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Background: Astrocytes regulate neuronal function, synaptic formation andmaintenance partly through secreted

extracellular vesicles (EVs). In amyotrophic lateral sclerosis (ALS) astrocytes display a toxic phenotype that con-

tributes to motor neuron (MN) degeneration.

Methods:Weused human induced astrocytes (iAstrocytes) from 3ALS patients carrying C9orf72mutations and 3

non-affected donors to investigate the role of astrocyte-derived EVs (ADEVs) in ALS astrocyte toxicity. ADEVs

were isolated from iAstrocyte conditioned medium via ultracentrifugation and resuspended in fresh astrocyte

medium before testing ADEV impact on HB9-GFP+ mouse motor neurons (Hb9-GFP+ MN). We used post-

mortem brain and spinal cord tissue from 3 sporadic ALS and 3 non-ALS cases for PCR analysis.

Findings: We report that EV formation and miRNA cargo are dysregulated in C9ORF72-ALS iAstrocytes and this

affects neurite network maintenance and MN survival in vitro. In particular, we have identified downregulation

of miR-494-3p, a negative regulator of semaphorin 3A (SEMA3A) and other targets involved in axonal mainte-

nance. We show here that by restoring miR-494-3p levels through expression of an engineered miRNA mimic

we can downregulate Sema3A levels in MNs and increases MN survival in vitro. Consistently, we also report

lower levels of mir-494-3p in cortico-spinal tract tissue isolated from sporadic ALS donors, thus supporting the

pathological importance of this pathway in MNs and its therapeutic potential.

Interpretation: ALS ADEVs and their miRNA cargo are involved in MN death in ALS and we have identified miR-

494-3p as a potential therapeutic target.

Funding: Thierry Latran Fondation and Academy of Medical Sciences.

Crown Copyright © 2019 Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative dis-

ease characterized by motor neuron (MN) degeneration. The mecha-

nisms and sequence of events leading to MN death are still widely

unknown, but the observation that the first pathophysiological changes

observed in patients involve neuromuscular junction (NMJ) disruption

have given rise to the theory known as the ‘dying-back’ hypothesis

[1]. Dysregulated RNA metabolism is strongly implicated in this patho-

genesis [2], as demonstrated by the many ALS-linked genes encoding

proteins involved in RNA metabolism, such as TARDBP and FUS [3]. In

particular, microRNA (miRNA) metabolism dysregulation has also

been implicated in ALS [4–6].

In addition, polymorphic (G4C2)n hexanucleotide repeat expan-

sions within the C9ORF72 gene are the most common genetic cause of

ALS and frontotemporal dementia [7,8]. They are known to mediate

neurotoxicity through multiple mechanisms including alterations of

pre-mRNA processing [9,10], along with dysregulations of autophagy,

protein homeostasis and vesicle trafficking [11–13].

Although ALS is characterized by MN degeneration, rodent

studies have demonstrated that astrocytes dictate disease progres-

sion in vivo [14]and patient-derived astrocytes are toxic towards

wild-type MNs through both cell-to-cell contact and secreted fac-

tors in vitro [15–17]. While several hypotheses have been put for-

ward [18,19], there is no consensus on the nature of these toxic

factors.

Under normal physiological conditions, astrocytes regulate many

neuronal functions including axon maintenance [20], and at least part

of this communication is regulated through secreted extracellular vesi-

cles (EVs) [21,22]. Specifically, EV miRNA cargo can modulate neuronal
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and astrocytic function in health and disease [23,24]. In the context of

ALS, recent rodent-based studies have implicated cell-secreted miRNA

signaling in a number of pathogenic processes, from excitotoxicity

[24] to neuromuscular junction disruption [25].

Based on our previous research, we sought to determine whether

astrocyte-derived extracellular vesicles (ADEV) from ALS patients con-

tain distinct and/or altered levels of miRNAs that would account for

the astrocyte toxicity reported against MNs [16].

Here we show that astrocytes derived from C9ORF72-ALS pa-

tients have impaired EV formation. We also show that the miRNA

cargo of these EVs is specific to astrocytes compared to the fibro-

blasts of origin and significantly differs from healthy control astro-

cytes. Specifically, we have identified miR-494-3p as a key

regulator of Semaphorin 3A (Sema3A) and other molecules in-

volved in axonal maintenance, with dramatic consequences on ax-

onal/neurite length and motor neuron survival in vitro. Mir-494-3p

dysregulation was also detected in the cortico-spinal tract isolated

from post-mortem ALS biopsies, thus corroborating the importance

of this pathway in disease and supporting its validity for future

therapeutic development.

2. Materials and methods

2.1. Human sample ethics statement

All skin biopsy donors (Table 1) provided informed consent before

sample collection (University of Sheffield, Study number STH16573, Re-

search Committee reference 12/YH/0330 or Coriell Institute).

2.2. Conversion of skin fibroblasts to induced neural progenitor cells

(iNPCs)

Skinfibroblasts from3 controls and 3 C9-ALS patients (Table 1)were

reprogrammed as previously described [16]. Briefly, 104 fibroblasts

were grown in one well of a six-well plate. Day one post seeding the

cells were transduced with retroviral vectors containing Oct 3/4, Sox

2, Klf 4 and c-Myc. Following one day of recovery in fibroblast medium,

DMEM (Gibco, Waltham, MA, USA) and 10% FBS (Life Science Produc-

tion, Bedford, UK) the cells were washed 1× with PBS and the culture

medium was changed to NPC conversion medium comprised of

DMEM/F12 (1:1) GlutaMax (Gibco, Waltham, MA, USA), 1% N2 (Gibco,

Waltham, MA, USA), 1% B27 (Gibco, Waltham, MA, USA), 20 ng/ml

FGF2 (Peprotech, Rocky Hill, NJ, USA), 20 ng/ml EGF (Peprotech, Rocky

Hill, NJ, USA) and 5 ng/ml heparin (Sigma, St. Louis, MO, USA). As the

cell morphology changes and cells develop a sphere-like form they

can be expanded into individual wells of a six-well plate. Once an

iNPC culture is established, the media is switched to NPC proliferation

media consisting of DMEM/F12 (1:1) GlutaMax, 1% N2, 1% B27, and

40 ng/ml FGF2.

2.3. iAstrocyte differentiation and maintenance

iAstrocytes were yielded as previously described [9,16]. Briefly,

iNPCs were switched to astrocyte proliferation media, DMEM (Fisher

Scientific, Hampton, NH, USA), 10% FBS (Life science production, Bed-

ford, UK), 0.2% N2(Gibco, Waltham, MA, USA). Cells were grown in

10 cmdishes coatedwith fibronectin for 7 days unless otherwise stated.

For Nanoparticle Tracking Analysis experiments, astrocyte medium

was switched to EV free medium (DMEM (Gibco, Waltham, MA, USA)

and 10% (v/v) knockout serum replacement (Gibco, Waltham, MA,

USA)) 24 h before medium collection (day 6 of differentiation). Pre-

conditioned media was collected from the iastrocytes at day 7 and cen-

trifuged at 300 ×g for 10 min, prior to evaluation using the ZetaView

(Particle Metrix, Meerbusch, Germany).

2.4. MN monocultures with EVs from iAstrocytes

Murine Hb9-GFP+ MN cultures were prepared from mouse embry-

onic stem cells (mESC) containing a GFP gene controlled by the

MN-specific promoterHb9 (kind gift fromThomas Jessel, Columbia Uni-

versity, New York). Hb9-GFP mESC were maintained by culturing on

primary mouse embryonic fibroblasts (Merck, Burlington, MA, USA) in

mESC media (KnockOut DMEM (Gibco, Waltham, MA, USA), 15%

(v/v) embryonic stem-cell FBS (Gibco,Waltham,MA, USA), 2mM L-glu-

tamine (Gibco, Waltham, MA, USA), 1% (v/v) nonessential amino acids

(Gibco, Waltham, MA, USA) and 0.00072% (v/v) 2-mercaptoethanol

(Sigma, St. Louis, MO, USA)). mESCs were then differentiated into MN-

enriched cultures via embryoid bodies (EBs). Briefly, mESCs were lifted

using trypsin, resuspended in EB medium (DMEM/F12 (Gibco,

Waltham, MA, USA), 10% (v/v) knockout serum replacement

(Gibco, Waltham, MA, USA), 1% N2 (Gibco, Waltham, MA, USA), 1 mM

L-glutamine (Gibco, Waltham, MA, USA), 0.5% (w/v) glucose (Sigma,

St. Louis, MO, USA) and 0.0016% (v/v) 2-mercaptoethanol (Sigma, St.

Louis, MO, USA)) and seeded into non-adherent Petri dishes. EB media

was replenished every day, and 2 μM retinoic acid (Sigma, St. Louis,

MO, USA) and 0.5 μM smoothened agonist (Sigma, St. Louis, MO, USA)

Research in context

Evidence before this study

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative dis-

ease characterized by motor neuron death, however, astrocytes

contribute to the neurodegenerative process. Recent studies

have demonstrated that astrocytes from ALS patients can induce

motor neuron death through secreted factors. Several studies

have focused on secreted proteins without identifying a culprit,

however.

Recent studies have highlighted the importance of microRNAs in

cell-to-cell communication and have implicated miRNAs in the

cross-talk between motor neurons and astrocytes in ALS.

Added value of this study

In this studywe tested the effect of extracellular vesicles (EVs) se-

creted by astrocytes from ALS patients as opposed to non-ALS

donors on motor neuron survival. We found that EVs secreted by

ALS astrocytes induce motor neuron death nearly at the same

levels as the conditioned medium. Moreover, we found that the

main component of EVs are miRNAs, molecules that negatively

regulate gene expression. Through a microarray study we identi-

fied several dysregulatedmiRNA that are likely to disrupt neuronal

function once taken up by motor neurons. In particular, we fo-

cused onmiR-494-3p that downregulates various genes including

semaphorin3A, which is involved in axonal growth and

maintenance.

Implications of all the available evidence

This study has uncovered the functional importance of EV secre-

tion dysregulation that had been previously described in

C9ORF72-ALS samples. Through the use of patient-derived astro-

cytes we have identified a number of new potential therapeutic

targets for ALS that can be manipulated to restore neuronal func-

tion and prevent motor neuron death. Although challenging to use

in gene therapy due to their ability to target several transcripts at

once, our study provides evidence that manipulation of individual

miRNAs can lead to significant beneficial downstream effects

in vitro to be validated in vivo.
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were added daily from day 2 to day 7 post-seeding to induce mESC dif-

ferentiation into MNs. After 7 days of differentiation, EBs were dissoci-

ated using 200 U/ml papain (Sigma, St. Louis, MO, USA). Hb9-GFP+

MN were sorted using FACS Aria machine and 40,000 cells/well were

plated in 96 well plates (Cellstar, Sigma, St. Louis, MO, USA) pre-

coated with laminin 1:200 (Sigma, St. Louis, MO, USA) and

polyornithine 1:1000 (Sigma, St. Louis, MO, USA) in PBS. MNswere cul-

tured in 100 μl of MN media (Knockout DMEM, F12 medium, 10%

Knockout Serum Replacement, 1 mM L-glutamine, 0.5% (w/v) glucose,

1% N2, 0.0016% (v/v) 2-mercaptoethanol, 20 ng/ml BDNF (Peprotech,

Rocky Hill, NJ, USA), 40 ng/ml CNTF (Peprotech, Rocky Hill, NJ, USA)

and 20 ng/ml GDNF (Peprotech, Rocky Hill, NJ, USA)) for 24 h before

treatmentwith either complete astrocyte conditionedmedia or isolated

extracellular vesicles (EVs) appropriately diluted in fresh iastrocyteme-

dium (DMEM (Gibco, Waltham, MA, USA), 10% FBS (Life Science Pro-

duction, Bedford, UK) and 0.2% N2(Gibco, Waltham, MA, USA)) in

order to keep the same concentration of EVs present in the conditioned

medium. Each treatment well, comprised one part MN media and two

parts either complete astrocyte conditioned media or isolated EVs or

isolated EVs diluted in complete MNmedium (including growth factors

BDNF/CNTF/GDNF at the concentrations specified above). MNs were

imaged using an INCELL analyser 2000 (GE Healthcare, Chicago, IL,

USA) 24 h after seeding (to confirm the number of cells before treat-

ment), and then every 24 h onwards for 3 days. The number of viable

MN (defined as GFP+ motor neuronal cell bodies with at least 1

axon) were analysed using the Columbus™ Data Storage and Analysis

System (RRID:SCR_007149; Perkin Elmer, Waltham, MA, USA). The

percentage MN survival was calculated as the number of viable motor

neurons at day 3 as a percentage of the number of viable MN at day 0

pre-treatment.

As for treatment withmiRNAmimics (MirVana, ThermoFisher,Wal-

tham,MA, USA), scramble and hsa-miR-494-3p, were added to the con-

ditioned medium or ADEVs on the day of treatment.

2.5. EV preparation

EVs were isolated from conditioned medium by ultracentrifugation

at 100,000 ×g for 90min at 4 °C using a 70ti rotor and Beckman Coulter

Ultracentrifuge after initial collection and centrifugation for 10min, 300

×g at room temperature and filtration through a 0.22 μm filter to re-

move cell debris. The supernatant was then removed and the EV pellet

resuspended in 300 μl DEPC treated PBS.

2.6. NTA

Nanoparticle tracking analysis was conducted using the ZetaView

(RRID:SCR_016647; Particle Metrix, Meerbusch, Germany) and its re-

spective software (RRID:SCR_016647; ZetaView 8.03.08.03). Prior to

use the instrument was calibrated using polystyrene beads (100 nm).

Conditioned media samples taken from human induced astrocyte cul-

tures were loaded into the ZetaView cell. Nanoparticle tracking analysis

measurements were recorded at 11 different positions and three cycles

of readings were documented for each position. Following the with-

drawal of any outlier positions the ZetaView software calculated the

mean, median and mode sizes in addition to the concentration of parti-

cles within the sample.

2.7. EV transmitted electron microscopy

For immuno-gold EM, a 5 μl drop of resuspended EVs was deposited

onto the grid and adsorbed for 20 min. Grids were washed in 100 μl

drops of PBS 3 times, followed by blocking for 10 min in 100 μl of

blocking buffer consisting of 5% horse serum in PBS. A 5 μl drop of Ms.

CD63(TS63, Invitrogen; Cat# 10628D, RRID:AB_2532983; Carlsbad, CA,

USA) of 20 μg/ml was incubated on the grid for 20 min, washing the

grid in PBS 3 times at the end of incubation. 5 μl of anti-mouse IgG-

10 nm gold (Cat#ab39619; RRID:AB_954440; Abcam, Cambridge, UK)

in 5% horse serum was adsorbed onto the grid for 20 min, and washed

with PBS. The immunoreactionwas post-fixedwith EMgrade 3% glutar-

aldehyde/formaldehyde for 5 min, and the sample was contrasted with

2% uranyl acetate for 60 s and washed 3 times with distilled water be-

fore drying overnight. Samples were imaged with a Fei Tecnai 2000

electron microscope at 80 kV.

2.8. RNA isolation and quantitative RT-PCR

RNA was harvested using the RNeasy Plus mini Qiagen kit (Qiagen,

Germantown, MD, USA) and total RNA was reverse transcribed using

the High Capacity cDNA Reverse Transcription kit (Applied Biosystems,

Foster City, CA, USA) in accordance with the manufacturer's instruc-

tions. Real-time quantitative PCR reactions were conducted using 2×

SYBR Green qPCR Master Mix (Low ROX) (Bimake, Houston, TX, USA)

and assayswere run on a StratageneMx3000P™ Real Time Thermal Cy-

cler (Agilent Technologies Ltd., Santa Clara, CA, USA). Mouse Sema3A

RNA levels were detected and relative quantification calculated using

the 2−∆∆CT method. The following primers were utilised: mouse

Sema3A Fw 5’-TGTACTCTGGAACTGCTGCG-3′; Rv 5’-TCTCTGGGATG

AGATGGGCA-3′; mouse GAPDH Fw 5’-GCTACACTGAGGACCAGGTTG

TCT-3′; Rv 5’-AGCCCCGGCATCGAA-3′; human Sema3A Fw 5’–CACCAT

CACCCCATCAGGAC-3′; Rv 5’-CTCTGGGATGAGATGGGCAC-3′ and

human RPL13A Fw 5’-CAAGCGGATGAACACCAACC-3′; Rv 5’-TTTTGT

GGGGCAGCATACCT-3′.

For TaqMan qPCR 6 genes associated with EV formation were se-

lected (Table 2) and PCR was performed using PrimeTime qPCR 5′ nu-

clease assays (IDT technologies, Coralville, IA, USA) as described

above. Gene expression values were determined using the ddCt calcula-

tion following normalization toβ-Actin expression, also evaluated using

the associated PrimeTime qPCR 5′ nuclease assay.

For miRNA analysis, total RNA was isolated using TRIzol™ Reagent

(Invitrogen, Carlsbad, CA, USA) as per the manufacturer's guidelines

TaqMan Small RNA Assay (20×) for hsa-miR-103 and hsa-miR-494-3p

and TaqMan Universal PCR Master Mix II (2×) (both Life Technologies

Ltd., Carlsbad, CA, USA) were used for real-time quantitative PCR reac-

tions and the assays were conducted on a Stratagene Mx3000P™ Real

Time Thermal Cycler (Agilent Technologies Ltd., Santa Clara, CA, USA).

2.9. Microarray analysis

Total RNA was extracted from EV pellets derived from the condi-

tionedmedia of C9ORF72 patient and control patient induced astrocytes

using the Direct-Zol RNAmini-prep (ZymoResearch, Irvine, CA, USA) as

per the manufacturer's instructions. RNA was labelled using the

Table 1

Details of fibroblast donors.

Cell line Diagnosis Mutation Age at collection (y) Gender Source Identifier

AG08620 Non-ALS ̶ 64 Female Coriell Institute RRID:CVCL_4L17

155 Non-ALS ̶ 42 Male UoS RRID:CVCL_UF81

3050 Non-ALS ̶ 55 Male UoS RRID: CVCL_UH66

78 fALS C9ORF72 68 Male UoS RRID:CVCL_UF84

183 fALS C9ORF72 51 Male UoS RRID:CVCL_UF85

201 fALS C9ORF72 66 Female UoS RRID:CVCL_UF86

3A. Varcianna et al. / EBioMedicine xxx (2019) xxx

Please cite this article as: A. Varcianna, M.A. Myszczynska, L.M. Castelli, et al., Micro-RNAs secreted through astrocyte-derived extracellular
vesicles cause neuronal network degenera..., EBioMedicine, https://doi.org/10.1016/j.ebiom.2018.11.067



FlashTag biotin HSR RNA labelling kit (Affymetrix, Santa Clara, CA, USA)

according to the manufacturer's instructions. Briefly, 2 μl of RNA Spike

Control Oligos were added to 8 μl of RNA, whilst ATP mix was diluted

1:500 in 1 mM Tris. 5 μl of Master Mix was added to 10 μl RNA/Spike

Control Oligos and incubated at 37 °C heat for 15 min (Poly (A)-tailing

reaction). To the Poly (A)-tailed RNA 4 μl of 5× FlashTag Biotin HSR Li-

gation Mix and 2 μl of T4 DNA Ligase was added and following a

30 min incubation at room temperature the reaction was stopped by

adding 2.5 μl of HSR Stop Solution.

Labelled RNA fromeach samplewas thenprepared for hybridisation.

The hybridisation cocktail, comprised of 110.5 μl of Hybridization Mas-

ter Mix and 21.5 μl of biotin-labelled sample was incubated at 99 °C

for 5min and then 45 °C for 5min. The samplemixturewas then loaded

into an array and placed into a hybridization oven and incubated at 48

°C and 60 rpm for 16 to 18 h. Arrays were then washed and stained

using Stain Cocktails 1/2 and scanned with the Affymetrix GeneChip

Scanner 3000.

Affymetrix Expression Console was used to evaluate the

hybridisation efficacy and probe set expression of the GeneChip

miRNA Array 4.0. Differential miRNA expression between samples

were analysed using Affymetrix Transcriptome Analysis Console for

RNA species annotated within the human genome. The Affymetrix Ex-

pression Console was then used to evaluate probe set expression after

normalization using the detected above background (DABG) method.

DABG is a detection metric where the intensity from each perfect

match probe is compared to a distribution of background probes and

provides a probability that value of the signal intensity if part of the

background noise [26]. Different normalization methods and cutoffs

are used in miRNA expression analysis depending on the expression

level of the miRNAs in the sample analysed [27,28]. After normalization

and after applying a pvalue cutoff ≤0.05, differentially expressed

miRNAs were evaluated after applying fold changes ≥2, 1.5 and 1.2.

Due to the low number of miRNA displaying a fold change ≥2, fold-

change of 1.5 and 1.2 were used as an arbitrary threshold to perform

pathway enrichment analysis in order to identify the pathways that

are overall affected by ALS ADEVs.

To elucidate pathways targeted by dysregulated miRNAs three on-

line analytical tools were used, Database for Annotation, Visualization

and Integrated Discovery (DAVID) [29], DIANA-mirPath [30] and

miRSystem [31]. MiRSystem generates a list of enriched pathways that

are regulated by queried miRNAs by incorporating miRNA expression

values and matching miRNAs with the latest annotation [31]. It com-

bines seven different algorithms and two validated databases to identify

target genes and uses five pathway databases to characterize the

enriched pathways. DIANA-miRPath performsmiRNA pathway analysis

and allows queried miRNAs and target genes to be visualized on path-

way maps [30]. DAVID is a widely cited and used tool that discovers

enriched functional-related gene groups and allows them to be visual-

ized on pathway maps [29]. DAVID and DIANA-miRPath utilize enrich-

ment p-values while miRSystem uses ranking scores based on the

affinity of the interactions between miRNAs and target genes [31].

Five pathways that were common to more than two tools were found.

From the five common pathways listed for up and downregulated

miRNAs, two pathways that were of our interest were selected and

genes that are involved in those pathways were found. The most

enriched miRNAs were found by selecting genes, involved in the path-

ways of interest that were commonly found between the analytic tools.

2.10. Post mortem tissue

Autopsy donations to the Sheffield Brain Tissue Bank were per-

formedwith the written consent of the next of kin for the use of tissues

for scientific research. Slices of brain and segments of spinal cord were

frozen on copper plates in liquid nitrogen vapour and stored at−80 °C.

Six samples were retrieved from deep freezing (Table 3), and sam-

ples of motor cortex, spinal cord and lateral corticospinal tract taken

by a qualified neuropathologist.

The remaining nervous system tissue was formalin fixed for diag-

nostic confirmation and characterisation. The Sheffield Brain Tissue

Bank Management Board gave ethical approval for use of tissue in this

study under the provision to act as a Research Tissue Bank as approved

by the Scotland Research Ethics Committee (ref. 08/MRE00/103).

2.11. Statistical analysis

All statistical testswere conductedusingGraphPadPrism7 software

(RRID:SCR_002798). Statistical analysis was performed by either

Student's t-test, one-way ANOVA with Tukey post-hoc analysis, or

two-way ANOVA with Sidak post-hoc analysis, depending on the num-

ber of variables in the respective experiment. All experimentswere per-

formed a minimum of three times. p b .05 was considered statistically

significant. All p values and n values are documented in the figure

legends.

3. Results

3.1. Conditionedmedium and extracellular vesicles fromC9orf72 astrocytes

are toxic to MNs

We previously showed that C9orf72 iAstrocytes derived through di-

rect conversion of fibroblasts into iNPCs induced a decrease in survival

in Hb9-GFP+mouseMNs in co-culture compared to non-ALS astrocytes

[16]. Herewe tested the effect of iAstrocyte conditionedmediumonMN

monocultures, to determine if secreted factors are main players in C9-

Table 2

Primers and probes for TaqMan qPCR.

Primer

name

Primer sequence

(5′ – N3′)

Probe sequence

(5′ – N3′)

ALIX-F GAAGCACAGGTGGT

GGAG

56FAM/CATGGTTCT/ZEN/TGGCGCTGGAG

TTG

ALIX-R CAGCAGGAGGACAT

GCAC

TSG101-F TTTTCCAGAGCAGAAC

TGAGT

56FAM/AACCTCGGC/ZEN/TACTTCTTGATCTA

AACGG

TSG101-R GAAAAAGGGTCACC

AGAAACTG

CHMP2B-F TCGTCATCAGAACCGT

CAAAG

56FAM/CAGAAGGAA/ZEN/AACATGAAAAT

GGAAATGACTGAAGA

CHMP2B-R AGGCAGTTAACAAG

AAGATGGA

CHMP4B-F GGAACATTTGGTAG

AGGGACTG

56FAM/TGGCGGAAT/ZEN/TAGAAGAACTA

GAACAGGAGG

CHMP4B-R AGGGTTTGGAGAAG

AGTTTGAC

VPS4A-F CTCTTGCCCAAAGTCC

TCTG

56FAM/TTCTTCACT/ZEN/TTCAGGAGGTCGTC

TGC

VPS4A-R TCTTAGAGCCTGTGGT

TTGC

β-Actin-F CCAGTGGTACGGCC

AGA

56FAM/CCATGTACG/ZEN/TTGCTATCCAGGCT

GT

β-Actin-R GCGAGAAGATGACC

CAGAT

Table 3

Details of post-mortem tissue donors, including gender, age, post-mortem delay (PMD)

and diagnosis.

Case ID Gender Age PMD Diagnosis

C1 F 63 31 h Carcinoid Tumor

C2 M 63 25 h Mesolthelioma

C3 M 67 63 h Hepatocellular carcinoma

sALS1 M 66 40 h sALS

sALS2 F 63 36 h sALS

sALS3 M 66 19 h sALS
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ALS astrocytic-mediated neurotoxicity as previously reported for other

genetic subtypes [15,17].

Consistent with previous data, C9-ALS astrocyte conditioned me-

dium treatment of MN monocultures resulted in 50–75% increased

MN death compared to controls after 72 h (Fig. 1a, b, e; p b .0001

(Two-way ANOVA)). Since extracellular vesicles (EVs) have been impli-

cated in cell-to-cell communication in a number of neurodegenerative

diseases [32], we decided to determine their role in astrocyte-

mediatedMN death in C9-ALS. We isolated EVs from C9 iAstrocyte con-

ditioned medium (10 ml) via ultracentrifugation, resuspended them in

fresh non-conditioned astrocyte medium (10 ml) or complete MN me-

dium with growth factors (10 ml) and we then treated the MN mono-

cultures. Our data reveal that C9-EVs are equally toxic as the astrocyte

conditioned medium (Fig. 1c-e, p b .0001 (Two-way ANOVA)). Dilution

of the EVs in complete MN medium containing BDNF, GDNF and CNTF

still resulted in MN death, proving that EVs are toxic to MNs (Supple-

mentary Fig. 1). We also report here that ADEVs isolated from control

astrocytes are consistently, even if not statistically significant, less sup-

portive compared to whole conditioned medium (Fig. 1e) while C9-

EVs are consistently less toxic than whole conditioned medium. This

suggests that other factors not packaged into ADEVs contribute to MN

health/death. Consistent with these findings, MN medium alone is not

as supportive as astrocyte-conditioned medium from non-ALS controls

(Fig. 1e and Supplementary Fig. 2a, b), proving that astrocytes have an

active role in supporting neurite growth and synaptic formation.

3.2. EV biogenesis is impaired in C9orf72 astrocytes

Having assessed the detrimental effect of EVs secreted by C9-ALS as-

trocytes, we sought to characterize their abundance in the conditioned

medium. We used the ZetaView Nanoparticle Tracking Analysis (NTA)

system to identify particle size and number in conditioned medium

from3 controls and 3 C9-ALS patients. Quantification revealed nodiffer-

ence in the overall size range of EVs secreted by controls or patients,

typically rangingbetween 70 and 200 nm.Most particles range between

50 and 120 nm, with a clear peak at 100 nm, indicating that exosomes

are the main component of the total EV pool (Fig. 2a). We confirmed

ADEV isolation by transmitted electron microscopy (TEM) and

immunogold staining for CD63 (Fig. 2b and c).

Interestingly, ADEV quantification showed that iAstrocytes from C9

patients secrete fewer vesicles than healthy individuals across a range

of vesicle sizes (Fig. 2d and Fig. 3). It was recently reported that

C9orf72 not only is involved in autophagy [13], but also in vesicle traf-

ficking [11]. For this reason, we decided to assess the mRNA expression

level of proteins involved in EV formation and processing. Consistent

with the observed reduction in EV secretion, qRTPCR analysis showed

that transcripts encoding for C9orf72, TSG101, CHMP4B and VSP4A are

significantly downregulated in C9-ALS iAstrocytes (Fig. 2e).

3.3.MicroRNAs regulating axonal maintenance are selectively dysregulated

in C9 patient ADEVs

Recent studies have provided strong evidence that astrocytes can

regulate neuronal health through EV-secreted miRNAs and indeed we

found that between 30 and 80% of the iAstrocyte EV RNA cargo is com-

posed of miRNAs (Supplementary Table 1). Therefore, we proceeded to

interrogate the panel of miRNAs secreted via ADEVs by 3 control and 3

C9-ALS iAstrocyte lines using Affymetrix miRNA Microarray Chips.

The miRNA expression levels were determined using Expression

Console (Affymetrix) and the number of miRNAs detected above back-

ground (DABG) was 6632. Hierarchical clustering and principal compo-

nent analysis (PCA) of the detected miRNAs clearly identified patients

and controls as two separate groups (Fig. 3a, b). We interrogated the

data for differentially expressed transcripts by setting a threshold with

p-value ≤.05 and fold change ≥1.5 we identified 64 dysregulated

miRNAs (51 upregulated and 13 downregulated). We then applied a

less stringent fold-change ≥1.2 to ensure consistencywithin our results,

as one would expect that the pathways identified with more stringent

criteria would still be present when the criteria are relaxed to allow

performing a broader pathway enrichment analysis. This less stringent

analysis identified 193 differentially expressed miRNAs, 116 were up-

regulated whilst 77 were downregulated (Supplementary Table 2).

In order to identify transcripts that are targeted by dysregulated

miRNAs, two different web-based analytic tools, DIANAmiRPath and

miRSystemwere used, as they are based on different algorithms andda-

tabases [30,31]. To interrogate the enriched pathways targeted by the

dysregulated miRNAs, we then used miRSystem and DAVID, which

use different ranking systems. Pathway identification and ranking

through different algorithms gave us confidence that common hits

would be statistically robust. Of the top 5 pathways identified by these

two tools, axonal guidance and maintenance as well as adherens junc-

tions were identified through both approaches and regardless of the

fold change cutoff applied (Supplementary Table 3).

To identify which pathways might be dysregulated in multiple cell

types affected by the C9 mutation, versus pathways that are astrocyte-

specific, hence potentially involved in MN death, we interrogated the

miRNA profile of EVs secreted by C9-ALS fibroblasts compared to unaf-

fected controls through the same workflow. The PCA identified 4

Fig. 1. Conditioned medium (CM) and extracellular vesicles (EVs) from C9-ALS iAstrocytes induceMN death. Representative images of Hb9-GFP+MNmonocultures treated for 72 h with

astrocyte conditionedmedium from control (CTR) or C9-ALS (C9) astrocytes (a and b respectively) or EVs isolated from the same conditionedmedia (c and d respectively). Quantification

ofHB9-GFP+MNswith axons performed after 3 days of treatment reveals that conditionedmedium (solid bars) and EV treatment (checked bars) have similar effects onMNmonocultures

(e), with C9-ALS astrocytemediumand EVs inducing significantly lowerMNsurvival. Survival ofMNmonocultures inMNmedium (black solid bar) used as comparative reference (n=3).

Two-way ANOVA (p b .0001), 3xControls versus 3xC9-ALS, N = 3 per condition, error bar = SD. Scale bar = 20 μm.
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groups, clearly separating the miRNA profile of fibroblasts from

iAstrocytes and control and patients within each group (Fig. 3b). We

found that, while dysregulation of adherens junctions is a category pres-

ent in both data sets, axonal guidance andmaintenance is unique to the

iAstrocytes with 13 dysregulated miRNAs involved in the pathway

(Fig. 3c). Through pathway analysis, we identified hsa-miR-494-3p as

an upstream target in regulating axonal maintenance, with its primary

target being Semaphorin 3A (Sema3A). Increased Sema3A expression

has been recently described in post mortem motor cortex of sporadic

ALS patients [33]. MiR-494-3p was also the most dysregulated miRNA

identified in the axonal maintenance pathway (microarray data: fc =

−2.38, p = .047 (One-way ANOVA)) and its downregulation was vali-

dated via TaqMan qPCR (Fig. 3d).

3.4. MiR-494-3p mimic restores SEMA3A levels and increases MN survival

In order to test the effect of miR-494-3p on its identified target, i.e.

motor neuronal Sema3A, we treated HB9-GFP+ mouse MN monocul-

tures with conditioned medium from control or C9-ALS iAstrocytes

supplemented with either a scramble miRNA (miR-scr) or a miR-

494-3p mimic and then we evaluated the expression level of

Sema3A via qRT-PCR. Mouse HB9-GFP+ MNs could be used because

miR-494-3p is highly conserved between mouse and human. The re-

sults show that treatment with C9 conditioned medium indeed signif-

icantly increased the levels of Sema3A mRNA in HB9-GFP+ MN by 46%

after only 48 h of treatment (Fig. 4a). Indeed, treatment of the MNs

with a miR-494-3p mimic in the presence of C9 iAstrocyte condi-

tioned medium significantly reduced the levels of Sema3A by 25% in

the MNs (Fig. 4a).

We then assessed the functional effect of this transcriptional

regulation to verify the link between miR-494-3p downregulation

and astrocyte-mediated MN death. We cultured HB9-GFP+ mouse

MNs and we treated them with conditioned medium from controls

or C9 patients supplemented with either a miR-scr or miR-494-3p

mimic. We then measured MN number (Fig. 4b), neurite length

(Fig. 4c) and number of nodes/intersections (Fig. 4d) to assess not

only MN survival over time, but also branching and neurite tree com-

plexity, which is expected to be directly affected by Sema3A

expression.

As expected MNs treated with C9 conditioned medium displayed

significantly lower MN survival, neurite length and number of nodes

per cell (Fig. 4b-d) compared to controls, however, miR-494-3p

treatment led to a complete rescue in neurite length and number

of nodes per cell (Fig. 4c, d), accompanied by a significant 20–25%

increase in MN survival compared to miR-scr treated cells

(Fig. 4b). Comparable results were obtained when MN monocul-

tures were treated with ADEVs isolated from the iAstrocyte-

conditioned medium and then resuspended in fresh non-

conditioned medium supplemented with either miR-scr or miR-

494-3p (data not shown).

In order to evaluate the relevance of our in vitro data in human dis-

ease, we assessed the expression levels of miR-494-3p and SEMA3A in

the motor cortex and lateral cortico-spinal tract of the spinal cord in

post-mortem tissues from sALS patients. We detected significantly

lower levels of miR-494-3p (p = .02, Two-tailed t-test), while

SEMA3A did not show a significant increase as predicted in the

cortico-spinal tract when comparing 3 sporadic ALS (sALS) patients to

3 non-ALS controls (Fig. 4e, f).

Fig. 2. EV biogenesis is impaired in C9-ALS iAstrocytes. Representative size distribution graph (a) of ADEVs and TEM (b, c-i, c-ii) show that most ADEVs range between 50 and 120 nm.

ADEVs are positive for CD63 (arrow heads) with immunogold labeling (c-iii). ADEV direct quantification using the ZetaView Nanoparticle Tracking System (d) shows a significant

decrease in the number of particles secreted by C9 iAstrocytes (One-way ANOVA; p b .01). This suggests impairment in vesicle formation, as supported by TaqMan qRT-PCR data

showing downregulation in a number of transcripts involved in EV biogenesis in C9 iAstrocytes (e). t-test (**p b .01; *** p b .001), 3xControls versus 3xC9-ALS, N = 3 per condition,

error bar = SD.
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4. Discussion

Neurodegenerative disorders are extremely complex diseases char-

acterized by high heterogeneity and interplay between different cell

types. Discoveries of the past 20 years have highlighted that ALS is

part of a disease spectrum ranging from frontotemporal dementia

(FTD) to pure motor neurone disease, it is multifactorial in origin, with

contribution of genetic, epigenetic and environmental factors and it un-

ravels through a yet undeciphered communication between neuronal

and non-neuronal cells [34,35]. Astrocytes have multiple functions,

from maintaining tissue homeostasis to supporting neurite growth

and remodeling during development as well as maintenance during

adulthood (reviewed by Clarke and Barres, 2013) [36].

Although massive progress has been made in understanding the

chemical signals that regulate the motor neuron-astrocyte crosstalk,

very little is known about the role of micro RNAs (miRNAs) in this

communication.

Work carried out by us and others has shown that astrocytes are

major players in ALS pathology, (reviewed by Ferraiuolo, 2014) [37].

In particular, it has been shown that astrocytes derived from either

post-mortem tissues or fibroblasts from ALS patients are toxic to MNs

and this toxicity is also transferred through conditioned medium

[16,17].

ADEV cargo has been interrogated before as a culprit not only for

motor neurone injury, but also disease spreading, as mutant SOD1 was

detected in the exosomes secreted by primary astrocytes overexpress-

ing the mutant SOD1 gene [38].

Several recent studies, however, have turned their attention towards

EV miRNA, rather than protein, cargo. Most of these studies have been

performed in rodent models overexpressing mutant SOD1 and have

identified motor neuron-secreted miRNAs regulating astrocytic func-

tion [24].

On the contrary, in the present study, we focused on astrocytes and

on understanding how secretedADEVsmight contribute toMNdegener-

ation. We report that induced astrocytes (iAstrocytes) derived from

human fibroblasts secrete less EVs than unaffected controls, consistent

with recent data collected in C9orf72 knockdown cell models and iPSC-

derived neurons from patients [11]. This characteristic seems to be spe-

cific to the role of C9orf72, as primary mouse astrocytes expressing mu-

tant SOD1 were reported to secrete more exosomes than controls [38].

Of great relevance for the EVs field, we also observed that EV secre-

tion decreases with cell density in vitro, thus highlighting the impor-

tance of monitoring cell growth parameters and keeping them

consistent across conditions.

Our data show that ADEVs isolated from iAstrocyte conditionedme-

dium are sufficient to cause MN death even in presence of trophic fac-

tors, thus demonstrating that ADEVs carry toxic factors.

Moreover, our miRNA profiling shows ADEVs from ALS patients and

unaffected controls carry a unique miRNA cargo distinct from the fibro-

blasts of origin, which are, in fact, not toxic to MNs. Interestingly for as-

trocytes that have not been primed withmotor neurons, our data show

that iAstrocytes secrete miRNAs regulating a number of transcripts

encoding proteins involved in axonal growth and maintenance, simi-

larly to primary astrocytes [23]. This indicates that this regulatory pro-

gram of miRNA expression is intrinsic to this cell type and altered in

C9ORF72-ALS.

Consistentwith this observation, HB9-GFP+wild-typemousemotor

neurons treated with motor neuron medium display shorter neurites

Fig. 3. MicroRNAs regulating axonal maintenance are selectively dysregulated in C9 ADEVs. MiRNAs secreted by C9 and Control (CTR) iAstrocytes identify two separate groups in the

hierarchical clustering analysis (a). The PCA plot (b) shows how EV-secreted miRNAs differentiate iAstrocytes (iA) and fibroblasts (Fib) on one axis and controls (CTR) and C9 patients

(C9) on another axis. iA also show more dramatic differences between patients and controls compared to fibroblasts. Pathway analysis of the dysregulated miRNAs identifies axonal

growth and maintenance as the most affected pathway (c). Downregulated (in blue) miRNAs target Semaphorins, RhoA and Rock, thus predicting an increase in these proteins, which

would lead to growth cone collapse. Upregulated miRNAs (in red) target Ephs and Wwp1, which would lead to their downregulation. Wwp1 inactivates NogoA, thus this would also

lead to axonal collapse. TaqMan qRT-PCR confirms significant downregulation of miR-494-3p, which negatively regulates Sema3A (d). N = 3 per group; error bar = SD. Two-tail

unpaired t-test (p b .05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

7A. Varcianna et al. / EBioMedicine xxx (2019) xxx

Please cite this article as: A. Varcianna, M.A. Myszczynska, L.M. Castelli, et al., Micro-RNAs secreted through astrocyte-derived extracellular
vesicles cause neuronal network degenera..., EBioMedicine, https://doi.org/10.1016/j.ebiom.2018.11.067



and less complex projection network than motor neurons treated with

conditioned medium from unaffected controls (Supplementary Fig. 2).

Additionally, conditioned medium from C9-ALS astrocytes causes axo-

nal shortening before motor neuron cell body loss.

Our study has identified several miRNAs involved in regulating axo-

nal/neurite maintenance and growth, in particular, we have identified

significant downregulation ofmiR-494-3p, amiRNA involved in the reg-

ulation of several genes, including SEMA3A. Our data demonstrate that

astrocyte-secreted miR-494-3p manipulation is effective in regulating

SEMA3A neuronal levels in vitro and that its upregulation through an

engineered miRNA mimic rescues both neurite length and network

complexity, as well as motor neuron survival.

Recent studies have also shown that Sema3A increase in ALS is not

limited to the periphery [39], but it is also a central phenomenon affect-

ingmotor neurons in themotor cortex of sporadic ALS patients [33], as-

trocytes in cases of spinal cord injury [40] and oligodendrocytes in

multiple sclerosis [41].

Elegant studies, however, have highlighted the complex role of

SEMA3A in axonal development, positioning and maintenance [20] in

CNS and have reported that under normal conditions specifically

astrocyte-secreted SEMA3A has a pro-survival role on spinal MN rather

than detrimental, while the opposite is true for cortical neurons [42]. In

our study, however, we have not investigated the levels of SEMA3A se-

creted by astrocytes and its role on MN survival.

Fig. 4. MiR-494-3p mimic restores SEMA3A levels and increases MN survival. QRT-PCR results show that HB9-GFP+ MNs treated with C9 iAstrocyte conditioned medium supplemented

with a scramble miRNA (miR-scr) display elevated levels of Sema3A compared to control iAstrocyte conditioned medium treatment + miR-scr (a). Sema3A levels, however, are

downregulated after 48 h treatment with a miR-494-3p mimic (a). N = 3 per condition; Error bars = SD. Decrease in Sema3A corresponds with improvement in MN survival (b),

increase in neurite length (c) and number of nodes/intersection in MN monocultures (d) treated with C9 iAstrocyte conditioned medium plus miR-494-3p. MN measurements were

performed 72 h post-treatment. In b N = 3 per condition; in c and d 3 N = 9 (independent replicates for each of the 3 patients and 3 controls); error bar = SD. Statistical analysis:

Two-way ANOVA with multiple comparison test and Sidak correction (*p b .05; **p b .01; ***p b .001; ****p b .0001). QRT-PCR analysis of lateral cortico-spinal tract tissue from 3 non-

ALS and 3 sporadic ALS patients with limb onset showed a significant 30% reduction in miR-494-3p (e) (two-tailed t-test, p = .02), while no significant change was detected in

SEMA3A (f) (two-tailed t-test p = .08).
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Our in vitro data indicate that intrinsic high levels of SEMA3A inMNs

are associated with neurite retraction and MN death and exogenous

miR-494-3p is able to decrease Sema3A levels. The MN rescue observed

in cultures treated with C9-ALS ADEV supplemented with miR-494-3p,

however, is likely to be the result of the action of miR-494-3p on several

targets acting upon axonal maintenance and MN survival rather than

solely regulation on motor neuronal semaphorin (Fig. 5).

Neuronal degeneration and synaptic loss are phenomena affecting

both the CNS as well as the NMJ and they can be identified in clinic at

diagnosis. Because not all the synapses are affected or lost at the same

time, their preservation is an appealing intervention even after symp-

tom onset.

In our in vitro system, unfortunately, we were not able to test the ef-

fect of miR-494-3p selectively on the axon as opposed to the neurite

tree, which would have clarified whether the crosstalk happening cen-

trally in the motor cortex and spinal cord has an effect also on the pe-

riphery, i.e. the NMJ. It is likely that the stimuli applied by the

astrocytes in the brain and spinal cord on the MN cell bodies have a

deep impact on the axons and the distal neuronal cell compartment. Fu-

ture in vitro experiments should utilize microfluidic chambers, where

the two cell compartments can be kept separated and the effect of

ADEVs can be tested onto neurites or axons separately.

Using post-mortem tissue from sALS patients, we show here that

within the cortico-spinal tract, the motor pathway formed by the de-

scending axons of the primary cortical MNs in themotor cortex towards

the lowerMNs in the brainstem and spinal cord, we have detected a de-

crease in miR-494-3p. These data support the potential role of this

miRNA not only in the context of C9-ALS pathology, but the wider

sALS population.

The lack of specificity that characterizes miRNAs might pose a limi-

tation in terms of safety concerns for in vivo manipulation, however,

engineered miRNAsmight satisfy the need to target multiple molecules

in the same or different pathways at the same time. Gene therapy ap-

proaches targeting single genes have been proven safe and efficacious

in the field of neuromuscular disorders [44,45], supporting the idea

that targeted and timed genemanipulation could be developed as a po-

tential therapeutic approach.

This study is of great relevance not only for the field of ALS, but po-

tentially other neurodegenerative conditions, where miR-494-3p ex-

pression might be used to preserve neurite/axonal health.
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