
This is a repository copy of Engineering the flagellar type III secretion system: improving 
capacity for secretion of recombinant protein..

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/141412/

Version: Published Version

Article:

Green, C.A., Kamble, N.S., Court, E.K. et al. (6 more authors) (2019) Engineering the 
flagellar type III secretion system: improving capacity for secretion of recombinant protein. 
Microbial Cell Factories, 18. 10. ISSN 1475-2859 

https://doi.org/10.1186/s12934-019-1058-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Green et al. Microb Cell Fact           (2019) 18:10  

https://doi.org/10.1186/s12934-019-1058-4

RESEARCH

Engineering the flagellar type III secretion 
system: improving capacity for secretion 
of recombinant protein
Charlotte A. Green1,5, Nitin S. Kamble1, Elizabeth K. Court1, Owain J. Bryant3, Matthew G. Hicks1, 

Christopher Lennon4, Gillian M. Fraser3, Phillip C. Wright2 and Graham P. Stafford1* 

Abstract 

Background: Many valuable biopharmaceutical and biotechnological proteins have been produced in Escherichia 

coli, however these proteins are almost exclusively localised in the cytoplasm or periplasm. This presents challenges 

for purification, i.e. the removal of contaminating cellular constituents. One solution is secretion directly into the sur-

rounding media, which we achieved via the ‘hijack’ of the flagellar type III secretion system (FT3SS). Ordinarily flagellar 

subunits are exported through the centre of the growing flagellum, before assembly at the tip. However, we exploit 

the fact that in the absence of certain flagellar components (e.g. cap proteins), monomeric flagellar proteins are 

secreted into the supernatant.

Results: We report the creation and iterative improvement of an E. coli strain, by means of a modified FT3SS and a 

modular plasmid system, for secretion of exemplar proteins. We show that removal of the flagellin and HAP proteins 

(FliC and FlgKL) resulted in an optimal prototype. We next developed a high-throughput enzymatic secretion assay 

based on cutinase. This indicated that removal of the flagellar motor proteins, motAB (to reduce metabolic burden) 

and protein degradation machinery, clpX (to boost FT3SS levels intracellularly), result in high capacity secretion. We 

also show that a secretion construct comprising the 5′UTR and first 47 amino acidsof FliC from E. coli (but no 3′UTR) 

achieved the highest levels of secretion. Upon combination, we show a 24-fold improvement in secretion of a 

heterologous (cutinase) enzyme over the original strain. This improved strain could export a range of pharmaceuti-

cally relevant heterologous proteins [hGH, TrxA, ScFv  (CH2)], achieving secreted yields of up to 0.29 mg L−1, in low cell 

density culture.

Conclusions: We have engineered an E. coli which secretes a range of recombinant proteins, through the FT3SS, 

to the extracellular media. With further developments, including cell culture process strategies, we envision further 

improvement to the secreted titre of recombinant protein, with the potential application for protein production for 

biotechnological purposes.
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Background

A persistent goal of biotechnology is to produce recom-

binant protein at reduced cost, while maintaining 

high product quality and yield. For many protein bio-

logics, production in prokaryotes (chiefly in E. coli) is 

favoured. Major advantages include fast growth to high 

cell densities on cheap carbon sources, and simple scale 

up [1, 2]. However, as in many industrial biotechnol-

ogy (IB) processes, downstream processing accounts 

for a high proportion of costs [3–5]. If protein prod-

uct was secreted by the expression organism into the 

growth media, these costs could be reduced, as purifi-

cation could be simplified, i.e. eliminating the need to 

lyse cells, or to remove cellular contaminants, which 

can compromise product purity, and may elicit an 

immune response in humans (e.g. lipopolysaccharide 

in E. coli) [6–8]. In addition, product yield and quality 

may be increased, as secretion would bypass cytoplas-

mic and periplasmic proteases. Extracellular secretion 

may also improve protein folding and solubility, while 

also reducing the formation of inclusion bodies, thus 

increasing product yield and quality [9–12].

Secretion of heterologous protein in E. coli has been 

utilised, however the majority of work concerns secre-

tion into the periplasm via Sec or Tat-dependent sys-

tems [10]. While this strategy can yield titres in the 

mg L−1 range (e.g. 30 mg L−1 human growth hormone 

[13], 60  mg  L−1 GFP [14]), this is only achieved fol-

lowing purification from the periplasm. Alternatively 

extracellular localisation of protein can be achieved In 

E. coli without directed secretion to the extracellular 

space via strategies that make use of ‘leaky strains’ [15], 

where heterologous proteins are fused to a secretion 

tag (for example ompA, ompC, pelB [16, 17]), to enable 

directed secretion to the periplasm, followed by leak-

ing into the supernatant. While titres may be favour-

able, the presence of additional periplasmic proteins 

adds complexity to purification, e.g. while 550  mg  L−1 

cell culture of lipase B tagged with the pelB signal 

sequence was found in the extracellular fraction of E. 

coli, high concentrations of periplasmic proteins were 

also detected, and only one-fifth of the product was 

able to be recovered [18]. To date, true secretion (i.e. 

to the extracellular space via a defined secretion sys-

tem, rather than through leaking or lysis) of heterolo-

gous protein by prokaryotes has been achieved at up to 

approximately 50  mg  L−1, in organisms such as Bacil-

lus and Pseudomonas [19–21], as opposed to the g L−1 

titres achieved in eukaryotes such as Pichia pastoris 

[22]. In E. coli, attempts to secrete proteins directly 

into the media have been limited, with evidence of 

low levels (i.e. 1  µg to 1  mg  L−1 of heterologous pro-

tein) via type I secretion system (T1SS) using either 

the Haemolysin or lipase transporting ABC transporter 

systems [23–28]. Another option for direct secretion 

into the media, is the bacterial flagellar type III secre-

tion system, which has been utilised in E. coli [29–32], 

Bacillus [20] and Salmonella enterica sv. Typhimurium 

[33–36]. In addition, secretion of up to 30 mg L−1 of a 

range of polymers [37], such as tropo-elastin and spider 

silk, have also been reported using the injectisome type 

III secretion system of S. enterica [37–39].

In this report we focus on the E. coli FT3SS, due to a 

preference in IB for both E. coli, and non-pathogenicity 

associated secretion systems. E. coli have 4–10 flagel-

lum of around 20  μm in length, each comprising of up 

to 30,000 flagellin (FliC) monomers [40–43]. The FT3SS, 

despite having evolved to build a flagellum and provide 

motility to the cell, is effectively an efficient protein 

secretion machineable to assemble a multi-component 

structure composed of several thousand subunits on its 

surface. Proteins initially assemble at the inner mem-

brane, resulting in a pore of about 2.0  nm diameter, 

through which the majority of the remaining flagellar 

proteins are exported, unfolded, to the distal end of the 

existing flagellar structure [44]. Therefore in the context 

of biotechnology, the FT3SS may provide a one step, high 

capacity route for protein export.

The basic flagellar structure is comprised of the basal 

body (motor and secretion apparatus), hook (univer-

sal joint), and filament (propeller), which are assembled 

in an ordered manner, controlled by well-understood 

checkpoints [45]. One key feature is the existence of a 

flagella master regulator  (FlhD4C2-class I) that activates 

class II flagellar genes. These class II genes transcribe the 

basal body and FT3SS apparatus, along with the sigma 

factor FliA, which in turn promotes the transcription of 

the class III genes (for the filament, motor, hook associ-

ated and hook proteins, along with the chaperone and 

chemotaxis proteins) [46, 47]. Furthermore, transcription 

is also coupled to assembly, as levels of FliA are modu-

lated by the anti-sigma factor (FlgM), which is secreted 

upon hook-completion [48–50]. Additionally, given the 

energetic cost of motility, expression of the master reg-

ulator is modulated by many environmental cues that 

alter gene expression of the flhDC operon or activity of 

 FlhD4C2 [51, 52].

Here, we aimed to capitalise on the fact that upon 

mechanical shearing or breakage, flagellar continue to 

secrete unfolded FliC monomers which are transported 

to the distal growing tip, allowing regrowth under the 

FliD cap [53–55]. In addition, in the absence of the FliD 

cap, or other structural proteins (e.g. FlgKL), secretion 

of FliC monomers into the media without polymerisa-

tion occurs [56, 57]. In addition, the N-terminal secretion 

signals of FT3SS subunits are well characterised and have 
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been exploited to direct non-FT3SS subunits for secre-

tion through the FT3SS in E. coli [29–32] and (their close 

relatives) Salmonella [34–36]. We aimed to develop an 

improved, modular FT3SS E. coli strain for high yield-

ing secretion of a range of therapeutic recombinant pro-

teins. Our eventual aim is to surpass the secretion titres 

reported in other E. coli secretion systems, by achieving 

extracellular secreted titres in the high mg L−1 range. We 

hope to accomplish this using controlled secretion to the 

extracellular space, combined with the absence of cellu-

lar contaminants. Here we report progress towards these 

targets via strain development, secretion signal optimisa-

tion, rigorous use of controls, and development of a high-

throughput assay to measure FT3SS secretion.

Results

Establishing a prototype FT3SS secretion strain 

and defining optimal parameters for protein expression 

and secretion

In this study we used E. coli MC1000 as the parent strain, 

partly for biosafety given its leucine auxotrophy, but also 

given the presence of an IS5 insertion sequence upstream 

of flhD. This reduces negative transcriptional regula-

tion on flhDC, by disrupting promoter binding sites for 

the negative regulators LrhA and OmpR (for annotated 

sequence see Additional file 1: Fig. S1) [58–60]. Previous 

studies of FT3SS dependent protein secretion in E. coli 

employed a ΔfliD ‘cap-less’ strain [29–31, 36]. We also 

considered alternative strategies, given the potential for 

this strain to influence and suppress  FlhD4C2 activity via 

post-translational protein–protein interactions of the 

FlhDC complex with FliT (the chaperone of FliD) [61, 

62]. Specifically, we created a ‘HAP-less’ (ΔflgKL) strain, 

which would not incur feedback on  FlhD4C2
−, but would 

theoretically decouple secretion from assembly, i.e. as 

opposed to the ΔfliD strain where more free FliT would 

potentially repress  FlhD4C2 activity, and thus flagellar 

gene expression [61]. In addition, it has also been estab-

lished that in ΔflgKL mutants, unpolymerised FliC mono-

mers are secreted into the media, rather than assembling 

into a filament [56]. To lessen competitive secretion, 

strains also lacked fliC. We found that the HAP-less 

and cap-less strains displayed identical growth curve 

parameters (Additional file  1: Fig. S2). We then com-

pared their ability to export a 39 kDa shortened version 

of FliC that lacked the central D3 domain (residues 191–

283) so that it could be easily distinguished from native 

FliC. This secretion substrate was termed FliC-ΔD3 and 

was inserted into plasmid pTrc99a-FF to create pTrc-

FliC-ΔD3, and expressed by addition of IPTG. This sub-

strate was efficiently secreted (Fig. 1) and also produced 

a fully motile strain when provided in trans in a ΔfliC 

strain (Additional file 1: Fig. S3).

As shown in Fig.  1a, b when FliC-ΔD3 was expressed 

with induction using 0.05  mM IPTG, we observed 

approximately twofold more FliC-ΔD3 (on average 

7.4  mg  L−1) in the secreted fraction of the HAP-less 

strain in comparison to the cap-less. Notably, we also 

observed increased amounts of FliC intracellularly in 

the HAP-less strain (Fig. 1a, c) but found overall that the 

HAP-less strain was 1.3 times more efficient at secret-

ing protein (secreted FliC-ΔD3 as a function of total 

FliC-ΔD3, i.e. 7.4  mg  L−1 divided by 98  mg  L−1 for the 

HAP-less strain). Based on the absence of additional pro-

teins in the cell supernatant (Fig.  1a—Coomassie), we 

infer that the improved titre of secreted FliC-ΔD3 was 

due to FT3SS secretion, as cell lysis was not prevalent in 

either of these strains. We therefore used the HAP-less, 

ΔfliC ΔflgKL strain in subsequent experiments as our 

prototype FT3SS secretion strain.

Before further experimentation, we defined optimal 

parameters for expression and production of proteins via 

the FT3SS-assessing that the optimal  OD600 for harvest 

of cells for maximal secretion of FliC-ΔD3, is between 

an  OD600 of 1 and 2, i.e. the mid-late exponential phase 

(Fig. 2a and inset). We then examined the effects of vary-

ing the inducer (IPTG) concentration on expression and 

secretion of FliC-ΔD3. We harvested cells at an  OD600 

of 1.0 and show that 0.05 mM IPTG produced the high-

est concentration of both intracellular and secreted 

FliC-ΔD3 (Fig.  2b), therefore this procedure forms the 

basis of experiments.

Preliminary improvement of the FT3SS prototype using 

native substrates

To establish whether secretion via the FT3SS could be 

improved from this basal level, we considered a series of 

mutations that might boost overall flagellar gene expres-

sion. We then compared their effect on secretion to a 

number of negative controls, to establish the absolute 

specificity of this system. As seen in Fig. 3a, b, use of an 

flhDC null mutant, with no FT3SS present, resulted in 

complete lack of FliC-ΔD3 secretion even when overpro-

duced in the cytoplasm (by addition of 1 mM IPTG). In 

parallel we also tested secretion of FliC-ΔD3 in a (ΔfliC 

ΔflgKL) ∆flgDE strain, in which secretion of ‘late’ fila-

ment substrates (i.e. FliC) is abrogated due to the absence 

of substrate specificity switching [57, 63], and observed a 

complete lack of secretion in this strain. Further to these 

controls, we also tested for the presence of the strictly 

cytoplasmic, GroEL chaperonin protein. Aside from a 

negligible amount in the ∆flhDC strain, the cytoplasmic 

contaminant GroEL was absent in secreted fractions 

(Fig. 3c). This demonstrates that cell lysis was not preva-

lent, and that the two secretion strains are no more ‘leaky’ 

that the negative control strains. Together, this confirmed 
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that the presence of FliC-ΔD3 monomers in the secreted 

fraction was due to targeted FT3SS secretion alone.

We then examined the effect of mutations that might 

upregulate flagellar gene expression. Our initial target 

was the protein quality control protein, ClpX, a com-

ponent of the ClpXP protease complex which acts on 

 FlhD4C2 [64]. In previous studies the removal of clpX in 

Salmonella and enterohaemorrhagic E. coli resulted in an 

accumulation of  FlhD4C2, an increase in the amount of 

FliC subunits secreted, and increased cell motility [65–

67]. Here we show that the removal of clpX from wildtype 

E. coli MC1000 cells resulted in an increase in filament 

proteins and increased motility (Additional file  1: Fig. 

S4a–d). The removal of clpX from the prototype strain 

resulted in an increase in both intracellular and secreted 

FliC-ΔD3 (Fig.  3a, b). The secretion efficiency (secreted 

protein as a proportion of the total (intracellular and 

secreted) protein) did not alter, however we did meas-

ure a 1.6-fold average increase in the titre of secreted 

protein, and a maximum estimated secretion of 34  mg 

FliC-ΔD3  L−1 culture medium achieved from ΔfliC 

ΔflgKL ∆clpX (calculated by comparison to a FliC-ΔD3 

standard). We also noted that ΔfliC ΔflgKL ΔclpX cells 

were on average 1.2 times longer (p < 0.001. t-test) than 

ΔfliC ΔflgKL cells, with a higher abundance of very long 

cells (> 0.8  µm) (Additional file  1: Fig. S4e–g). As we 

detected significantly more (p < 0.05) FlhA in ΔclpX cells 

(Fig.  5c), this may suggest that elongated cells harbour 

a larger number of FT3SS basal bodies, thus allowing 

increased secretion, though we have no experimental evi-

dence for this at this stage. Of note is that we also pro-

duced a ΔfliC ΔflgKL ΔdksA strain, which in contrast to 

what was anticipated based on published literature [68, 

69], did not result in any noticeable increases in FT3SS 

secretion. As a result, we moved on with the ΔfliC ΔflgKL 

∆clpX strain as a Mark II FT3SS strain to test additional 

strain modifications.

Development of a prototype secretion plasmid 

and high‑throughput assay to measure secretion

In order to move towards our goal of production and 

secretion of heterologous proteins via the FT3SS, we 

designed and tested a synthetic prototype modular vec-

tor. This contained elements aimed at optimal secretion 

of proteins via the FT3SS, alongside their subsequent 

detection and ultimately purification (FLAG and Strepta-

vidin, TEV protease. See Additional file 1: Fig. S5). These 

were produced as plasmids in the IP-Free pJEXpress 

backbone (DNA2.0), with the first 47 amino acids of FliC 

(the secretion signal [70]), the fliC 5′UTR (which also 

harbours the native fliC promoter, thus allowing both 

T5 based-IPTG inducible, and flagellar mediated (class 

III, via FliA [71, 72]) gene expression), alongside the fliC 
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Fig. 1 Comparison of secretion capacity in the HAP-less and cap-less 

strains. E. coli MC1000 ΔfliC ΔflgKL (ΔCKL) and ΔfliCD containing the 

plasmid pTrc-FliC-ΔD3 were grown in LB supplemented with 0.05 mM 

IPTG, and harvested at  OD600 1.5. Samples which represented 

either 25 µL or 400 µL culture media were loaded for SDS-PAGE, 

for intracellular and secreted protein respectively. a Representative 

images showing the secreted fractions following Coomassie staining, 

and the intracellular fractions following immunoblotting using an 

anti-flagellin (H48) antibody and a HRP secondary. A FliC-ΔD3 protein 

standard (S) was also included, to allow quantification of protein 

concentration by densitometry (b, c). Quantifications for biological 

triplicates, ± SE and individual data points shown, *p < 0.05
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3′UTR, both of which have been implicated in influenc-

ing secretion through the FT3SS [30, 31]. Finally, restric-

tion enzyme sites were incorporated throughout to allow 

modular modification of the secretion construct; notably 

EcoRI and PstI sites allow for the insertion of any cargo 

gene for secretion.

We initially chose a heterologous protein target for 

secretion which was non-bacterial, commercially relevant 

and assayable. This enabled ease of screening for secre-

tion via an activity assay, thus facilitating higher through-

put screening for improved FT3SS strains. Our choice 

was the well-characterised 20.8  kDa cutinase from the 

unicellular fungus Fusarium solani, which had previously 

been expressed in E. coli intracellularly [73, 74], and for 

which a well-established activity assay based on its ester-

ase activity is known [75]. Advantageously, cutinase is 

also relevant in IB processes, e.g. degradation of plastics 

[76, 77]. An E. coli codon optimised cutinase was synthe-

sised  (GeneArt®) and inserted into the pJex-fliC47-empty 

plasmid resulting in pJex-fliC47-cutinase, which is pre-

dicted to yield a 30.6 kDa peptide.

Following expression of pJex-fliC47-cutinase in the 

∆fliC ∆flgKL strain, both intracellular and secreted 

cutinase were detected, via the secretion construct 

incorporated FLAG tag (Fig.  4a). We next developed a 

simple fluorimetric secretion assay, based on cleavage 

of 4-methylumbelliferyl butyrate (MUB) by cutinase to 

yield a fluorescent 4-methylumbelliferone (4-MU) [78]. 

Cell-free supernatant was mixed with MUB in the pres-

ence of an appropriate buffer, and release of 4-MU was 

measured. This could be qualitatively observed on a UV-

transilluminator to allow quick visual screening (Fig. 4b). 

We also established conditions for a quantitative plate-

reader based version of the assay (excitation 302  nm, 

emission 446  nm). To test the specificity of the assay, 

pJex-fliC47-cutinase was transformed into negative con-

trol strains (∆flhDC and ΔfliC ΔflgKL ∆flgDE) as in Fig. 3. 

After subtraction of background MUB cleavage no activ-

ity was detected in strains containing pJex-fliC47-empty 

or LB only controls (Fig.  4c). Absence of secretion was 

verified by immunoblotting of the same samples (Fig. 4d). 

Reassuringly, we observed increased concentrations of 

secreted cutinase (twofold higher AU) in the Mark II 

ΔfliC ΔflgKL ΔclpX strain compared to the ΔfliC ΔflgKL 

prototype strain. We used this assay to detect a range of 

concentrations of secreted cutinase (0.04–0.20  mg  L−1), 

and note that the assay could detect cutinase concentra-

tions is excess of this. With the assay established, it was 

possible to screen a larger number of strains and secre-

tion signal variants, with the aim of generating a higher 

capacity, Mark III secretion strain.

Use of the high‑throughput cutinase screen to establish 

an optimised secretion strain

The MUB-cutinase assay was next utilised to assess the 

secretion capacity of a number of alternative FT3SS 

secretion strains. These were engineered to upregulate 

flagellar expression, or reduce metabolic burden via the 

deletion of redundant genes. These included the clpX 

knockout strain outlined previously, and three additional 

targets: ∆flgMN (FlgM a negative regulator of class III fla-

gellar gene regulation, and FlgN chaperone for FlgK and 

regulator of FlgM [50, 79, 80]), ∆fliDST (FliT—an anti-

FlhD4C2 factor and FliST—chaperones of FliCD [61, 81]) 

and ∆motAB (MotAB responsible for energising flagellar 

rotation, but not required for secretion [82, 83]). Follow-

ing their construction and establishing that growth of all 

strains was comparable to ∆fliC ∆flgKL (Additional file 1: 

Fig. S6), the supernatant was analysed for the presence 

of cutinase via the MUB fluorescence assay (Fig. 5a). Of 

all the combinations tested, only ∆fliC ∆flgKL ∆motAB 

∆fliDST and ∆fliC ∆flgKL ∆clpX ∆motAB resulted in 

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0.1

1

10

0

20

40

60

80

100

a

b

hrs: 3  4  5   6   7   24

H
4
8
 

- -55

-43- 

0   0.05 0.1 0.5    1               0  0.05 0.1 0.5   1 

H48 

secreted                      intracellular 

secreted 

m
g
 L

-1
 

O
D

6
0

0
 

Time [hours]

Fig. 2 Optimisation of cell culture induction and harvesting 

procedure for the FliC-ΔD3 protein secretion assay. The ‘prototype’ E. 

coli MC1000 ΔfliC ΔflgKL (ΔCKL) containing the plasmid pTrc-FliC-ΔD3 

was grown in 100 mL flask cultures in LB and either a supplemented 

with 0.05 mM IPTG and harvested every hour or b supplemented 

with 0, 0.05, 0.1, 0.5 or 1 mM IPTG and harvested at  OD600 1.0. 

FliC-ΔD3 was detected by immunoblot as described in Fig. 1a. 

Samples which represented either 25 µL or 300 µL culture media 

were loaded for SDS-PAGE for intracellular and secreted protein 

respectively. Densitometry analysis allowed quantification of secreted 

protein, throughout the growth curve. This was repeated to ensure 

that this corroborated with the general trend
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a significant improvement to secretion, in comparison 

to the original ∆fliC ∆flgKL strain: 1.64- and 1.67-fold 

respectively, (p < 0.05 and < 0.01). To ensure that poor 

secretion was not a factor of poor cutinase expression, 

the presence of intracellular cutinase in all strains was 

confirmed with immunoblotting (Fig. 5a—intracellular).

Having identified high capacity secretion strains that 

could secrete active fungal cutinase, we now wished to 

test a human recombinant protein: an E. coli codon opti-

mised version of the gene encoding human ‘CH2’  (CH2) 

ScFv antibody fragment (23  kDa, donated by J. Pand-

hal, University of Sheffield [84, 85]), which is used as an 

adjuvant in human antibody drugs. This was inserted 

into our modular secretion vector. We compared secre-

tion of  CH2 and the native substrate, FliC-ΔD3, in the 

most promising secretion strains, and observed (similarly 

to cutinase) improved secretion in ΔfliC ΔflgKL ∆clpX 

∆motAB strain: 2.57×  (CH2) and 3.75× (FliC-ΔD3) over 

that observed for the prototype strain (Fig. 5b). For both 

substrates this amounted to a 2.8-fold improvement 

to secretion efficiency. In contrast, the ΔfliC ΔflgKL 

∆motAB ∆fliDST strain did not perform in a similar 

manner to cutinase, when secreting  CH2 and FliC-ΔD3, 

with no improvement to secretion over the prototype. 

We thus concentrated on ΔfliC ΔflgKL ∆clpX ∆motAB, as 

a Mark III strain.

To gain more information on the varying success of 

these two strains, we used an antibody directed against 

the FlhA protein (which is present as part of the FT3SS 

export apparatus) as a proxy indicator of the number of 

flagellar export apparatus in the cell population. Since its 

gene expression is under the control of  FlhD4C2, FlhA is 

also an indicator of total flagellar gene expression. Whole 

cell lysates were examined by immunoblot and quanti-

fied by densitometry analysis (Fig.  5c). Mutant strains 

representing the individual knockout strategies were also 

included as controls. Overall, these data indicate that 

deletion of clpX results in an increase in FlhA levels by 

approximately 1.5-fold in both the ΔfliC ΔflgKL and ΔfliC 

ΔflgKL ΔmotAB backgrounds (p < 0.05). In contrast, dele-

tion of motAB alone seems to reduce FlhA levels (0.75-

fold; p < 0.01). Overall, it is evident that the absence of 

clpX in strains upregulates FlhA levels, and by exten-

sion, other class II and III genes, which may explain the 

improvements to secretion we observed.

Improvements to secretion efficiency by secretion signal 

modification

In parallel to the studies aimed at strain engineering for 

increased FT3SS capacity, we also examined the influ-

ence of the secretion signal employed in the plasmid-

based modular secretion vector. The reasoning here 

was that the literature reports that the inclusion of the 

first 47 residues of FliC [70], the 5′ and 3′UTRs [29, 30, 

35], or a truncated FliC 26–47 construct with either 

the Salmonella or E. coli version of residues 26–28 [34, 

35], can direct export of protein through a truncated 

FT3SS. All secretion construct (denoted SC) variants 

were inserted in frame with the cutinase gene, with the 

predicted size in kDa shown (Fig. 6). These studies were 

conducted using the prototype ∆fliC ∆flgKL strain, 

with a ∆flhDC strain and empty vector as negative con-

trols. Expression of the prototype secretion construct 

(labelled as SC0 here) in the Mark II ∆fliC ∆flgKL ∆clpX 

strain served as an additional positive comparator. The 

data show that while all constructs produced cuti-

nase (Fig.  7a), some constructs neither expressed nor 

secreted well (SC3, 5, 7), while others had low intracel-

lular but significantly higher secreted levels of cutinase 

(SC1, p < 0.005), or, significantly high intracellular cuti-

nase (p < 0.001) with none secreted (SC8) (see Fig. 7b). 

From these data it is possible to infer that the 3′UTR—

while putatively influencing intracellular stability of 
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Fig. 3 Protein secretion through the truncated FT3SS can be both 

controlled and improved. E. coli MC1000 ΔfliC ΔflgKL (ΔCKL or 

‘prototype’), ΔflhDC, ΔfliC ΔflgKL ΔflgDE (ΔCKL-DE) or ΔfliC ΔflgKL 

ΔclpX (ΔCKL-X or ‘Mark II strain’) containing pTrc-FliC-ΔD3 was grown 

with 0.05 mM IPTG (or 1 mM to allow overexpression in ΔflhDC) and 

harvested at  OD600 1.0. Secreted and intracellular cell fractions were 

loaded for SDS-PAGE in the quantities described in Fig. 2. A FliC-ΔD3 

protein standard was included to allow quantification. Samples 

underwent a Coomassie staining or immunoblot analysis of cells and 

supernatant using b anti-flagellin (αH48) or c anti(α)-GroEL primary 

antibodies and a HRP-conjugated secondary
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cutinase-seems to actually reduce export (SC3, 5, 7). 

Whereas the intact 5′UTR and FliC 1–47 alone (SC1) 

seem to permit the highest levels of secretion, as this 

exports cutinase at 1.8-fold higher concentrations than 

the prototype (SC0). This led us to examine the pos-

sibility that the FliC 5′UTR alone, has the ability to 

direct secretion-as has been indicated by other work-

ers [30]. However, when we inserted the cutinase gene 

into plasmids containing only the 5 and 3′UTRs (SC10) 

or the 5′UTR alone (SC11), we observed that despite 

good expression in all strains (Additional file 1: Fig. S7), 

cutinase secretion was at least fourfold lower (Fig. 7c). 

With this evidence, the plasmid harbouring SC1 was 

taken forward (for the construction of a Mark IV secre-

tion strain) as the best candidate for increased secre-

tion through the FT3SS.

Confirmation that the ‘late’ FliC signal outperforms 

an ‘early’ hook‑cap signal

As a final step to investigate the optimal secretion signal, 

we compared secretion of our ‘late’ FliC signal with early 

flagellar substrate signal sequences, namely the hook 

(FlgE) and hook-cap (FlgD) proteins. In order to compare 

these signals, we constructed cutinase harbouring secre-

tion signal sequence variants using the first 100 amino 

acids of FlgD or FlgE (Additional file  1: Fig. S8a) for 

testing in both an early-locked, hook-less [ΔfliC ΔflgKL 

∆flgDE (∆clpX)], and a substrate switched [ΔfliC ΔflgKL 

(ΔclpX)] background. The FlgE signal did not permit 

secretion in either strain, and the FlgD signal was four- to 

fivefold less effective at export than the FliC signal (Addi-

tional file  1: Fig. S8b). This indicated that despite the 

streamlined nature of the hook-less strain, it is in fact less 

efficient for secretion than the HAP-less strain. We did 

observe low-levels of cutinase secretion with SC13 (FlgD 

signal) in the ΔfliC ΔflgKL ΔclpX strain, presumably due 

to higher expression of secretion apparatus, but still at a 

much lower level (fourfold) than with the intact FliC sig-

nal (SC1).

Examination of combined strain and secretion signal 

improvements

Finally combination of the improvements to the chassis 

and modular secretion vector were investigated in com-

parison to the prototype versions. Both strains contained 

Fig. 4 Development of a high throughput fluorescence assay 

to measure protein secretion through the truncated FT3SS. The 

‘prototype’ E. coli MC1000 ΔfliC ΔflgKL (ΔCKL) containing either 

pJex-fliC47-cutinase or pJex-fliC47-empty were grown as described 

in Fig. 3 and prepared for a immunoblot with the anti-FLAG-HRP 

(αFLAG) antibody (where samples representing either 15 µL or 300 µL 

culture media for intracellular and secreted protein respectively were 

loaded onto the SDS-PAGE) (b) or florescence assay: 40 µL supernatant 

was added to 160 µL MUB substrate in a 96 well plate. Following 

incubation for 30 min at 30 °C, samples were visualised under UV light. 

c, d E. coli strains ΔfliC ΔflgKL (ΔCKL or ‘prototype’), ΔfliC ΔflgKL ∆clpX 

(ΔCKL-X or ‘Mark II strain’), ∆flhDC and ΔfliC ΔflgKL ∆flgDE (ΔCKL-DE) 

harbouring the cutinase expressing or empty vector plasmid were 

grown and c prepared for MUB secretion assay as described above; 

however following incubation, fluorescence was measured in a 

plate reader (excitation 302 nm, emission 446 nm). Results from one 

biological replicate, with three technical repeats. ± SE and individual 

data points shown. Two-way ANOVA (variables: strain and plasmid) 

and Tukey’s multiple comparison test: ****p < 0.001. d Representative 

immunoblot of secreted and intracellular fractions prepared from the 

same cell cultures

◂
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more intracellular cutinase following expression of SC1 

over the SC0 prototype (Fig. 8a). Additionally there was 

more intracellular cutinase in the Mark III strain than 

the prototype-irrespective of secretion construct. Detec-

tion of the FLAG-tag by immunoblotting allowed visu-

alisation of secreted cutinase by a means other than the 

MUB assay. In agreement with previous results (Fig. 5a, 

b), the Mark III strain secreted a higher concentration of 

substrate in comparison to the ΔfliC ΔflgKL strain when 

expressing the prototype secretion construct (Fig. 8b, d), 

this translated to a 3.83-fold improvement in secretion 

efficiency (Fig.  8a, b). However, the highest concentra-

tions of secreted cutinase were seen when either strain 

expressed SC1, with ΔfliC ΔflgKL ΔclpX ΔmotAB result-

ing in the highest. Given the low abundance of GroEL in 

ΔfliC ΔflgKL ΔclpX ΔmotAB cell supernatant (Fig.  8c), 

we show that the increase in extracellular cutinase in 

this modified strain is not due to cell lysis or membrane 

leakage. In fact the lower level of cytoplasmic leakage in 

ΔfliC ΔflgKL ΔclpX ΔmotAB suggests that the clpX allele 

may in fact destabilise the cell envelope, although this 

would require further investigation. We also note that 

the α-GroEL antibody is very sensitive and the Coomas-

sie stained gel (not shown) did not indicate cell leakage 

in the ΔfliC ΔflgKL strain either. Using the same sam-

ples, a MUB protein secretion assay was carried out 

(Fig.  8e). The improvement attributed to the optimised 

strain (ΔfliC ΔflgKL ΔclpX ΔmotAB) was 7.68-fold, and 

for the secretion construct (SC1) 15.70. Upon combina-

tion (Mark IV strain) these improvements were addi-

tive, resulting in a 23.78-fold increase in fluorescence in 

comparison to the prototypes (all p < 0.001). Densitom-

etry analysis of secreted cutinase measured by immu-

noblotting (Fig.  8a, b), showed that the strain was 5.64 

times more efficient at secreting cutinase than the proto-

type. Despite immunoblotting determining the combined 

fold change in the Mark IV strain to be less pronounced 
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Fig. 5 Screening for strains which are high capacity secretors of 

recombinant cutinase, and additional substrates. a The ‘prototype’ E. 

coli MC1000 ΔfliC ΔflgKL (ΔCKL) strain with additional combinations 

of: ΔmotAB (mot) ΔflgMN (MN) ΔfliDST (DST) or ΔclpX (X), which 

contained pJex-fliC47-cutinase were grown with 0.05 mM IPTG 

and harvested at  OD600 1.0. Secreted fractions (Sn) were analysed 

by the MUB florescence assay as described in Fig. 4c. Results from 

three biological replicates were normalised to ΔCKL, ± SE shown, 

one-way ANOVA: p ≤ 0.001. Tukey’s multiple comparison test to 

ΔCKL: *p ≤ 0.05, **p ≤ 0.01. Representative immunoblot of the 

intracellular fraction from 15 µL cell culture shown below. b E. coli 

ΔCKL (‘prototype’), ΔCKL-X-mot (Mark III strain) and ΔCKL-mot-DST 

expressing pJex-fliC47-CH2 (+, upper), pTrc-FliC-ΔD3 (+, lower), 

or empty vector (−) were grown (as above) and prepared for 

immunoblot using either an anti-FLAG-HRP (αFLAG) antibody 

(upper) or an anti-flagellin (αH48) antibody and a HRP conjugated 

secondary (lower). The equivalent of 15 µL cell culture was loaded 

for intracellular fractions, and either 300 or 60 µL for the secreted 

fractions (for  CH2 and FliC-ΔD3 respectively), along with the relevant 

protein standard to allow quantification. c Whole cell fractions 

underwent immunoblot with an anti-FlhA antibody (αFlhA), results 

from densitometry are presented relative to ΔCKL. Five biological 

repeats, ± SE and individual data points shown. One-way ANOVA: 

p < 0.005 and Tukey’s multiple comparison test: *p < 0.05, **p < 0.01

▸
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(Fig.  8d), the overall trend is consistent with the MUB 

fluorescence assay (Fig.  8e). The Mark IV strain had an 

average titre of 0.16  mg  L−1 secreted cutinase (highest 

0.19 mg L−1) (Fig. 9).

Testing secretion of a range of recombinant proteins 

of human origin

Finally we investigated secretion of a number of phar-

maceutically relevant, human proteins in the Mark IV 

FT3SS strain. These included E. coli codon optimised 

versions of, the aforementioned  CH2 ScFv fragment, and 

also human growth hormone (hGH) and thioredoxin 

(TrxA)—both of which were kindly gifted following an 

ongoing collaboration with FUJIFILM Diosynth Biotech-

nologies, UK. Genes were PCR amplified with EcoRI and 

PstI restriction site ends and inserted into the SC1 har-

bouring plasmid. All were secreted into the media, with 

respective average titres of 0.25, 0.15 and 0.21  mg  L−1 

from an  OD600 1.0 culture (Fig.  9, Additional file 1: Fig. 

S9).

Discussion

Despite the clear benefits to protein production, to 

date, true secretion of recombinant protein by bacterial 

expression systems into the media is only possible in the 

mg  L−1 cell culture range, even in high density culture 

[19–21]. For commercial use this requires improvement, 

especially when compared to eukaryotic expression 

organisms—such as Pichia which can reach 15 g L−1 [22]. 

We focus on an E. coli chassis, due to its preferential use 

in IB, for a host of beneficial reasons. In this study, we 

set out to engineer an E. coli with the ability to secrete 

recombinant protein into the extracellular media, in one 

direct step. A clear candidate for this was the one step 

FT3SS, and while recombinant protein has been secreted 

through the FT3SS previously [29–31, 34, 36], we aimed 

to make improvements to improve secretion capacity, 

without leakage, though strain engineering and design of 

a modular secretion and purification system.

We established that a prototype ∆fliC ∆flgKL strain 

outperformed a ∆fliCD strain (as utilised in other stud-

ies [29–31], in both protein production and secretion 

(Fig.  1). One explanation might be that FliD binds FliT, 

and so in the FliCD strain, more FliT is free to interact 

with, and suppress  FlhD4C2 activity, thus reducing FT3SS 

expression and secretion [61]. In contrast removal of 

FlgKL frees up the chaperone FlgN to promote transla-

tion-coupled secretion of FlgM-further raising expression 

of FT3SS components (including the fliC-UTR harbour-

ing modular secretion construct) [80], but whether this 

occurs in E. coli is not clear at present. We next inves-

tigated whether strain engineering could improve secre-

tion, and found that removal of clpX (a component of 

the ClpXP protease complex), which is known to actively 

bind to, and degrade  FlhD4C2 [64], improved the yield of 

Fig. 6 Schematic of secretion signal variants. The prototype secretion construct (SC0), and variations (SC1–SC11. Note that SC1 contributes to the 

‘Mark IV’ improvement) are depicted along with the predicted size of the protein product (kDa). All secretion constructs harbour cutinase, along 

with combinations of the 3′UTR, 5′UTR, the 1–47 residue FliC secretion signal, or the truncated secretion signal (residues 26–47) with the native E. 

coli or S. typhimurium codon usage. Construction of these plasmids is outlined in Additional file 1: Fig. S5 and Table S2
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secreted FliC by 1.6-fold, to 34 mg FliC-ΔD3 L−1 culture 

medium at  OD600 1.0 (Fig. 3). This became our Mark II 

strain. We also show total absence of FliC-ΔD3 in the 

secreted fractions of FT3SS null strains, along with very 

low abundance of cytoplasmic contamination (absence 

of GroEL) (Fig.  3). This observation is consistent for 

recombinant proteins (Fig.  4d). Furthermore we show 

that, in the absence of the FliC secretion signal peptide, 

protein is not exported (Fig. 7b, c and Additional file 1: 

Fig. S7). Combined, this demonstrates that in our system, 

the truncated FT3SS shows excellent selectivity and that 

leakage is not prevalent.

Development of a high-throughput, enzyme based, 

secretion assay (Fig.  4) enabled us to screen a range 

of engineered strains and secretion signal constructs 

(Figs.  5, 7). As enzyme activity requires correct protein 

folding, the assay also highlights that secreted heterolo-

gous cutinase correctly folds in the extracellular media, 

thus allowing functionality. This is very attractive when 

considering the proposed biotechnological applications 

of this truncated FT3SS secretion platform. Through this 

screen we established the ∆flgKL ∆fliC ∆clpX ∆motAB as 

the superior (Mark III) secretion strain (Fig.  5). Several 

lines of evidence supported that clpX deletion has a posi-

tive effect on secretion through the FT3SS [64–67]. Fur-

ther to this, we observed increased filament production 

and motility in ΔclpX cells in a wild-type background 

(Additional file 1: Fig. S4), suggesting increased flagellar 

gene expression. We confirmed this notion in our trun-

cated secretor strain, as more FlhA was detected in ΔclpX 

mutants (Fig. 5c), suggesting an increase in the number of 

basal bodies (secretion apparatus). In contrast, the con-

centration of FlhA was not increased in motAB mutants, 

indicating that improved secretion in these strains was 

not due to higher abundance of secretion apparatus. A 

probable explanation is that this strain has reduced drain 

Fig. 7 Comparison of expression and secretion in secretion signal 

variants. a, b The ‘prototype’ E. coli ΔfliC ΔflgKL (ΔCKL) harbouring 

either pJex-fliC47-empty or the secretion signal variants SC0–SC9 

(see Fig. 6), along with ΔflhDC and ∆fliC ∆flgKL ∆clpX (ΔCKL-X or 

‘Mark II strain’) expressing SC0 were grown and harvested as in Fig. 3. 

a Intracellular fractions were prepared for immunoblotting (plus 

densitometry analysis: representative image shown), and b secreted 

fractions for MUB secretion assay, as described in Fig. 4a and c 

respectively. Three biological repeats, normalised to ΔCKL-SC0, ± SE 

and individual data points shown. One-way ANOVA (for SC0–SC9 

expressing strains only) p < 0.001 and Tukey’s multiple comparison 

test (to ΔCKL-SC0): ****p < 0.001, ***p < 0.005. c The absence of 

the 47 residue FliC signal, with the presence of the fliC 5′UTR was 

investigated in ΔCKL, ΔCKL-X and ΔflhDC compared to SC1. Procedure 

as described for Fig. 7b. Two biological replicates, ± SE and individual 

data points shown

▸
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on the proton motive force [82, 83], which would usually 

provide energy to drive flagellar rotation [86, 87], but also 

has implications for secretion and growth.

We also established, surprisingly, that combining the 

fliDST mutation with the Mark III ∆flgKL ∆fliC ∆clpX 

∆motAB strain increased secretion of cutinase, but not 

other proteins (Fig.  5b), indicating that there may be 

some protein specific factors in determining secretion 

capacity. In fact the removal of fliDST, or flgMN were 

generally not beneficial to secretion. This may be attrib-

uted to the fact that there are contrasting reports on the 

effect of FlgM(N) deletion on flagellar expression in the 

literature [50, 79]. This is complicated by the fact that, 

FliS also binds FlgM prior to fliA expression, suppress-

ing secretion of FlgM upon hook-basal body completion 

[88], while removal of FliDST per se has been shown to 

result in an increase in secreted FlgM [89]. In addition, 

FlgN is also implicated here, as a positive regulator of 

FlgM translation [80], further complicating this picture, 

and making these data both hard to predict and interpret.

We show that a construct containing the 5′UTR and 

FliC1–47 secretion signal (SC1) was the most efficient for 

secretion of recombinant proteins (Fig. 7b). In agreement 

with previous work [30, 33], we did not find inclusion of 

the 3′UTR to be necessary for secretion—as an extension 

to this, we also show that exclusion of the 3′UTR dra-

matically increases secretion, despite potentially reduc-

ing internal levels (Fig. 7a). An explanation may be linked 

to the evidence that the 3′UTR influences levels and 

Fig. 8 Cutinase expression and secretion: comparing the prototype, 

and most improved, strains and secretion constructs. The E. coli 

‘prototype’ ΔfliC ΔflgKL (ΔCKL) or ‘Mark III strain’ ΔfliC ΔflgKL ΔclpX 

ΔmotAB (ΔCKL-X-mot) expressing either the prototype (SC0), 

improved (SC1) modular secretion vector, or pJex–fliC47-empty 

(empty), were grown as described in Fig. 3. Note that ΔCKL-X-mot 

expressing SC1 is our ‘Mark IV strain’. Both intracellular and 

secreted fractions underwent immunoblot analysis using either, 

an anti-FLAG-HRP (αFLAG) antibody to detect a intracellular and b 

secreted cutinase, or c anti-GroEL and a HRP secondary antibody to 

detect cytoplasmic protein contamination. Samples representing 

15 μL and 300 μL cell culture were loaded for intracellular and 

supernatant samples, respectively. d Densitometry analysis 

was carried out on αFLAG probed, secreted fractions (Fig. 8b: 

representative image) of three biological replicates, normalised to 

ΔCKL-SC0, ± SE and individual data points shown. One-way ANOVA, 

p < 0.005 and Tukey’s multiple comparison test (to ΔCKL-SC0): 

***p < 0.005, **p < 0.01, *p < 0.05. e Supernatant was also prepared 

for MUB protein secretion assay as described in Fig. 4c. Six biological 

replicates, normalised to ΔCKL-SC0, ± SE and individual data points 

shown. Two-way ANOVA, p < 0.001 and Tukey’s multiple comparison 

test (to ΔCKL-SC0): ****p < 0.001

▸
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stability of the fliC mRNA [90], which in turn has been 

shown to reduce FlgM secretion [67]. If this is affected 

by the 3′UTR region specifically, then this could explain 

improved secretion in the absence of the 3′UTR, as FlgM 

might be more readily secreted from the FT3SS—how-

ever at this time we have no evidence to support this the-

ory. In contrast, the 5′UTR and FliC1–47 are able to both 

direct secretion and ensure adequate protein expres-

sion. One reason for this might be that the signal peptide 

confers some level of solubility or reduces formation of 

inclusion bodies—though again we have not tested this 

directly. Notably, our evidence (Fig. 7b, Additional file 1: 

Fig. S7) does not match that of other reports where the 

FliC 5′UTR [30, 31], or 26–47 residues of the FliC signal 

alone [34, 35], direct efficient secretion in E. coli. Neither 

does it match evidence that the 5′UTR is not necessary 

for secretion [35], and we can only attribute these dif-

ferences to potential variances in strain background or 

experimental conditions. It would seem that modifica-

tion of the secretion signal had a larger effect on secre-

tion capacity than the strain improvements (15.70- and 

7.68-fold improvements respectively). Most compelling, 

was our finding that upon combination, these improve-

ments have an additive effect on the secretion capacity of 

the FT3SS (Fig. 8). The overall 23.78-fold improvement to 

cutinase secretion through the FT3SS is a step-forward 

in terms of moving towards an E. coli strain capable of 

high capacity secretion of recombinant protein into the 

extracellular media, in one step.

In our lab, the best secreted yield of protein achieved 

(with cell density  OD600 < 1.5) in our truncated FT3SS 

(maximum of 240 mg L−1, average 80–90 mg L−1, of FliC-

ΔDE3 secreted into the extracellular media), surpasses 

that reported for alternative E. coli systems, which also 

enable secretion into the media. For example in the T1SS: 

typically in the µg L−1 range, but up to 3 mg−1 OD unit 

cell culture at high cell density [23–28, 91] and FT3SS 

(ΔfliCD): up to 12  mg  L−1 (although under unspecified 

high density cell culture conditions, [30]). We also exceed 

reported yields achieved for secretion into the E. coli 

periplasm by the type II secretion system at low cell den-

sity (30–60 mg L−1 [13, 14]), without the requirement for 

periplasmic extraction or the risk of proteolytic enzymes 

compromising protein quality.

However as we are proposing the use of our strain as 

a secretion platform in a biotechnological context, we 

finally set out to investigate the performance of the Mark 

IV strain when secreting a broad range of industrial and 

pharmaceutically relevant recombinant proteins. At 

low cell density  (OD600 1.0) we achieved average yields 

of 0.16, 0.25, 0.15 and 0.21  mg  L−1 for cutinase, a  CH2 

ScFv fragment, human growth hormone and thiore-

doxin respectively (Fig. 9). The secreted titres we report 

for heterologous protein are lower than those which we 

measure for native protein (FliC-ΔDE3). This was antici-

pated, as aside from a small truncation, FliC-ΔDE3 is a 

natural substrate of the FT3SS, whereas the heterolo-

gous proteins are non-native to both the organism and 

the secretion system. We acknowledge that our titres of 

heterologous protein are lower compared to other bac-

terial systems (where up to 50  mg  L−1 was achieved) 

[20, 21]. However our results are still compelling, given 

that (unlike the majority of literature examples) we have 

achieved these titres from (1) culture supernatant, (2) at 

low cell density in E. coli, and (3) showed excellent con-

trol of secretion to the extracellular space, with no evi-

dence for cell leakage. When comparing our final Mark 

IV strain to other strains that meet the majority of these 

credentials, our current strain secretes around four times 

less heterologous protein than the best titre reported in 

the T1SS (cell density unclear) [27], and around 50 times 

less than an alternative FT3SS system (carried out at a 

higher cell density and with different proteins) [30].

To match these reported titres in the future, we aim 

to further boost the titres of secreted protein, with a 

modified cell culture strategy and more strain engineer-

ing. For example, while our supernatant was harvested 

at a maximum cell density of  OD600 1.5; it is noted that 

transfer to high cell density culture  (OD600 > 180) can 

greatly improve yields [14]. Indeed we have begun to test 

these strains at higher cell density in bioreactors with no 

obvious growth defects (unpublished data). Finally, the 

modular secretion vector has not only been optimised to 

Fig. 9 Secreted titres of a range of substrates through the optimised 

Mark IV secretion strain. E. coli ΔfliC ΔflgKL ΔclpX ΔmotAB expressing 

plasmid based SC1 (Mark IV strains), with either cutinase,  CH2, hGH 

or TrxA cargo, were grown as outlined in Fig. 3 and prepared, along 

with a relevant protein standard (exception: cutinase, where a hGH 

standard was utilised), for immunoblot detection with anti-FLAG-HRP 

(αFLAG). The concentration of secreted protein was then quantified 

by densitometry analysis. Two biological replicates (with the 

exception of hGH), ± SE and individual data points shown
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enable high levels of expression (with the removal of the 

3′UTR), and flexibility of protein cargo, but also serves 

as a versatile platform technology which could be easily 

adapted for specific applications, i.e. by exchanging the 

purification or antigen tags. We are currently focussing 

on how the modular secretion vector performs in terms 

of recovery of purified protein, free of the accessory tags.

Conclusions

We have used a combinatorial approach, incorporating 

strain design and a genetic modular secretion vector, to 

achieve improved extracellular titres, of a range of bio-

technologically relevant protein products, by secretion 

through a truncated E. coli FT3SS. This may enable sim-

plified downstream processing of higher quality product, 

free of cellular contaminants, all of which are of great 

interest to the biopharmaceutical and IB communities. 

Furthermore, this opens up the possibility of cell cul-

tures that secrete protein continuously, without the need 

to sacrifice cell culture to retrieve protein product. Dur-

ing development of the truncated secretion construct, 

a number of findings provided new information on the 

roles of the secretion signal peptide and UTRs of FliC 

monomers. We also introduce a high-throughput assay, 

enabling quick and accurate measurement of the secre-

tion output of truncated FT3SS strains. We are currently 

using this in inverse genetic engineering approaches to 

identify factors that might boost secretion further. We 

suggest that the body of this work serves as a pilot fea-

sibility study, and are working on further improvements 

(high cell density culture, purifying recombinant protein 

from the media), with which we envision that our FT3SS 

secretion platform could become a forerunner for use in 

the production of biopharmaceuticals and IB products.

Materials and methods

Bacterial strains and growth conditions

E. coli MC1000 was used for the construction of all 

mutants in this work (Additional file 1: Table S1). E. coli 

strain MG1655 clpX::Tn5(KmR) was kindly gifted by J. 

Green, University of Sheffield and was used as a donor 

for transduction in the construction of clpX strains. 

Strains were grown in LB broth or on LB agar plates, 

supplemented with ampicillin (100 µg mL−1), chloram-

phenicol (25  µg  mL−1) or kanamycin (50  µg  mL−1) or 

Isopropyl β-d-1-thiogalactopyranoside (IPTG) (con-

centration stated in figure legends) as appropriate. 

Prior to assaying protein secretion by SDS-PAGE or 

enzymatic secretion assay, fresh media was inoculated 

with cells from a liquid overnight culture and induced. 

Bacteria were grown with shaking at 180 rpm, 37 °C.

P1 phage transduction

Phage transduction was carried out by the method out-

lined by Lennox [92]. Following strain construction, 

the eradication of phage from the strain was ensured 

by passaging on LB agar plates with 10  mM sodium 

citrate. Absence of phage was then confirmed by Evans 

Blue-Uranine assay, as outlined by Tiruvadi Krishnan 

et al. [93].

Recombinant DNA techniques

Plasmids utilised for chromosomal manipulations or 

for cloning are listed in Additional file 1: Table S2. High 

fidelity and diagnostic polymerase chain reaction (PCR) 

was carried out with Phusion High Fidelity polymer-

ase (New England Biosciences) and DreamTaq DNA 

Polymerase (Thermo Scientific) respectively. Tem-

plates and custom primers (Sigma-Aldrich) are listed 

in Additional file  1: Table  S3. Chromosomal modifica-

tions were carried out, as described by Datsenko and 

Wanner [94]. To enable sequential mutagenesis, pCP20 

was utilised to excise FRT flanked antibiotic resistance 

cassettes. Modifications were PCR verified, as was the 

maintenance of other lesions on the chromosome, if the 

strain underwent sequential deletions.

A genetic secretion construct was designed, synthe-

sised and then incorporated into the pJexpress-404 

plasmid backbone by DNA 2.0. This plasmid is referred 

to as pJex-fliC47-empty (Additional file  1: Fig. S4a) 

and forms the base cloning vehicle here. All restric-

tion digests and ligation reactions were performed with 

NEB restriction enzymes and T4 DNA ligase (New 

England Biosciences). Following ligation, reaction 

mixes were transformed into NEB 5-alpha (New Eng-

land Biosciences), as described in the supplier’s instruc-

tions. The synthetic gene for Fusarium solani cutinase 

(accession number: K02640), was codon optimised and 

synthesised by  GeneArt® Strings DNA Fragments (Life 

Technologies). hGH and TrxA gene fragments were 

obtained from FUJIFILM Diosynth Biotechnologies.

SDS‑PAGE and western immunoblots

Following cell growth for secretion, 1 OD unit of culture 

samples were centrifuged for 15 min (16,000g) to ensure 

separation of cells and supernatant. Supernatant fractions 

were prepared by precipitation in 10% v/v trichloroacetic 

acid and washing in acetone [57, 95]. Both supernatant 

precipitate and cell pellets were suspended in 2× SDS 

buffer (10  mL glycerol, 1  g SDS, 0.1  g bromophenol 

blue, 200  mM DTT, to a volume of 50  mL in 100  mM 

Tris–HCl, pH 6.8) to a final volume of 50 µL and 200 µL 

respectively. Both cell lysate and supernatant samples 
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underwent SDS–polyacrylamide gel electrophoresis 

(SDS-PAGE). Gels were either stained with InstantBlue™ 

(Expedeon) or prepared for Western immunoblotting 

by electro-transfer onto nitrocellulose membrane (GE 

Healthcare Life Science) and blocked in 3% w/v bovine 

serum albumin in TBS (24 g L−1 Tris base, 88 g L−1 NaCl 

plus 0.1% v/v Tween). The following primary antibodies 

were diluted 1 in 1000 in TBS/Tween: H48 monospecific 

H rabbit antiserum (Statens Serum Institut), monoclonal 

ANTI-FLAG®M2 antibody produced in mouse (Sigma-

Aldrich), E. coli GroEL rabbit IgG (Sigma-Aldrich). If 

required, following washing and re-blocking, anti-rab-

bit HRP (Cell Signalling Technology) was diluted 1 in 

3000. All blocking and incubation steps were carried 

out for 1  h. Immunoblots were visualised using  Pierce® 

ECL Western Blotting Substrates (Thermo Scientific) 

and a Compact X4 X-ray Film Processor (Xograph) or 

C-DiGit® Chemiluminescent Western Blot Scanner (LI-

COR Biosciences). Analysis by densitometry was carried 

out using ImageJ. For FlhA detection, the same proto-

col was followed except blocking was carried out in 5% 

w/v skimmed milk in PBS (8 g L−1 NaCl, 0.2 g L−1 KCl, 

1.44 g L−1  Na2HPO4, 0.24 g L−1  KH2PO4) with 0.05% v/v 

Triton X100. Polyclonal anti-FlhA antisera was diluted 1 

in 1000 in PBS/Triton along with E. coli ΔflhDC soluble 

cell lysate (to minimise non-specific binding) and follow-

ing washing, membranes were incubated with a 1 in 5000 

dilution of IRDye 800CW Donkey anti-rabbit secondary 

antibody (LI-COR Biosciences). Membranes were ana-

lysed using an Azure c500 (Azure Biosystems) imaging 

system and quantified with LI-COR Image Studio Lite 

(LI-COR Biosciences).

Protein purification for preparation of standards

To prepare purified monomers of truncated FliC, 

MC1000 ΔfliC harbouring pTrc-FliC-ΔDE3 were scraped 

from semisoft agar plates (1% w/v tryptone, 0.5% NaCl, 

0.8% w/v bacteriological agar), following 24  h incuba-

tion at 37 °C. After resuspension in 50 mM Tris–HCl, pH 

7.8, cells were agitated vigorously in a laboratory blender 

(Waring Laboratory Science) for 3 min, then centrifuged 

at 16,000 g for 5 min at 4  °C. The supernatant was then 

centrifuged at 67,500 g for 15 min at 4 °C. The pellet was 

resuspended in fresh buffer, and centrifugation repeated. 

In fresh buffer, the pellet underwent sonication for 20 s, 

followed by heating to 50 °C for 10 min to cause monom-

erisation. Finally, centrifugation was repeated and super-

natant collected.

Protein standards of  CH2, TrxA and hGH were purified 

from the intracellular fraction of E. coli BL21 (DE3) after 

induction with 1  mM IPTG. Protein was purified using 

the secretion construct incorporated Streptavadin II tag 

on a 1  mL StrepTrap™ HP column (GE Healthcare Life 

Science) according to the manufacturer’s instructions. 

Following elution with 2.5  mM desthiobiotin, 100  mM 

Tris–HCl, 150  mM NaCl, 1  mM EDTA, pH 8, protein 

underwent dialysis overnight to yield purified protein in 

100  mM Tris–HCl, pH 8 and quantified with a Pierce™ 

BCA Protein Assay Kit (Thermo Scientific). Proteins 

standards were aliquoted and stored at − 20 °C.

Cutinase based protein secretion assay

An assay based on cleavage of 4-methylumbelliferyl 

butyrate (MUB) was developed to measure the activity 

of secreted cutinase. 10  mL cultures of cells expressing 

cutinase were induced with 0.05  mM IPTG and grown 

to  OD600 1.0. 250  mM MUB (prepared fresh daily) was 

dissolved in dimethylformamide with 1% Triton X-100. 

This mixture was then diluted in 50 mM phosphate cit-

rate (pH 5) buffer to a working concentration of 500 μM 

MUB. 40 μL supernatant was added to 96 well plate wells, 

the reaction was initiated with the addition of 160  μL 

MUB and incubated at 30 °C for 30 min. Following incu-

bation, fluorescence was measured, either by imaging 96 

well plates under UV light (G:BOX, Syngene), or using 

a Tecan Infinite 200 Pro plate reader-excitation 302 nm, 

emission 446 nm (Tecan Group Ltd.).

Additional file

Additional file 1: Table S1. Escherichia coli strains used or generated in 

this study. Table S2. Plasmids used or generated in this study. Table S3. 

Polymerase chain reaction primers used in the study. Fig. S1. Annotation 

of the genetic region upstream of the flhD operon in E. coli MC1000. Fig. 

S2. Comparison of growth of the HAP-less and cap-less strains. Growth 

curve data for the aforementioned strains. Fig. S3. Functional flagellar 

despite the absence of the FliC D3 domain. SDS-PAGE of secreted protein 

and motility assay. Fig. S4. The effect of the deletion of clpX from E. coli 

MC1000. Comparison of the strains by: abundance of secreted flagellin, 

motility assay and phenotype. Fig. S5. Plasmid maps of (a) pJex-fliC47-

empty and (b) pJex-fliC47-cutinase, along with (c) the prototype genetic 

synthetic modular secretion construct of pJex-fliC47-cutinase. Fig. S6. 

Comparison of growth of truncated FT3SS secretion strains. Growth curves 

for all relevant strains. Fig. S7. The FliC secretion signal is required to 

enable secretion. Immunoblots of secreted and intracellular cutinase. Fig. 

S8. Comparison of the ‘’late’ FliC and ‘early’ secretion signals. Schematic 

of secretion constructs and immunoblots of secreted and intracellular 

cutinase. Fig. S9. Secretion of a range of substrates through the optimised 

secretion strain. Immunoblots of secreted protein alongside a protein 

standard.
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