(�2

a − (2μ − ν)2)
]
, (4.54)

define analytic functions on P0. Indeed, R and S are symmetric polynomials in the eigenvalues of
Y, and hence can be expressed as polynomials in the coefficients of the characteristic polynomial of
Y, which are polynomials in the matrix elements of Y. The product RS is also an analytic function
on P0, and the subset P sreg

0 , which we considered in Subsection IV B, can be characterized as

P sreg
0 = {x ∈ P0 | R(x)S(x) �= 0}. (4.55)

It is clear from Theorem 4.1 that RS does not vanish identically on P0. Since the zero set of a
non-zero analytic function on a connected analytic manifold cannot contain any open set, Eq. (4.55)
implies that P sreg

0 is a dense subset of P0. �
Let C2 be the closure of the domain C2 ⊂ Rn . Eventually, it will turn out that L(P0) = C2. For

now, we wish to prove the following.

Lemma 4.8. For every boundary point λ0 ∈ ∂C2, there exists an open ball B(λ0) ⊂ Rn around
λ0 that does not contain any strongly regular λ which lies outside C2 and belongs to L(P0).

Proof. We start by noticing that for any boundary point λ0 ∈ ∂C2 there is a ball B(λ0) centered
at λ0 such that any strongly regular λ ∈ B(λ0) \ C2 is subject to either of the following: (i) there is
an index a ∈ {1, . . . , n − 1} such that

λa − λa+1 < 2μ and λb − λb+1 > 2μ ∀ b < a, (4.56)

or (ii) we have

λa − λa+1 > 2μ, a = 1, . . . , n − 1 and λn < ν. (4.57)

Let us consider a strongly regular λ ∈ B(λ0) that falls into case (i) (4.56) and is so close to C2

that we still have

λk − λk+1 > μ, ∀ k ∈ {1, . . . , n − 1}. (4.58)

It then follows that

λa − λb > 2μ, ∀ b > a + 1, (4.59)

and

λa + λb > 2μ, ∀ b ∈ {1, . . . , n}. (4.60)

Inspection of the signs of wa(λ) and wa+n(λ) in (4.38) gives

wa(λ) < 0 < wa+n(λ). (4.61)

Since every boundary point λ0 ∈ ∂C2 satisfies λ0
a > λ0

n ≥ ν for all a ∈ {1, . . . , n − 1}, we may
choose a small enough ball centered at λ0 to ensure that for λ inside that ball the above inequalities
as well as λa > ν hold. On account of λa > ν > 0 and μ > 0 we then have

1 − ν

λa
> 0 and − 1 − 2μ − ν

λa
< 0. (4.62)

By combining (4.41) and (4.42) with (4.61) and (4.62) we conclude that

F+
a (λ) < 0 and F−

a+n(λ) < 0. (4.63)

By Lemma 4.5, these inequalities imply that Fa(λ) and Fa+n(λ) cannot be both non-negative, which
contradicts the defining Eq. (4.29). This proves the claim in the case (i) (4.56).
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Let us consider a strongly regular λ satisfying (ii) (4.57). In this case, we can verify that

1 − ν

λn
< 0, wn(λ) > 0, wn+a(λ) > 0. (4.64)

Thus, we see from (4.41) that F+
2n(λ) < 0. Since the sum of the two components on the right hand

side of (4.42) is negative, we also see that at least one out of F−
n (λ) and F−

2n(λ) is negative. Therefore,
Eqs. (4.39) and (4.40) exclude the unitarity of Ǎ (4.37) in the case (ii) (4.57) as well. �

Proposition 4.9. The λ-image of the constraint surface is contained in C2, i.e., we have

L(P0) ⊆ C2. (4.65)

As a consequence, L
−1
red(C2) is dense in Pred.

Proof. Since P sreg
0 ⊂ P0 is dense and L : P0 → Rn (4.8) is continuous, L(P sreg

0 ) ⊂ L(P0) is
dense. Thus, it follows from Lemma 4.8 that for any λ0 ∈ ∂C2 there exists a ball around λ0 that does
not contain any element of L(P0) lying outside C2.

Suppose that (4.65) is not true, which means that there exists some λ∗ ∈ L(P0) \ C2. Taking
any element λ̂ ∈ L(P0) that lies in C2, it is must be possible to connect λ∗ to λ̂ by a continuous curve
in L(P0), since P0 is connected. Starting from the point λ∗, any such continuous curve must pass
through some point of the boundary ∂C2. However, this is impossible since we know that L(P0) \ C2

does not contain any series that converges to a point of ∂C2. This contradiction shows that (4.65)
holds.

By (4.65) we have P sreg
0 ⊂ L−1(C2), and we know from Lemma 4.7 that P sreg

0 ⊂ P0 is dense.
These together entail that L

−1
red(C2) ⊂ Pred is dense. �

D. Global characterization of the dual system

We have seen that

P sreg
0 ⊂ L−1(C2) ⊂ P0 (4.66)

is a chain of dense open submanifolds. These project onto dense open submanifolds of Pred and their
images under the map L (4.8) are dense subsets of L(P0) = Lred(Pred)

L(P sreg
0 ) ⊂ C2 ⊂ L(P0). (4.67)

Now introduce the set

Cn
�= := {z ∈ Cn |

n∏
k=1

zk �= 0}. (4.68)

The parametrization

z j = √
λ j − λ j+1 − 2μ

j∏
a=1

eiϑa , j = 1, . . . , n − 1, zn =
√

λn − ν

n∏
a=1

eiϑa (4.69)

provides a diffeomorphism between C2 × T n and Cn
�=. Thus, we can view z ∈ Cn

�= as a variable
parametrizing C2 × T n that corresponds to the semi-global cross-section S̃0 by Theorem 4.1. Below,
we shall exhibit a global cross-section in P0, which will be diffeomorphic to Cn . In other words,
the “semi-global” model of the dual systems will be completed into a global model by allowing
the zero value for the complex variables zk. This completion results from the symplectic reduction
automatically.

First of all, let us note that the inverse of the parametrization (4.69) gives

λk(z) = ν + 2(n − k)μ +
n∑

j=k

z j z̄ j , k = 1, . . . , n, (4.70)
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which extend to smooth functions over Cn . The range of the extended map z �→ (λ1, . . . , λn) is
the closure C2 of the polyhedron C2. The variables eiϑk are well-defined only over Cn

�=, where the
parametrization (4.69) entails the equality

n∑
k=1

dλk ∧ dϑk = i
n∑

k=1

dzk ∧ dz̄k . (4.71)

An easy inspection of the formulae (4.11) shows that the functions fa can be recast as

fk(λ, eiϑ ) = |zk |gk(z), fn+k(λ, eiϑ ) = eiϑk |zk−1|gn+k(z), k = 1, . . . , n, z0 := 1, (4.72)

with uniquely defined functions g1(z), . . . , g2n(z) that extend to smooth (actually real-analytic)
positive functions on Cn . Note that these functions depend on z only through λ(z), i.e., one has

ga(z) = ηa(λ(z)), a = 1, . . . , N , (4.73)

with suitable functions ηa that one could display explicitly. The absolute values |zk| that appear in
(4.72) are not smooth at zk = 0, and the phases eiϑk are not well-defined there. The crux is that both
of these “troublesome features” can be removed by applying suitable gauge transformations to the
elements of the cross-section S̃0 (4.17). To demonstrate this, we define m = m(eiϑ ) ∈ ZG+(A) by

mk(eiϑ ) :=
k∏

j=1

e−iϑ j , k = 1, . . . , n. (4.74)

Conforming with (2.28), we also set mk + n = mk. Then the gauge transformation by (m, m) ∈ G+
× G+ operates on the CN -valued vector f(λ, eiϑ ) and on the matrix Ǎ(λ, eiϑ ) according to

f (λ, eiϑ ) → m(eiϑ ) f (λ, eiϑ ) ≡ φ(z), Ǎ(λ, eiϑ) → m(eiϑ ) Ǎ(λ, eiϑ )m(eiϑ )−1 ≡ Ã(z), (4.75)

which defines the functions φ(z) and Ã(z) over Cn
�=. The resulting functions have the form

φk(z) = z̄k gk(z), φn+k(z) = z̄k−1gn+k(z), k = 1, . . . , n, (4.76)

and

Ãa,b(z) = −2μz̄a zb−1ga(z)gn+b(z)

λa(z) − λb(z) − 2μ
, 1 ≤ a, b ≤ n, (4.77)

Ãa,n+b(z) = − 2μz̄a zbga(z)gb(z)

λa(z) + λb(z) − 2μ
+ δa,b

μ − ν

λa(z) − μ
, (4.78)

Ãn+a,b(z) = 2μz̄a−1zb−1gn+a(z)gn+b(z)

λa(z) + λb(z) + 2μ
− δa,b

μ − ν

λa(z) + μ
, (4.79)

Ãn+a,n+b(z) = 2μz̄a−1zbgn+a(z)gb(z)

λa(z) − λb(z) + 2μ
. (4.80)

Now the important point is that, as is easily verified, the apparent singularities coming from vanishing
denominators in Ã all cancel, and both φ(z) and Ã(z) extend to smooth (actually real-analytic)
functions on the whole of Cn . In particular, note the relation

Ãk,k+1(z) = Ãk+n+1,k+n(z) = −2μgk(z)gk+n+1(z), k = 1, . . . , n − 1. (4.81)

Corresponding to (4.13), we also have the matrix B̃(z) ≡ −(h(λ(z)) Ã(z)h(λ(z)))†. This is smooth
over Cn since both Ã(z) and h(λ(z)) (4.5) are smooth. It follows from their defining equations that
the induced gauge transformations of y(λ, eiϑ ) (4.15) and V (λ, eiϑ ) (4.16) are given by

y(λ, eiϑ ) → m(eiϑ )y(λ, eiϑ )m(eiϑ )−1 ≡ ỹ(z), (4.82)

and

V (λ, eiϑ ) → m(eiϑ )V (λ, eiϑ ) = ỹ(z)h(λ(z))φ(z) ≡ Ṽ (z). (4.83)
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Since ỹ(z) is a uniquely defined smooth function of B̃(z), both ỹ(z) and Ṽ (z) are smooth functions
on the whole of Cn .

After these preparations, we are ready to state the main result of this paper.

Theorem 4.10. By using the above notations, consider the set

S̃ := {(ỹ(z), ih(λ(z))�(λ(z))h(λ(z))−1, υ

μ,ν(Ṽ (z)), υr ) | z ∈ Cn }. (4.84)

This set defines a global cross-section for the G+ × G+ -action on the constraint surface P0. The
parametrization of the elements of S̃ by z ∈ Cn gives rise to a symplectic diffeomorphism between
(Pred, 	red) and Cn equipped with the Darboux form i

∑n
k=1 dzk ∧ dz̄k . The spectral invariants of

the “global RSvD Lax matrix”

L̃(z) ≡ h(λ(z)) Ã(z)h(λ(z)) (4.85)

yield commuting Hamiltonians on Cn that represent the reductions of the Hamiltonians spanning
the Abelian Poisson algebra Q1 (2.23).

Proof. Let us denote by

z �→ σ̃ (z) (4.86)

the assignment of the element of S̃ to z ∈ Cn as given in (4.84). The map σ̃ : Cn → P (2.17) is
smooth (even real-analytic) and we have to verify that it possesses the following properties. First, σ̃

takes values in the constraint surface P0. Second, with 	 in (2.17),

σ̃ ∗(	) = i
n∑

k=1

dzk ∧ dz̄k . (4.87)

Third, σ̃ is injective. Fourth, the image S̃ of σ̃ intersects every orbit of G+ × G+ in P0 in precisely
one point.

Let us start by recalling from Theorem 4.1 the map (λ, θ ) �→ σ̃0(λ, θ ) that denotes the assignment
of the general element of S̃0 (4.17) to (λ, θ ) ∈ C2 × T n , where now we defined

θ := eiϑ . (4.88)

Then the first and second properties of σ̃ follow since we have

σ̃ (z(λ, θ )) = �(m(θ),m(θ)) (σ̃0(λ, θ )) , for all (λ, θ ) ∈ C2 × T n. (4.89)

We know that σ̃0(λ, θ ) ∈ P0 for all (λ, θ ) ∈ C2 × T n , which implies the first property since σ̃ is
continuous and P0 is a closed subset of P. The restriction of the pull-back (4.87) to Cn

�= is easily
calculated using the parametrization (λ, θ ) �→ z(λ, θ ) and using that by Theorem 4.1 σ̃ ∗

0 (	) =∑n
k=1 dλk ∧ dϑk . Indeed, this translates into (4.87) restricted to Cn

�=, which implies the claimed
equality because σ̃ ∗(	) is smooth on Cn .

Before continuing, we remark that the map (λ, θ ) �→ z(λ, θ ) naturally extends to a continuous
map on the closed domain C2 × T n and its “partial inverse” z �→ λ(z) extends to a smooth map
Cn → C2. We will use these extended maps without further notice in what follows. (The extended
map (λ, θ ) �→ z(λ, θ ) is not differentiable at the points for which λ ∈ ∂C2.)

In order to show that σ̃ is injective, consider the equality

σ̃ (z) = σ̃ (ζ ) for some z, ζ ∈ Cn. (4.90)

Looking at the “second component” of this equality according to (4.84) we see that λ(z) = λ(ζ ).
Then the first component of the equality implies Ã(z) = Ã(ζ ). The special case Ãa,1(z) = Ãa,1(ζ )
of this equality gives

z̄aηa(λ(z))ηn+1(λ(z))

λa(z) − λ1(z) − 2μ
= ζ̄aηa(λ(ζ ))ηn+1(λ(ζ ))

λa(ζ ) − λ1(ζ ) − 2μ
, 1 ≤ a ≤ n. (4.91)

We know that the factors multiplying z̄a and ζ̄a are equal and non-zero (actually negative). Thus, z
= ζ follows, establishing the claimed injectivity.
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Next we prove that no two different element of S̃ are gauge equivalent to each other, i.e., S̃ can
intersect any orbit of G+ × G+ at most in one point. Suppose that

�(gL ,gR )(σ̃ (z)) = σ̃ (ζ ) (4.92)

for some (gL, gR) ∈ G+ × G+ and z, ζ ∈ Cn . We conclude from the second component of this
equality that λ(z) = λ(ζ ). Because λ(z) ∈ C2 holds, λ(z) is regular in the sense that it satisfies (4.23).
Thus, we can also conclude from the second component of the equality (4.92) that gR belongs to the
Abelian subgroup Z of G+ given in (2.28). Then we infer from the first component

gL ỹ(z)g−1
R = ỹ(ζ ) (4.93)

of the equality (4.92) that gL = gR. We here used that Ã(ζ ) can be represented in the form (2.32)
with strict inequalities in (2.30), which holds since S (3.6) is a global cross-section. Now denote gL

= gR = eiξ ∈ Z referring to (2.28). Then we have eiξ Ã(z)e−iξ = Ã(ζ ), and in particular

eixa Ãa,a+1(z)e−ixa+1 = Ãa,a+1(ζ ), ∀a = 1, . . . , n − 1. (4.94)

By using (4.72) and (4.81)

Ãa,a+1(z) = −2μηa(λ(z))ηn+a+1(λ(z)) �= 0, (4.95)

and thus we obtain from λ(z) = λ(ζ ) that eiξ must be equal to a multiple of the identity element of
G+ . Hence, we have established that σ̃ (z) = σ̃ (ζ ) is implied by (4.92).

It remains to demonstrate that S̃ intersects every gauge orbit in P0. We have seen previously
that L−1(C2) is dense in P0 and S̃0 (4.17) is a cross-section for the gauge action in L−1(C2). These
facts imply that for any element x ∈ P0 there exists a series x(k) ∈ L−1(C2), k ∈ N, such that

lim
k→∞

(x(k)) = x, (4.96)

and there also exist series (gL(k), gR(k)) ∈ G+ × G+ and (λ(k), θ (k)) ∈ C2 × T n such that

x(k) = �(gL (k),gR (k)) (σ̃0(λ(k), θ (k))) . (4.97)

Since L : P0 → Rn is continuous, we have

L(x) = lim
k→∞

L(x(k)) = lim
k→∞

λ(k). (4.98)

This limit belongs to C2 and we denote it by λ∞. The non-trivial case to consider is when λ∞ belongs
to the boundary ∂C2. Now, since G+ × G+ × T n is compact, there exists a convergent subseries

(gL (ki ), gR(ki ), θ (ki )), i ∈ N, (4.99)

of the series (gL(k), gR(k), θ (k)). We pick such a convergent subseries and denote its limit as

(g∞
L , g∞

R , θ∞) := lim
i→∞

(gL (ki ), gR(ki ), θ (ki )). (4.100)

Then we define z∞ ∈ Cn by

z∞ := lim
i→∞

z(λ(ki ), θ (ki )) = z(λ∞, θ∞). (4.101)

Since z �→ σ̃ (z) is continuous, we can write

σ̃ (z∞) = lim
i→∞

σ̃ (z(λ(ki ), θ (ki ))) = lim
i→∞

�(m(θ(ki )),m(θ(ki ))) (σ̃0(λ(ki ), θ (ki ))) , (4.102)

where m(θ ) is defined by (4.74), with θ = eiϑ . By combining these formulae, we finally obtain

x = lim
i→∞

�(gL (ki ),gR (ki )) (σ̃0(λ(ki ), θ (ki )))

= lim
i→∞

�(gL (ki )m(θ(ki ))−1,gR (ki )m(θ(ki ))−1) (σ̃ (z(λ(ki ), θ (ki ))))

= �(g∞
L m(θ∞)−1,g∞

R m(θ∞)−1)(σ̃ (z∞)). (4.103)

Therefore, S̃ is a global cross-section in P0.
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The final statement of Theorem 4.10 about the global RSvD Lax matrix (4.85) follows since L̃
is just the restriction of the “unreduced Lax matrix” L of (4.2) to the global cross-section S̃, which
represents a model of the full reduced phase space Pred. �
V. DISCUSSION

In this paper, we characterized a symplectic reduction of the phase space (P, 	) (2.17) by
exhibiting two models of the reduced phase space Pred (2.20). These are provided by the global
cross-sections S and S̃ described in Theorem 3.1 and in Theorem 4.10. The two cross-sections
naturally give rise to symplectomorphisms

(M, ω) � (Pred,	red) � (M̃, ω̃), (5.1)

where M = T∗C1 (1.2) with the canonical symplectic form ω = ∑n
k=1 dqk ∧ dpk and M̃ = Cn with

ω̃ = i
∑n

k=1 dzk ∧ dz̄k . The Abelian Poisson algebras Q1 and Q2 on P (2.23) descend to reduced
Abelian Poisson algebras Q1

red and Q2
red on Pred. The construction guarantees that any element of the

reduced Abelian Poisson algebras possesses complete Hamiltonian flow. These flows can be analyzed
by means of the standard projection algorithm as well as by utilization of the symplectomorphism
(5.1).

To further discuss the interpretation of our results, consider the gauge invariant functions

Hk(y, Y, V ) = 1

4k
(−iY )2k and H̃k(y, Y, V ) = (−1)k

2k
tr(y−1CyC)k, k = 1, . . . , n. (5.2)

The restrictions of the functions Hk to the global cross-sections S and S̃ take the form

Hk |S = 1

4k
(−iY (q, p))2k = Hk(q, p) and Hk |S̃ = 1

2k

n∑
j=1

λ j (z)2k . (5.3)

According to (3.19), the Hk yield the commuting Hamiltonians of the Sutherland system, while
the λj as functions on S̃ � Cn are given by (4.70). Since any smooth function on a global cross-
section encodes a smooth function on Pred, we conclude that the Sutherland Hamiltonians Hk and
the “eigenvalue-functions” λj define two alternative sets of generators for Q2

red.
The restrictions of the functions H̃k read

H̃k |S = (−1)k

k

n∑
j=1

cos(2kq j ) and H̃k |S̃ = 1

2k
tr(L̃(z)k) (5.4)

with L̃(z) is defined in (4.85). On the semi-global cross-section S̃0 of Theorem 4.1, which
parametrizes the dense open submanifold L

−1
red(C2) ⊂ Pred, we have

H̃1|S̃0 = H̃ 0, (5.5)

where H̃ 0 is the RSvD Hamiltonian displayed in (1.4). We see from (5.4) that the functions qj ∈
C∞(S) and the commuting Hamiltonians H̃k |S̃ engender two alternative generating sets for Q1

red. On
account of the relations

M̃0 � S̃0 � C2 × T n � Cn
�= ⊂ Cn � S̃ � M̃, (5.6)

H̃1|S̃ yields a globally smooth extension of the many-body Hamiltonian H̃ 0.
It is immediate from our results that both Q1

red and Q2
red define Liouville integrable systems on

Pred, since both have n functionally independent generators. The interpretations of these Abelian
Poisson algebras that stem from the models S and S̃ underlie the action-angle duality between the
Sutherland and RSvD systems as follows. First, the generators qk of Q1

red can be viewed alternatively
as particle positions for the Sutherland system or as action variables for the RSvD system. Their
canonical conjugates pk are of non-compact type. Second, the generators λk of Q2

red can be viewed
alternatively as action variables for the Sutherland systems or as globally well-defined “particle
positions” for the completed RSvD system. In conclusion, the symplectomorphism R : M → M̃
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naturally induced by (5.1) satisfies all properties required by the notion of action-angle duality
outlined in the Introduction.

We finish by pointing out some further consequences. First of all, we note that the dimension of
the Liouville tori of the Sutherland system drops on the locus where the action variables encoded by
λ belong to the boundary of the polyhedron C2. This is a consequence of the next statement, which
can be proved by direct calculation.

Proposition 5.1. Consider the Sutherland Hamiltonians Hk(z) = 1
2k

∑n
j=1 λ j (z)2k and for any

z ∈ Cn define D(z) := #{zk �= 0 | k = 1, . . . , n}. Here, Hk(z) denotes the reduction of the Hamilto-
nian Hk expressed in terms of the model M̃ , cf. (5.3). Then one has the equality

dim (span{dλk(z) | k = 1, . . . , n}) = dim (span{dHk(z) | k = 1, . . . , n}) = D(z). (5.7)

It follows from (5.7) that the dense open submanifold L
−1
red(C2) ⊂ Pred corresponds to the part

of the Sutherland phase space where the Liouville tori have full dimension n. It is also worth noting
that the special point for which z = 0, or equivalently

λ j = ν + 2(n − j)μ, ∀ j = 1, . . . , n, (5.8)

gives the unique global minimum of the function H1(z). Equation (5.3) implies that actually each
function Hk (k = 1, . . . , n) possesses a global minimum at z = 0. An interesting characterization of
this equilibrium point in terms of the (q, p) variables can be found in Ref. 2.

Being in control of the action-angle variables for our dual pair of integrable systems, the
following result is readily obtained.

Proposition 5.2. Any “Sutherland Hamiltonian” Hk ∈ C∞(M) (k = 1, . . . , n) given by (3.18)
defines a non-degenerate Liouville integrable system, i.e., the commutant of Hk in the Poisson
algebra C∞(M) is the Abelian algebra generated by the action variables λ1, . . . , λn. Any “RSvD
Hamiltonian” H̃k ∈ C∞(M̃), k = 1, . . . , n, which by definition coincides with H̃k |S̃ in (5.4) upon
the identification M̃ = S̃, is maximally degenerate (“superintegrable”) since its commutant in the
Poisson algebra C∞(M̃) is generated by (2n − 1) elements.

Proof. The subsequent argument relies on the “action-angle symplectomorphisms” between
(M, ω) and (M̃, ω̃) corresponding to (5.1).

Let us first restrict the Sutherland Hamiltonian Hk to the submanifold parametrized by the
action-angle variables varying in C2 × T n . For generic λ, we see from (5.3) that the flow of Hk is
dense on the torus T n . Therefore, any smooth function f that Poisson commutes with Hk must be
constant on the non-degenerate Liouville tori of the Sutherland system. By smoothness, this implies
that f Poisson commutes with all the action variables λj on the full phase space. Consequently, it
can be expressed as a function of those variables.

Next, by a slight abuse of notation, let us write H̃k(q, p) = h̃k(q) for the “RSvD Hamiltonian”
expressed in terms of the associated “dual action-angle phase space” M = C1 × Rn . By (5.4),
h̃k(q) = (−1)k

k

∑n
j=1 cos(2kq j ) and one can verify that the matrix

Xi, j (q) := ∂ h̃i (q)

∂q j
(5.9)

is non-degenerate for all q ∈ C1. As argued in Ref. 1, this implies that H̃k is maximally superintegrable.
In fact, the commutant of H̃k is generated by the “dual actions” q1, . . . , qn together with the functions

fi (q, p) :=
n∑

j=1

p j (X (q))−1
j,i , i ∈ Nn \ {k}. (5.10)

This concludes the proof. �
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In the end, we remark that the matrix functions − iY(q, p) and L̃(z), which naturally arose from
the Hamiltonian reduction, serve as Lax matrices for the pertinent dual pair of integrable systems.
We also notice that the zj can be viewed as “oscillator variables” for the Sutherland system since the
actions λk are linear combinations in |zj|2 (j = 1, . . . , n) and the form ω̃ coincides with the symplectic
form of n independent harmonic oscillators. It could be worthwhile to inspect the quantization of
the Sutherland system based on these oscillator variables and to compare the result to the standard
quantization.13, 14, 20 We plan to return to this issue in the future.
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APPENDIX: SOME TECHNICAL DETAILS

In this appendix, we complete the proof of Lemma 4.5 by a calculation based on Jacobi’s
theorem on complementary minors (e.g., Ref. 23), which will be recalled shortly. Our reasoning
below is adapted from Pusztai.24 A significant difference is that in our case we need the strong
regularity conditions (4.23) and (4.36) to avoid dividing by zero during the calculation. In fact, this
appendix is presented mainly to explain the origin of the strong regularity conditions.

For an m × m matrix M let M
(

r1 ··· rk

c1 ··· ck

)
denote the determinant formed from the entries lying

on the intersection of the rows r1, . . . , rk with the columns c1, . . . , ck of M (k ≤ m),

M

(
r1 · · · rk

c1 · · · ck

)
= det(Mri ,c j )

k
i, j=1.

Theorem A.1 (Jacobi). Let A be an invertible N × N matrix with det(A) = 1 and B := (A− 1)�.

For a fixed permutation
(

j1 ··· jN

k1 ··· kN

)
of the pairwise distinct indices j1, . . . , jN ∈ {1, . . . , N} and

any 1 ≤ p < N

B

(
j1 · · · jp

k1 · · · kp

)
= sgn

(
j1 · · · jN

k1 · · · kN

)
A

(
jp+1 · · · jN

kp+1 · · · kN

)
. (A1)

Applying Jacobi’s theorem to Ǎ (4.37) we now derive the two equations (4.39) and (4.40) for
the pair of functions (Wa, Wn+a) for each a = 1, . . . , n, which are defined by Wk = wkFk with
Fk = |Fk |2 (4.29) and wk in (4.38).

Lemma A.2. Fix any strongly regular λ, i.e., λ ∈ Rn for which (4.23) and (4.36) hold, and use the
above notations for (Wa, Wn+a). If Ǎ given by (4.37) is a unitary matrix, then (Wa, Wn+a) satisfies
the two equations (4.39) and (4.40) for each a = 1, . . . , n.

Proof. Let B̌ := ( Ǎ−1)�, i.e., B̌ j,k := Ǎ j,k , j, k ∈ {1, . . . , N} and a ∈ {1, . . . , n} be a fixed index.
Since det( Ǎ) = 1, by Jacobi’s theorem with jb = b, (b ∈ NN ) and kc = c, (c ∈ NN \ {a, n + a}), ka

= n + a, kn + a = a and p = n we have

B̌

(
1 · · · a · · · n
1 · · · n + a · · · n

)
= − Ǎ

(
n + 1 · · · n + a · · · N
n + 1 · · · a · · · N

)
. (A2)

Denote the corresponding n × n submatrices of B̌ and Ǎ by ξ and η, respectively. One can check
that

ξ = � − μ − ν

μ − λa
Ea,a, η = � − μ − ν

μ + λa
Ea,a, (A3)
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where Ej, k stands for the n × n elementary matrix (E j,k) j ′,k ′ = δ j, j ′δk,k ′ and � and � are the
Cauchy-like matrices

� j,k :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2μF j Fn+k

2μ − λ j + λk
, if k �= a,

2μF j Fa

2μ − λ j − λa
, if k = a,

and � j,k :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2μFn+ j Fk

2μ + λ j − λk
, if k �= a,

2μFn+ j Fn+a

2μ + λ j + λa
, if k = a,

(A4)

j, k ∈ {1, . . . , n}. Expanding det(ξ ) and det(η) along the ath column we obtain the formulae

det(ξ ) = det(�) − μ − ν

μ − λa
Ca,a, det(η) = det(�) − μ − ν

μ + λa
Ca,a, (A5)

where Ca,a is the cofactor of � associated with entry �a, a. Since � and � are both Cauchy-like
matrices we have

det(�) = 1

μ − λa
Da Wa, det(�) = 1

μ + λa
Da Wn+a, (A6)

where

Da :=
n∏

b=1
(b �=a)

Fb Fn+b

n∏
c,d=1

(a �=c �=d �=a)

λc − λd

2μ + λc − λd
. (A7)

It can be easily seen that Ca,a = Da , therefore formulae (A2), (A5), (A6) lead to the equation

(μ + λa)Wa + (μ − λa)Wn+a − 2(μ − ν) = 0. (A8)

It should be noticed that in the last step we divided by Da, which is legitimate since Da is
non-vanishing due to the strong-regularity condition given by (4.23) and (4.36). To see this, assume
momentarily that Fi = 0 for some i = 1, . . . , n at some strongly regular λ. The denominator in (4.37)
does not vanish, and the unitarity of Ǎ implies that we must have Ǎi,i+n = 1 or Ǎi,i+n = −1. These
in turn are equivalent to

λi = 2μ − ν or λi = ν, (A9)

which are excluded by (4.36). One can similarly check that the vanishing of Fn+i would require

λi = ν − 2μ or λi = −ν, (A10)

which are also excluded. These remarks pinpoint the origin of the second half of the conditions
imposed in (4.36).

Next, we apply Jacobi’s theorem by setting jb = kb = b, (b ∈ Nn), jn+1 = kn+1 = n + a, jn+c

= kn+c = n + c − 1, (c ∈ Nn−1), and p = n + 1. Thus,

B̌

(
1 · · · n n + a
1 · · · n n + a

)
= Ǎ

(
n + 1 · · · n̂ + a · · · N
n + 1 · · · n̂ + a · · · N

)
, (A11)

where n̂ + a indicates that the (n + a)th row and column are omitted. Now denote the submatrices
of size (n + 1) and (n − 1) corresponding to the determinants in (A11) by X and Y, respectively.
From (A11) and (4.37) it follows that det(X ) = det(Y ) = Da (A7). The submatrix X can be written
in the form

X = � − μ − ν

μ − λa
Ea,n+1 − μ − ν

μ + λa
En+1,a, (A12)

i.e., X is a rank two perturbation of the Cauchy-like matrix � having the entries

� j,k := 2μF j Fn+k

2μ − λ j + λk
, � j,n+1 := 2μF j Fa

2μ − λ j − λa
,

�n+1,k := 2μFn+a Fn+k

2μ + λa + λk
, �n+1,n+1 := Fn+a Fa, (A13)
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where j, k ∈ {1, . . . , n}. The determinant of � is

det(�) = − λ2
a

μ2 − λ2
a

Da Wa Wn+a, (A14)

which cannot vanish because λ is strongly regular. Since X is a rank two perturbation of � we obtain

det(X ) = det(�) − (μ − ν)

( Ca,n+1

μ − λa
+ Cn+1,a

μ + λa

)
+ (μ − ν)2 Ca,n+1Cn+1,a − Ca,aCn+1,n+1

(μ − λa)(μ + λa) det(�)
,

(A15)
where C now is used to denote the cofactors of �. By calculating the necessary cofactors we derive

Ca,aCn+1,n+1 = D2
a Wa Wn+a,

Ca,n+1 = − 1

μ + λa
Da Wn+a, Cn+1,a = − 1

μ − λa
Da Wa .

(A16)

Equations (A14)–(A16) together with det(X ) = Da imply

λ2
a(Wa Wn+a − 1) − μ(μ − ν)(Wa + Wn+a − 2) + ν2 = 0. (A17)

Equations (A8) and (A17) coincide with (4.39) and (4.40), respectively. �
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