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RESEARCH ARTICLE Open Access

Exploring the unmapped DNA and RNA
reads in a songbird genome
Veronika N. Laine1* , Toni I. Gossmann2, Kees van Oers1, Marcel E. Visser1,3 and Martien A. M. Groenen3

Abstract

Background: A widely used approach in next-generation sequencing projects is the alignment of reads to a

reference genome. Despite methodological and hardware improvements which have enhanced the efficiency and

accuracy of alignments, a significant percentage of reads frequently remain unmapped. Usually, unmapped reads

are discarded from the analysis process, but significant biological information and insights can be uncovered from

these data. We explored the unmapped DNA (normal and bisulfite treated) and RNA sequence reads of the great tit

(Parus major) reference genome individual. From the unmapped reads we generated de novo assemblies, after

which the generated sequence contigs were aligned to the NCBI non-redundant nucleotide database using BLAST,

identifying the closest known matching sequence.

Results: Many of the aligned contigs showed sequence similarity to different bird species and genes that were

absent in the great tit reference assembly. Furthermore, there were also contigs that represented known P. major

pathogenic species. Most interesting were several species of blood parasites such as Plasmodium and Trypanosoma.

Conclusions: Our analyses revealed that meaningful biological information can be found when further exploring

unmapped reads. For instance, it is possible to discover sequences that are either absent or misassembled in the

reference genome, and sequences that indicate infection or sample contamination. In this study we also propose

strategies to aid the capture and interpretation of this information from unmapped reads.

Keywords: DNA sequencing, RNA sequencing, Unmapped reads, Contamination, Pathogens

Background
A vast amount of sequencing data is produced both at

the DNA and RNA level. Often in next-generation se-

quencing projects, the starting point is the alignment of

reads to a reference genome or transcriptome assembly,

if such information is available. Despite improvements

in alignment methods and hardware that have enhanced

the efficiency and accuracy of alignments, a significant

percentage of reads frequently remains unmapped. Usu-

ally, unmapped reads are discarded from the analysis

process, but new biological information can be uncov-

ered from these data. For instance, they may provide in-

formation about pathogens, symbionts or sequences/

genes missing in the reference genome [1–5]. Herein, we

tested the hypothesis that the unmapped reads would

contain missing genes, incomplete genes and putative

pathogens/symbionts.

Effort has been put into using already existing and/or

creating new bioinformatics tools, especially for explor-

ing pathogens in human sequence data [1, 6, 7]. In a

study of the unmapped reads generated by the 1000 Ge-

nomes Project [8] biologically relevant information was

identified from the reads that were non-human, such as

human papilloma virus [9]. In addition to known patho-

gens, novel pathogens can be found (i.e. hitherto

unknown pathogens or host-pathogen interactions). In a

study of unmapped reads of the bovine reference indi-

vidual many reads represented invertebrate species,

some of which had an unknown link to bovine species

[4]. These include parasitic infections but may also lead

to the discovery of previously unknown symbiotic

relationships. In a study of pea aphids (Acyrthosiphon

pisum) that focused on symbionts, the symbiont se-

quences from the unmapped reads were most frequently

shared between individuals adapted to the same host

plant [3], indicating that these sequences may contribute* Correspondence: v.laine@nioo.knaw.nl
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to the divergence between host plant-specialized

biotypes.

One of the common findings in studies exploring un-

mapped reads is the incompleteness of the reference ge-

nomes especially at the gene annotation level. The

so-called “missing genes” have been a problem especially

in avian genomes. The recent sequencing and annotation

of a large number of avian genomes [10, 11] as well as

non-avian reptile genomes [12] made it possible to iden-

tify genomic features that are only found in birds, and

that are linked with the evolutionary emergence of avian

traits. However, one of the surprising findings of avian

comparative studies is the loss of protein coding genes,

as the total number of uniquely identified avian coding

genes is considerably smaller than for other tetrapods

[10, 13, 14]. In an analysis of 48 bird species, the total

number of genes in avian genomes was estimated to be

around 70% of those present in humans [10]. When in-

vestigating 60 avian genomes, it was found that birds

lack approximately 274 protein coding genes that are

present in the genomes of most vertebrate lineages [14].

Another study highlighted that some of these 274 miss-

ing genes could be assembled from bird sequence data

deposited at public databases ([15, 16], see also [17–19]).

They suggested that the high GC-content of the missing

genes could have caused problems in the PCR amplifica-

tion in next-generation sequencing library preparation,

as GC-rich genes are extremely difficult to amplify [20].

A recent study of bird genomes and transcriptomes re-

vealed that birds most likely do not contain fewer genes

than mammals or non-avian reptiles [21]. These results

indicate that the studies mentioned above have over-

looked roughly 15% of the bird gene complements. They

showed that there is a strong effect of local GC base

composition, with genes with high GC-content being the

most difficult to reconstruct consistently across different

bird assemblies. However, they also were able to recon-

struct missing genes with moderate or low GC-content,

hinting that GC composition is not the only reason why

so many bird genes have been overlooked so far. Because

bird genomes are characterized by an extremely stable

karyotype and recombination landscape, including

GC-biased gene conversion [22], it is very challenging

to conclude the absence of a particular gene within a

genome. Hence, the question remains regarding how

many avian genes are truly missing from their ge-

nomes, and how many are just not properly assem-

bled and annotated.

The great tit (Parus major) is a well-known model

species for ecological and evolutionary studies with

several long-term study populations [23]. In addition to

ecological and evolutionary studies, research of great tits

and their pathogens has contributed to a vast knowledge

on host-parasite coevolution [24]. Furthermore, many

molecular datasets have been generated for this species,

resulting in an extensive number of molecular tools [25–

27]. However, although the genomic information for

great tit is one of the most comprehensive among birds,

the annotated genome still has some limitations. These

include the absence of some chromosomes such as

micro-chromosomes that are missing in other birds as

well; specifically chromosome 16 and the sex chromo-

some W (as the reference bird was a male and thus was

lacking the W chromosome). Chromosome 16 is known

to be problematic to assemble in birds, since it contains

the highly polymorphic MHC-gene complex region [28,

29]. In addition, there are still regions in the great tit

genome where no sequences have been assigned, most

likely due to extreme GC-content and repetitive ele-

ments. Other avian genomes similarly contain substan-

tial missing regions, which may be problematic for

population genetic studies [30].

In a previous study [31], the first great tit transcrip-

tome was described using RNA extracted from ten birds

and eight different tissues, and interesting signals from

contaminants and pathogens were detected amongst the

unmapped reads. However, at that time the great tit ref-

erence genome was not yet available. Here, we explored

the great tit unmapped reads further using an extensive

dataset generated from the great tit reference individual,

in order to flag problematic areas in the genome and

identify pathogens and contaminants. For this, we used

the unmapped reads of the DNA (normal and

bisulfite-treated) and RNA sequencing data from nine

different tissues of the reference bird.

Results

De novo assemblies of unmapped reads

Around 38.5 million DNA sequence reads, 3.62% of the

total, remained unmapped after alignment to the refer-

ence P. major genome. These reads could be assembled

into 1,064,033 contigs (N50 = 770 bp) of which 1053

were larger than 500 kb. Additional assembly statistics

are provided in Additional file 1: Table S2.

A total of 248 million RNA reads were unmapped (9%

of the total). From the different tissues, the intestine and

bone marrow samples contained the largest fraction of

unmapped reads (over 20% per tissue; Fig. 1). A de novo

assembly of these reads yielded altogether 136,122 con-

tigs with an N50 of 1747 bp and a median contig length

of 559 bp. From these contigs, 80,435 open-reading

frames could be identified. Additional assembly statistics

are provided in Additional file 1: Table S3.

Alignment of DNA contigs to BLAST database

From the assembled DNA contigs, 396 out of 401

aligned contigs were aligned against sequences from

other birds in the BLAST run, with most of the contigs
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aligning to the ground tit (Pseudopodoces humilis) and

blue tit (Cyanistes caeruleus) (Additional file 1: Table

S4). Altogether, 241 contigs could be aligned to a gene

(actual or prediction), 154 of which were already identi-

fied in the great tit annotation. The GC-content of these

great tit genes was 51.41% and gaps in the genome were

found in five genes. The 87 remaining genes were miss-

ing from the great tit annotation. The GC-content of the

contigs related to these genes was 51.94%.

Alignment of RNA contigs to BLAST database

Altogether from the assembled Trinity contigs, 88,209

could be aligned to the non-redundant nucleotide (nt)

database, of which 85,771 had an e-value lower than

1e-10 (Table 1). Among the open-reading frame pep-

tides, 65,942 had a significant alignment to the peptide

database (Additional file 1: Table S5).

The most common alignments were to plant and to

other bird sequences. The plant sequences were mostly

derived from Arabidopsis (Additional file 1: Table S6).

The vast majority of these Arabidopsis reads was present

among the unmapped reads from bone marrow suggest-

ing contamination of this library with plant-derived se-

quences (Table 2). Contigs related to other bird species

were equally distributed among tissues except for intes-

tine, which had five times more reads aligned (Table 2).

The reads from the intestine were mostly aligning to

trypsin-related genes (Additional file 1: Table S7). Most

of the P. major contigs originated from the breast filet

sample and the unpaired dataset. These contigs mostly

aligned to great tit mitochondrial sequences in the

nt-database and when aligning these contigs against P.

major genome, they mapped back with low MAPQ –

values (0–3) especially to the mitochondrial genome

(Additional file 1: Tables S6 and S7). The GC-content of

the non-mitochondrial contigs was 52.7, and 26% of the

contigs contained repeats. In the “other” group, bacterial

reads were the most common type in almost all of the

tissues, except in blood where fungi and other eukary-

otes were the most common species groups (Table 2,

Fig. 2). The reason for the high number of fungal and

other eukaryotic sequences in blood was due to ribosomal

Fig. 1 The percentage and number of the RNA reads that were unmapped to the reference genome in nine great tit tissues. The unpaired reads

indicate the reads that were orphaned in the quality trimming of the RNA reads (all the tissues combined)

Table 1 Summary of the BLAST alignments of unmapped RNA contigs with e-value less than 1e-10

Group Number of alignments Median identity (%) Maximum identity (%) Median qcovs (%) Maximum qcovs (%) Median E-value

Parus major 217 97.07 100 100 100 4.27E-113

Aves 20,883 96.35 100 52 100 1.35E-92

Other animals 569 91.01 100 82 100 2.78E-82

Plants 62,019 100 100 99 100 0

Other 2084 100 100 100 100 2.19E-125
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RNA sequences (Additional file 1: Table S7). The most

prevalent organisms in the “other” group were Plasmo-

dium relictum and Caldibacillus debilis (Additional file 1:

Tables S6 and S7). When looking at the Caldibacillus rec-

ord in Genbank (MF169985.1) more closely, we noticed it

had contamination and was being removed from the

nucleotide database. We therefore re-did the alignment

for these contigs, and subsequently found that one of the

contigs was aligned with Actinomyces succiniciruminis and

rest of the contigs (6) aligned to Culicoides sonorensis.

However, closer look at the sequences of Actinomyces and

Culicoides revealed them being PhiX control reads (used

as a quality and calibration control for sequencing runs)

indicating PhiX contamination in many of the NCBI

submitted sequences.

Identifying the missing genes from the P. major

annotation by using RNA sequencing data

From the 4784 nt-database sequences that were related

to other bird and animal species, 2625 did not align to

great tit when restricting the alignment only to the P.

major nt-database. These corresponded to 12,759 Trinity

contigs and the average GC-content of these contigs was

60.02%. From this we could identify 1822 individual

genes (1110 gene predictions and 712 actual genes) that

were missing in the great tit annotation for genome

build 1.01, but that are found in the unmapped reads

(Additional file 1: Table S8). Corresponding genes to

P. major annotation could be found for 1931 nt-database

sequences and the rest of the sequences (227) did not

align, since these were sequences from complete chro-

mosomes or un-assigned scaffolds (Additional file 1:

Table S6). From these genes, gaps were found in 68

genes, and the GC-content was slightly higher (GC%

54.51) than the average for the whole genome (GC% is

41.52).

Bisulfite sequence genome information

A total of 217 and 341 million bisulfite reads from blood

and brain, respectively (41.6 and 54.1% of total reads),

were unmapped. The unmapped reads from the bisulfite

data could be assembled into 145 million contigs (with

N50 of 836 bp) in blood, of which 929 were larger than

100 kb and into 96 million contigs (with N50 of 1259 bp)

in brain, of which 1956 were larger than 100 kb

(Additional file 1: Table S9). For both tissues, the

unmapped reads aligned mostly against E. coli in the

BLAST run (Additional file 1: Table S10). Altogether 59

and 226 contigs in blood and brain, respectively, could

be aligned to a gene (actual or predicted). Of these

genes, 12 from blood and 59 from brain were not found

in the great tit genome, most of them being predicted

genes from blue tit (Cyanistes caeruleus) and ground tit

(Pseudopodoces humilis).

If extreme heterogeneity in local GC composition is

causing sequencing issues and hence unequal coverage,

Table 2 RNA read counts per tissue type and per major BLAST alignment result group. The unpaired reads indicate the reads that

were orphaned in the quality trimming of the RNA reads (all the tissues combined)

Group Blood Bone marrow Brain Breast Intestine Kidney Liver Lung Testis Unpaired

Parus major 4295 19,657 33,516 300,763 55,999 72,625 41,800 20,834 13,693 935,271

Aves 10,796,873 6,087,566 9,646,728 8,395,675 48,812,307 7,570,425 5,637,931 3,758,819 5,039,638 9,193,238

Other animals 2,109,001 435,891 581,626 572,849 303,246 429,018 245,629 177,476 128,091 428,660

Plants 1,949,545 75,408,648 399,632 409,233 325,667 559,343 344,760 244,482 182,009 1,982,031

Other 506,723 552,931 449,697 244,110 295,119 413,895 332,886 262,519 212,792 285,692

Sum 14,493,076 82,422,401 11,016,164 9,732,532 49,708,365 8,918,388 6,534,019 4,412,787 5,548,801 12,779,187

Fig. 2 Closer examination of the “other” –group from Table 2 per tissue type
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the ability to reconstruct genes from these regions may

be affected. Bisulfite sequenced genome reads usually

show a lower mapping success in comparison to stand-

ard sequenced genomes, since software cannot fully

compensate for the C to T conversion of unmethylated

cytosines, however this effect may be dependent on GC

-content and methylation state. Indeed, if we map the

reads to the RefSeq transcripts, i.e. currently annotated

known great tit genes, the coverage depth shows only a

moderate correlation (r = 0.39, p < < 0.05, Pearson’s cor-

relation coefficient) between classic whole genome reads

and bisulfite-treated genome reads (Fig. 3a). The correl-

ation becomes somewhat stronger when we correct for

GC -content (r = 0.55, Pearson partial correlation). For

our newly generated gene datasets, we do see a stronger

correlation (Fig. 3b, r = 0.44, p < < 0.05), in particular

when we correct for GC -content (r = 0.79, Pearson

partial correlation). This suggests differences in the

GC -content and DNA methylation level between our

newly identified gene set and the currently annotated

great tit genes.

The mitochondrial assembly

From the unmapped DNA reads we could assemble the

complete mitochondrial genome for the reference gen-

ome bird. The complete mitochondrial genome of P.

major is 16,777 bp long (GenBank accession number

MH638304) and contains 37 genes (Additional file 1:

Table S11 and Additional file 2: Figure S1). There are 18

NUMT positions in the Parus major genome ranging

from 53 to 842 bp in size, of which five reside inside a

gene (Additional file 1: Table S12). In the phylogenetic

analysis, the newly constructed mitochondrial assembly

grouped with the P. major samples, and the Chinese

P. major reference mitochondrial genome grouped with

the P. minor samples (Additional file 3: Figure S2).

Discussion
Our analyses revealed that meaningful biological infor-

mation can be obtained from analyzing unmapped reads.

We discovered sequences that were either absent or

misassembled in the reference genome, and detected

sequences that indicated infection or sample contamin-

ation. Furthermore, investigating unmapped reads helped

us to discover species relationships, especially pathogenic,

for the great tit.

Contamination

In our RNA sequencing dataset a large amount of plant

sequences was detected in the unmapped reads, mostly

in the bone marrow sample. In the bone marrow over

90% of the unmapped reads were from Arabidopsis, sug-

gesting that there has been a contamination during the

library preparation or sequencing. Another contamin-

ation signal was found from the bisulfite data in both

tissues with a high number of E. coli sequences.

Contamination can cause problems in next-generation

sequencing projects, especially if the contaminant spe-

cies is related to the study species. Tae et al. [9] found

specific contaminants that are linked to certain sequen-

cing centers, and also found reads that were falsely clas-

sified as contamination because of the high similarity of

human sequences to sequences in non-human genome

assemblies such as mouse. Contaminant-derived reads

that are mapped to the genome can give false informa-

tion, or if used in a genome assembly, can cause misas-

sembly of sequence contigs leading to erroneous

conclusions and incorrect annotation of genes that are

absent in the study species. The Caldibacillus incidence

in our RNA data, where the actual hit was PhiX, shows

that published contaminated sequences deposited in

sequence archives can have an impact on other studies

and affect the interpretation of the results if the PhiX

reads are not filtered well enough [32].

Fig. 3 Scatterplot of per base coverage of unconverted whole genome sequence data versus bisulfite converted whole genome data onto the

Refseq transcripts (“known genes” - a) and the newly identified genes in this study (b)
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Pathogens

Sequences representing possible pathogenic inverte-

brates, viruses or prokaryotes, were identified in all of

the tissue types in the RNA sequencing dataset. Out

of the 2084 Trinity contigs that were identified as

“others” and possibly pathogenic, 1491 were derived

from Plasmodium relictum, one of the causes of avian

malaria, which is known to infect a large number of

bird species and targeting especially great tits [33].

Plasmodium was very abundant in our samples, sug-

gesting that the reference bird was a carrier for this

pathogen. Although the reference bird was captive

bred, it resided in an open-aviary and was thus ex-

posed to possible infection by mosquitos, fleas and

mites. Moreover, avian malaria infections might ori-

ginate from early infections during the nestling phase,

when individuals are more susceptible to the vectors

[34]. Captive bred individuals, which are moved as

egg to wild foster pairs and then taken back into cap-

tivity as 10 days old chicks, experienced a 10-day

period in a natural nest in a wild population, and

therefore, these infections could likely originate from

that phase [35]. The observed Trypanosoma reads

were mostly found in blood and bone marrow sam-

ples, the typical tissues this parasite is found in birds

[36]. Birds in the aviary facilities experienced a severe

Trypanosoma outbreak at the time the reference bird’s

mother was housed there, indicating that the vectors

distributing these parasites are present when keeping

birds in captivity. There were also pathogens not pre-

viously linked to birds, which might suggest these

pathogens infect a larger group of species or have a

related species with unknown pathogenicity that infect

birds but that has not been sequenced before. If for

multiple tissues a sufficiently high number of patho-

genic reads is available, it is possible to measure the

expression of the pathogen genes and link these to

specific host tissues. Furthermore, knowing the infec-

tion status of studied individuals is important. Espe-

cially in a study where different groups of individuals

are compared, it is important to know if some of the

individuals are infected as this can affect the results,

for example of a differential expression study. For an

example an undetected malaria infection can have a

huge impact on behavioural studies in great tits as it

has been shown that differences in malaria load can

affect the personality of the birds [37]. Next generation

sequencing methods have not been fully utilized in the

host-parasite studies of great tits, which might prove to

be a successful avenue to explore in addition to visual

inspections and PCR-related methods.

Another possibility for finding these non-vertebrate

sequences in unmapped RNA sequencing reads is the

actual integration of these sequences into the great tit

genome. Horizontal gene transfer can maintain pre-

existing functions or can provide new functionality

for the recipients, which can lead, for example, to

adaptation [38]. Horizontal gene transfer from pro-

karyotes to eukaryotes has been reported to occur in

many animal species [38], but studying them requires

careful planning due to the complexity of the ge-

nomes [39, 40]. Illustrative, especially in human gen-

ome studies, are several misattributions of horizontal

gene transfer events [40, 41]. Integration of foreign

DNA released by dead cells into healthy host cells is

also possible [42, 43]. Nothing is known about hori-

zontal gene transfer in the great tit, and in our

BLAST results we did not find any contig that was

partially mapped to bird and partially mapped to a

non-vertebrate species. Horizontal gene transfer re-

mains an interesting avenue to follow in more detail

in the future.

Flagging problem areas in the genome assembly

The BLAST sequence alignments showed that many

of the assembled transcripts represented sequences

from other bird species and that many of them were

derived from genes that were already annotated in the

great tit genome. Close inspection of these genes and

their sequences revealed gaps in the genome se-

quences for some of them and also showed that the

GC-content of these sequences was higher than the

average GC-content of the genome. There were also

contigs that were aligned to P. major sequences in

the BLAST analysis. One explanation is, that we were

unable to map these RNA sequences to the reference

genome due to the mapping tool used, in this case

Bowtie2, which is not a splice-aware mapper and there-

fore may discard reads that span over two exons. To

address this concern, we also tested Hisat2 (which takes

splicing into account), but this program discarded even

more great tit related reads suggesting the problem

might lie somewhere else. The majority of the un-

mapped great tit-specific reads had their origin in the

mitochondria. The presence of mitochondrial se-

quences in the unmapped reads can be explained by

the fact that the reference mitochondrial sequence in

GenBank does not come from the reference bird, but

from a P. major sample collected from China [44].

When comparing our mitochondrial assembly to this

Chinese one and also adding ND2 gene GenBank se-

quences from both P. major and P. minor, we could

show that the Chinese mitochondrial genome actually

comes from a P. minor individual. The rest of the

great tit genes that had unmapped reads were all

gene predictions and the contigs linking to these

genes had high repeat and GC-content, hinting that

these genes are problematic in general.
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GC -content features of missing genes identified and

TRY1 gene expression

P. major annotation release 1.01 consists of 18,744 an-

notated genes and pseudogenes. In our study we could

find genes that were missing from the P. major annota-

tion. The GC-content for these contigs was relatively

high which could partly explain why these genes are

hard to assemble. To investigate this further, we used

blood whole genome sequence data with and without bi-

sulfite pre-treatment (which reduces GC -content) and

mapped it onto the P. major annotated genes and our

newly identified gene set. We identified mapping differ-

ences between bisulfite-treated and untreated DNA

mapped to the known gene set in comparison in our

newly identified gene set, in particular when we take GC

-content into account. This is not surprising, as our

newly identified genes are GC-rich and may suffer more

from sequencing issues in high GC -content reads. An-

other possible explanation is that these regions are

highly methylated or contain fewer CpG regions. Indeed,

gene body methylation is generally relatively high, in

particular for lowly expressed genes [45]. We also ob-

serve a clear peak at around 100× for both sequencing

methods for our newly identified gene set (not shown),

suggesting that these genes might occur at several gen-

omic locations (e.g. paralogs or pseudogenes). We hence

conclude that our newly identified genes are affected by

GC compositional sequencing effects, but that structural

variation and context may also play a role why those

genes have not been identified previously.

A prominent newly identified great tit gene was diges-

tion related gene Trypsin I-P1 (TRY1 / PRSS1), which

was highly expressed in the reference bird and thus cre-

ating the tall peak in the intestinal tissue sample (Fig. 1).

This gene has been annotated in other birds but not in

P.major. Hence, the used annotation can severely con-

strain gene expression studies if the unmapped reads are

discarded without proper inspection. Long-read sequen-

cing is often used to improve the reference genome as

this can overcome the repeat area and GC-issues [46].

Conclusions

We have shown that it is possible to find many se-

quences of interest from reads that are not aligned to a

reference assembly. These unmapped reads often pro-

vide biologically significant information such as identity

and quantity of pathogenic organisms, possible contami-

nations, and genes that are either partially or completely

missing from the reference assembly. We also proposed

strategies to aid the capture and interpretation of this

information in great tit using unmapped reads. The

composition of unmapped reads can be used in main re-

search pipelines as a set of covariates or phenotype-like

information. Especially in RNA studies, looking also at

the gene expression of the missing genes can be benefi-

cial. On its own, unmapped read research will also ex-

pand our knowledge of the extent of pathogens and

symbionts. After all, a complex eukaryotic species, such

as the great tit, is in fact a metagenome over time (hori-

zontal gene transfer) and space (pathogens and micro-

biomes). We suggest that when analysing NGS sequence

data, especially from non-model organisms, to include

reference databases from related species to avoid anno-

tation biases and take particular care to distinguish con-

taminants from true, biologically-meaningful signals.

Methods
Sampling, extraction and sequencing

The workflow for this study has been outlined in Fig. 4.

We used DNA sequencing data of blood, bilsulfite-

treated DNA sequencing data of blood and brain, and

RNA sequencing data of eight tissues derived from the

individual used to generate the great tit reference gen-

ome (BioSample: SAMN03083587) and submitted previ-

ously to NCBI SRA -database. Sample preparation, DNA

and RNA extraction, and sequencing for these tissues

have been described previously [26]. In short, the great

tit used for this study originated from a captive popula-

tion artificially selected for four generations for avian

personality. The reference great tit was anesthetized

using Isoflurane and medical oxygen and euthanized by

subtracting all blood from the carotid artery under

protocol number CTE-0705 Adendum I, from the

Animal Experiment Committee from the Royal

Netherlands Academy of Sciences (DEC-KNAW). DNA

was extracted from whole blood of the reference bird

and sequenced with Illumina HiSeq 2000 at ~ 95X. The

DNA sequencing data have been deposited in NCBI

(SRX1539210, SRX1519144, SRX1517153, SRX1517152,

and SRX1517034). Blood and brain DNA libraries were

constructed according to the Epitect whole-genome

bisulfite sequencing workflow (Illumina) and the

whole-genome sequencing data were generated using

the Illumina HiSeq 2,500 platform. The methylation data

has been deposited in NCBI with accession numbers

SRR2070790 and SRR2070791 for the brain and the

blood, respectively.

RNA was extracted from eight tissues (bone marrow,

homogenized half of the brain, breast filet, higher intes-

tine, kidney, liver, lung, and testis) from the reference

bird, and was then used to prepare tissue-specific tagged

Illumina sequencing libraries. The tagged libraries were

pooled and sequenced using five lanes on one flowcell of

Illumina HiSeq 2000. This resulted in 100 bp paired-end

unstranded RNA sequencing data. The number of reads

per tissue ranged from 98 to 229 million with a total

number of 1.25 billion paired-end reads. For the current

study we also sequenced RNA isolated from whole blood
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Fig. 4 Schematic overview of the workflow used for the analysis of unmapped reads of DNA and RNA datasets
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of the reference bird where the majority of the RNA

comes from the nucleated red blood cells. Blood RNA

extraction was done with Direct-zol RNA miniPrep Plus

kit (Zymo Research) with a modification in the start of

the protocol. For the sample preparation we used 100 μl

of blood in EDTA buffer mixed with 300 μl Trizol and

shook for 5 min with vortex and by hand, and then pro-

ceeded with the RNA Purification by following the

protocol. The blood library was sequenced using a single

lane on the Illumina HiSeq 2500.This resulted in 125 bp

paired-end unstranded RNA sequencing data. The number

of read pairs was 259 million. All the reads were checked

for quality using FastQC [47], and low-quality sequences

were trimmed with Trim Galore v. 0.4.4 [48], retaining un-

paired reads, resulting in a final number of 1,436,348,370

paired-end reads and 39,230,998 unpaired reads. The RNA

sequencing data per individual tissue have been deposited

in NCBI (GT_BoneMarrow SRS863935, GT_Brain

SRS866013, GT_BreastFilet SRS86603, GT_HigherIntestine

SRS866033, GT_Liver SRS866035, GT_Kidney SRS866036,

GT_Lung SRS866044, GT_Testis SRS866048, GT_Blood

SRR7540238).

Mapping and alignment of the DNA reads

After quality trimming with Trim Galore the reference

bird DNA reads were aligned to the reference genome

with BWA v.0.7.15 [49] using the default settings. The un-

mapped reads were obtained with Samtools [50] and sub-

sequently assembled with AbYSS v. 1.3.7 [51] with k = 20.

Contigs larger than 500 bp were aligned using Blastn

against the BLAST non-redundant nucleotide (nt) data-

base, followed by aligning the resulting sequence hits

(e-value <1e-10) against only P. major nt-database, the

same as for the RNA sequencing data described below.

Assembly and mapping back of the unmapped RNA reads

The RNA reads from the nine different tissues were

mapped against the great tit reference genome (NCBI

Parus major genome version 1.1, GCA_001522545.2)

using Bowtie2 [52]. We mapped paired and unpaired

reads separately, using --local --very-sensitive-local

options. Mapping success was compared with the

splice-aware mapper, Hisat2 [53] which showed lower

mapping percentages than Bowtie2, marking many

great tit sequences as unmapped (Additional file 1:

Table S1). We therefore used the Bowtie2-derived re-

sults in subsequent analyses. The unmapped reads

were obtained with Samtools and transformed to fastq

–reads with Picard [54]. From the unmapped reads, a

de novo assembly was generated using Trinity [55]. In

order to get read counts for every tissue separately,

the unmapped reads were mapped back to the Trinity

assembly using Bowtie2 and read counts were ob-

tained with Samtools.

Alignment of unmapped RNA -contigs to the BLAST

database

The closest matching sequence to each Trinity contig

was identified by alignment to the NCBI nt -database

using Blastn, keeping only the best hit for each contig

provided that the e-value was below 1e-10. Further-

more, we also predicted open-reading frames with

Transdecoder [55] and used DIAMOND [56] to get

the closest peptide match. Based on the taxid in the

blast results, the contigs were divided into five

groups: great tit transcripts, other bird transcripts,

other animal transcripts, plants, and other. The con-

tigs that were identified to be great tit sequences in

the BLAST analysis were mapped back to the great tit

reference genome using GMAP [57] in order to get

the exact genomic positions and mapping qualities.

Using longer sequences such as assembled contigs in-

stead of sequence reads might improve the mapping

success to reference.

Identifying the missing genes from the P. major

annotation

From the BLAST results in total 4784 nt-database se-

quences, classified as “other bird” and “other animal”

species groups (e-value lower than 1e-10), were aligned

to the nt-database using Blastn. This search was re-

stricted only to P. major sequences in order to see if

there was a corresponding gene in the P. major annota-

tion and thus avoiding gene naming differences between

species. The corresponding Trinity contigs of the se-

quences that were not aligned to the P. major

nt-database were treated as missing genes from the P.

major annotation.

Mapping of bisulfite sequenced genome

We extracted the unmapped reads from the bisulfite se-

quences (blood and brain tissues [26, 45] mapped to the

reference genome with Bismark [58]). These unmapped

bisulfite reads were assembled with AbYSS v. 1.3.7 with

k = 20. Contigs longer than 100 bp were aligned against

the whole BLAST nt-database using Blastn, followed by

aligning the resulting sequence hits (e-value <1e-10)

against only the P. major nt-database in a similar way as

with the DNA sequencing and RNA sequencing data de-

scribed above.

During bisulfite sequencing, unmethylated cytosines

are transformed into uracils, and hence the GC -content

of the reads will be lower in comparison to standard

genome sequencing. We hence tested whether differ-

ences in GC-content between the two sequencing

approaches have an effect on transcriptome mapping

success. We used Bowtie 1.2.2 [59] to map bisulfite se-

quence reads and standard genome sequenced reads to

our newly identified gene set from the RNA dataset and,
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as a comparison, to the latest release of the RefSeq an-

notated genome of P. major (release 1.1). We used bisul-

fite genome sequences from blood from the reference

bird (BioSample: SAMN03781031). To obtain coverage

distributions, we counted average per base coverage

across transcripts using Samtools depth.

Constructing the mitochondrial genome of the reference

bird

The mitochondrial reads were extracted from DNA se-

quencing reads by aligning the reads to an already pub-

lished P. major reference mitochondrial genome (GenBank

accession number NC_026293) with BWA. The aligned

reads were then assembled using Geneious 9.1.8 [60]. For

the annotation we used MITOS [61]. The new mitochon-

drial sequence was also aligned against the Parus major

genome by using Blastn, to obtain possible nuclear mito-

chondrial DNA segment (NUMT) positions. NUMTs were

inferred from Blast hits with the expected value E < 10− 4,

and hits with lengths less than 50 nt were ignored. The

newly constructed mitochondrial genome, the already exist-

ing reference mitochondrial genome, and 123 sequences of

NADH dehydrogenase subunit 2 (ND2) gene from both

Parus major and Parus minor were used in a phylogenetic

analysis. This was conducted with Geneious 9.1.8 and pair-

wise distances were estimated using the Tamura-Nei dis-

tance method and Neighbour-Joining was used to generate

a phylogenetic tree.

Additional files

Additional file 1: Table S1. Number of RNA reads before and after

trimming and mapping success of Bowtie2 and Hisat2. Table S2.

Summary statistics from the de novo assembly of unmapped reads from

DNA sequencing using AbYSS. Table S3. Summary statistics from the de

novo assembly of unmapped reads from RNA sequencing using Trinity

and all tissues combined. Table S4. Summary of the significant

alignments of de novo assembled contigs from DNA unmapped reads to

the nt -database. Identity is the percentage of identical matches; query

coverage is the query coverage per subject. Table S5. Summary of the

significant alignments of ORFs from RNA unmapped reads to the nr

-database. Identity is the percentage of identical matches; mismatch is

number of mismatches. Table S6. Summary of the significant alignments

of de novo assembled contigs from RNA unmapped reads to the nt

-database. Identity is the percentage of identical matches; query coverage

is the query coverage per subject; MAPQ is the mapping quality value from

the mapping back to the P. major genome with GMAP. Table S7. Read

count per tissue type of the RNA dataset. Table S8. List of newly discovered

genes in the RNA dataset. Table S9. Summary statistics from the de novo

assembly of unmapped reads from bisulfite sequencing using ABySS.

Table S10. Summary of the significant alignments of de novo assembled

contigs from bisulfite treated unmapped reads to the nt -database. Identity

is the percentage of identical matches; query coverage is the query

coverage per subject. Table S11. Annotation of the newly assembled

P. major mitochondria. Score is the e-values for ncRNA and quality values for

protein coding gene predictions. Table S12. Summary of the significant

alignments of the newly assembled P.major mitochondria to the P.major

genome nt -database. Identity is the percentage of identical matches.

(XLSX 21932 kb)

Additional file 2: Figure S1. Newly constructed and annotated

mitochondria of the reference bird. (PDF 125 kb)

Additional file 3: Figure S2. Neighbour-Joining phylogenetic tree

between the newly constructed mitochondria (blue), the already existing

reference mitochondria (green) and 123 sequences of NADH dehydrogenase

subunit 2 (ND2) gene from both Parus major and Parus minor. (PDF 228 kb)
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