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Abstract

When considering the possible hazard or nuisance associated with a release of toxic or mal-

odorous gas into the atmosphere, large concentrations are especially important, but relatively

little work has been done on measuring or modelling the probability distribution of large

concentrations of a contaminant dispersing in a turbulent flow. We have previously applied

statistical extreme-value theory to field experiment measurements, analyzing large concen-

trations at a handful of positions. We have also been involved in using a related moment-based

method to give more comprehensive spatial coverage for a steady line source in a wind tunnel.

In the latter case, however, we used a method which would be expected to have shortcom-

ings, and we did not calculate confidence intervals for the estimates. In the present paper we

use an improved method, with confidence intervals derived from bootstrapping. Again we

analyze the measurements from steady line-source wind-tunnel experiments, with particular

emphasis on the spatial variation of the estimated maximum possible concentration. We show

that the moment-based method agrees well with maximum-likelihood fitting to exceedances

of a high threshold. We find that the centreline maximum concentration, normalized by the

centreline mean concentration, increases downwind from a value just greater than 1 near the

source, to a peak value of 5–6, before decreasing with distance from the source. Across the

plume the maximum concentration only varies slowly for the downwind distances in these

experiments. These observations are explained in terms of the physical processes of turbulent

advection and molecular diffusion.
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N. Mole, R. Munro

1 Introduction

Atmospheric boundary-layer flows are turbulent, i.e. random, so the concentrations of any

pollutant gases released into such flows are also random. These concentrations need to be

analyzed in terms of their probability distributions. For releases of toxic or malodorous gases,

large concentrations are of particular importance for the assessment of hazards or nuisance.

In this paper attention will be focussed on large concentrations, so it is the high-concentration

tails of the probability distributions which are of interest.

The most appropriate framework for high concentrations is provided by statistical extreme-

value theory, for which we outline the relevant aspects below. Let P(θ; θT ) be the distribution

function of the concentration Γ , conditional on Γ being above a threshold θT , i.e.

P(θ; θT ) = Prob(Γ � θ |Γ > θT ). (1)

The corresponding probability density function (p.d.f.) is

p(θ; θT ) =
d

dθ
P(θ; θT ). (2)

Subject to some regularity conditions, Pickands (1975) showed that for large threshold θT

p(θ; θT ) ≈ g(θ − θT ; k, a) for θ > θT , (3)

where g(s; k, a) is the p.d.f. of the generalized Pareto distribution, given by

g(s; k, a) =
1

a

(

1 −
ks

a

)
1
k
−1

. (4)

Sections 4.1 and 4.2 of Coles (2001) deal with this. Here k is the shape parameter and a (> 0)

is the scale parameter.

This result has previously been applied to the statistical modelling of extreme values by

fitting, usually by maximum likelihood, to exceedances of a high threshold. Examples of

this approach are given by Davison and Smith (1990), Leadbetter (1991) and, for turbulent

dispersion, Mole et al. (1995), Anderson et al. (1997), Schopflocher (2001) and Munro et al.

(2001). For pollutant concentration the maximum possible value, θM AX , is finite (bounded

above by the largest source concentration). Thus we expect that k > 0, so that g(s; k, a) has

a finite upper endpoint a/k. We then have

θM AX = θT +
a

k
. (5)

Figure 1 of Mole et al. (2008) shows possible shapes for g(s; k, a). If we let θT vary, while

keeping it large so that (3) still applies, then for two large values θT 1 and θT 2 of θT , with

θT 2 > θT 1, we have

p(θ; θT 2) =
p(θ; θT 1)

∫ θM AX

θT 2
p(θ; θT 1) dθ

. (6)

If the parameters corresponding to θT 1 and θT 2 are (k1, a1) and (k2, a2) respectively, then

(see Appendix 1 for details) this can only be satisfied if k2 = k1 (= k say) and

a2 − a1 = −k(θT 2 − θT 1). (7)

Thus, as θT varies, the form of the asymptotic distribution g(s; k, a) and the value of the

shape parameter k cannot change, but the scale parameter a must decrease as θT increases.

The result for a can also be obtained from (5).
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The Spatial Variation of the Maximum Possible Contaminant…

Ideally a physical model would give the concentration p.d.f., with a finite upper end-

point for the concentration. Thus this would include probabilities of the exceedances of high

thresholds. In practice, however, this is difficult, and models are much more likely to give the

first few concentration moments. Motivated by this, Mole et al. (2008) introduced a differ-

ent method for estimating properties of the distribution for large concentrations. The central

argument there was that high-order moments mn are dominated by the largest concentration

values, so that

mn = E{Γ n} ≈ η

∫ θM AX

0

θn g(θ; k, a) dθ (8)

for some constant (at a fixed point in space) η. (Without loss of generality θT was taken to be

zero—otherwise a can simply be rescaled.) Rather more detail, including the spatial variation

of η, is given in Sects. 2.2 and 2.4 of Mole et al. (2008), who showed that this implies that,

for sufficiently large n,

mn−1

mn

≈
1

a

(

1

n

)

+
k

a
=

1

a

(

1

n

)

+
1

θM AX

. (9)

The linear relationship between the ratio of successive moments, mn−1/mn , and 1/n then

allows the estimation of the parameters k, a and θM AX . Mole et al. (2008) used this method

to estimate the parameters from a theoretical model for the concentration moments, and from

the experimental data of Sawford and Tivendale (1992), for a steady line-source release in a

wind tunnel.

The concentration model in Mole et al. (2008) gave all moments, in terms of some param-

eters which would have to be modelled. Other modelling approaches to calculating moments

include meandering plume (e.g., Gifford 1959; Luhar et al. 2000; and Cassiani and Gios-

tra 2002), large-eddy simulation (e.g., Xie et al. 2004) and p.d.f. micromixing (e.g., Pope

1985; Sawford 2004). Most models would only give the lowest few moments, whereas the

moment-based method described here would be expected to require higher moments. This

is a problem that requires further investigation.

In the present paper we extend the work of Mole et al. (2008) by applying this moment-

based method to the Sawford and Tivendale (1992) wind-tunnel data in a more thorough

manner, including the estimation of confidence intervals for the parameter estimates. We also

compare these results with those obtained by the more conventional method of maximum-

likelihood fitting to exceedances of a high threshold. We have two main aims. The first is

to explore the variation in space of properties of the distribution of high concentrations,

in particular θM AX and k. The second is to establish how well the moment-based method

performs, with applications to models in mind.

2 The EstimationMethods

2.1 TheMoment-BasedMethod

Mole et al. (2008) fitted (9) by least squares, using the values n = 4 to n = 8. The straight-

line fit was quite good, but there was a suggestion of curvature which would have altered the

estimates if larger values of n had been used.

For a finite-size dataset, for large n the moments mn become dominated by the largest

measured value ΓM AX . Thus, using very large n to fit (9) will result in θM AX being underes-

timated (as ΓM AX ). Conversely, at small n (9) would not be expected to hold. So in fitting (9)
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N. Mole, R. Munro

Fig. 1 The ratio of successive moments, mn−1/mn , against 1/n. The squares are the values calculated from the

data, and the solid line is the fit of (9) using the maximum gradient. The dashed line is 1/ΓM AX , where ΓM AX

is the largest measured concentration. This case is for the wind-tunnel data of Sawford and Tivendale (1992),

on the mean-plume centreline, at a distance of X = 100 mm downwind of the source (i.e. X/X0 = 0.323,

where X0 is the distance from the grid to the source)

to the data a balance must to be struck between using small and large values of n. We have

carried out some preliminary analysis, on simulated datasets, which suggests that a reason-

able choice is to fit the straight line through the point of maximum gradient when mn−1/mn

is plotted against 1/n. For typical cases this will give the largest estimate for θM AX that

is possible from (9), and for hazard-assessment purposes will therefore tend to be on the

conservative side. Figure 1 shows a typical plot of mn−1/mn against 1/n, with the straight

line fitted using the maximum gradient.

Confidence intervals for θM AX and k are calculated by bootstrapping. We use the studen-

tized bootstrap method with a log transformation of the data (details of this method can be

found in e.g. Davison and Hinkley 1997).

2.2 TheMaximum-LikelihoodMethod Using Exceedances

With this method we fit the generalized Pareto distribution (4) to excesses above a high

threshold, using maximum likelihood. The thresholds are chosen using mean-excess plots (i.e.

mean-residual-life plots)—see e.g. Coles (2001, p. 79). Confidence intervals are estimated

using profile likelihood (Davison and Smith 1990). To take account of possible dependence

between concentration exceedances when estimating the confidence intervals, declustering

(see, e.g., Coles 2001, p. 99) is carried out. This involves choosing a cluster separation time

τ . If the time between successive exceedances is greater than τ then they are deemed to

belong to separate clusters, and only the maximum concentration value from each cluster is

used in the maximum-likelihood fitting. We choose τ using the method of Ferro and Segers

(2003), which is based on estimating the extremal index. For details of the extremal index

see Leadbetter et al. (1983, p. 67); it can be interpreted as the reciprocal of the mean cluster

size (Leadbetter 1983).

In a few cases the profile-likelihood method does not converge, and instead we estimate

confidence intervals by assuming that the likelihood estimator is approximately multivariate

normal (see, e.g., Sect. 4.2.1 of Davison 2003, or Sect. 2.6.4 of Coles 2001). This happens

far downwind or in the plume fringes, where there are fewer data on large concentration
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The Spatial Variation of the Maximum Possible Contaminant…

values. In these cases the estimated confidence intervals will automatically be symmetric,

whereas the real ones will probably not be. In particular, we would expect that the upper

end of the confidence interval should be larger than that indicated by the multivariate-normal

approximation.

3 Results

The two estimation methods are applied to the experimental data of Sawford and Tivendale

(1992), obtained from a steady line source in wind-tunnel grid turbulence, with the turbulence

approximately uniform in the direction normal to the line source and the mean-flow direction.

Further details of the experiments are given in Appendix 2 here, and also in Sawford and

Sullivan (1995) and Mole et al. (2008). Concentration (which in this case is temperature)

measurements were made at many downwind and crosswind positions.

The wind-tunnel boundaries were sufficiently distant that the temperature was effectively

a conserved scalar. Close to the source the mean temperatures were up to 50 K above the

background temperature, similar to the experiments of Stapountzis et al. (1986), but much

higher than in Warhaft (1984). Therefore, near the source the scalar was not passive, because

of the buoyancy. Sawford (2004) showed that the intensity of fluctuations was reduced by

comparison with the Warhaft data, but that in the far field these source effects became unim-

portant. This is less clear-cut here since we are concerned with the largest concentrations.

Turbulent advection means that, except in the far field, the largest concentrations decay less

quickly downwind than the mean and standard deviation. This means that non-passive effects

on the largest concentrations may well persist to larger distances from the source. However,

further from the source large temperatures will be found in relatively small volumes, so we

expect that non-passive effects will be small. The subsequent figures for cross-plume vari-

ations do not show obvious asymmetry resulting from buoyancy (note that the cross-plume

direction is in the vertical). This is also the case in Fig. 1 of Sawford and Sullivan (1995)

for the first four moments of concentration. So in subsequent attempts to explain the results

physically we assume that a good first approximation is provided by taking the scalar to be

passive.

Figure 2 shows the estimates of θM AX on the mean-plume centreline, as a function of non-

dimensional downwind distance from the source, X/X0, where X0 is the distance from the

grid to the source. (Note that turbulent length scales will be of the order of the hole spacing in

the grid, i.e. of order 0.08 when normalized by X0.) The value of θM AX is normalized by the

centreline mean concentration μ0. Up to about X/X0 = 0.3 the two methods agree very well.

Beyond X/X0 = 0.3 the two methods differ more, but the confidence intervals are larger, and

the differences are probably not very significant. The quantity θM AX/μ0 increases steadily

from a value just over 1 at X/X0 ≈ 0.01, to a maximum of about 5–6 at X/X0 ≈ 0.8, and

then decreases to about 3.5 at X/X0 ≈ 8.

The downwind variation of θM AX/μ0 agrees qualitatively with the results of Mole et al.

(2008) (in their Fig. 6), obtained using the moment ratios from n = 4 to n = 8, but the

values here are roughly 20% larger. For the moment-based method the larger values here are

to be expected, since we are fitting to the maximum gradient, but the agreement with the

maximum-likelihood estimates suggests that the maximum-gradient method is superior to

the method used by Mole et al. (2008).

Mole et al. (2008) argued that the variation of θM AX/μ0 with downwind distance X shown

in Fig. 2 is what would be expected on physical grounds. For a steady source, close to the
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Fig. 2 All values here are on the mean-plume centreline. Left panel: the moment-based estimate of the

maximum possible concentration θM AX , as a function of non-dimensional downwind distance from the source.

θM AX is normalized by the centreline mean concentration μ0. The squares and solid line are the estimates

of θM AX /μ0, and the dashed lines give the 95% confidence intervals, estimated using bootstrapping. Right

panel: as left panel, but these are the maximum-likelihood estimates from exceedances of high thresholds. The

confidence intervals (again 95%) are estimated using profile likelihood where possible

source we expect θM AX to be close to the largest source concentration θ2, and μ0 to be close

to the mean source concentration θ1. Thus, as X → 0, we expect θM AX/μ0 → θ2/θ1 � 1.

For most sources θ2/θ1 is likely to be close to 1.

For a passive conserved scalar the physical processes involved are advection by the tur-

bulent velocity, and molecular diffusion (which is the only process which can change the

concentration in a fluid element). The variation of θM AX/μ0 as one goes away from the

source is determined by the balance between the effects of these processes. Except very close

to the source and very far downwind the mean concentration μ is hardly affected by molecu-

lar diffusion, and so is controlled by turbulent advection. The maximum concentration θM AX

can only be altered through the action of molecular diffusion.

Most atmospheric releases have large Péclet number Pe = ul/κ near the source, where u is

a velocity scale for the turbulent fluctuations, l is a length scale for the turbulent concentration

fluctuations, and κ is the molecular diffusivity. The ratio of the size of the advection and

diffusion terms in the dispersion equation is Pe, so near the source advection acts much

more quickly than diffusion. Further downwind, as the plume becomes stretched out into thin

sheets and strands by turbulent advection, the concentration length scale l becomes smaller

than near the source, and diffusion acts more quickly, as described by Batchelor (1959). The

conduction cut-off length is defined as (νκ2/ǫ)1/4, where ν is the kinematic viscosity and

ǫ is the turbulent-energy dissipation rate per unit mass. The Schmidt number is defined as

ν/κ . For pollutants with Schmidt number of order 1 or greater (which is usually the case, and

is true for the experimental data used here) once the concentration length scale reaches the

conduction cut-off length then a balance is reached between advection and diffusion, where

their time scales are the same and the concentration length scale does not decrease any more.

Thus, provided the source size is large compared with the conduction cut-off length (which

would usually be the case for atmospheric releases), near the source advection acts much faster

than diffusion. This means that μ0 is reduced much more quickly than θM AX , so θM AX/μ0

increases away from the source. Further downwind the concentration length scale decreases,

and since the largest concentrations are found in the thin sheets and strands, diffusion acts to

reduce θM AX more quickly. Conversely, as the plume width increases downwind, advection

reduces μ0 more slowly. Eventually the rate of reduction of μ0 becomes less than that of

θM AX , so θM AX/μ0 reaches a peak and then decreases with downwind distance.
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In the grid turbulence found in the experiments discussed here, the turbulent energy (and

hence the velocity scale u) and the dissipation rate ǫ decay with downwind distance from

the source (see, e.g., Sect. 5.4.6 of Pope 2000). This implies that the Péclet number Pe will

decrease faster downwind than in a non-decaying flow, and the conduction cut-off length will

increase downwind. Using the values in Table I of Sawford (2004), in these experiments Pe

at the source is of order 3 (in the atmosphere the source is likely to be larger, so Pe would

be several orders of magnitude larger). It also gives a conduction cut-off length comparable

with the source size (for the atmospheric applications the conduction cut-off length would

probably be similar, but the source size considerably greater).

However, at the source the turbulence length scale in these experiments is of order 70 times

the source size. So up to moderate distances downwind from the source the instantaneous

plume is swept from side to side by the turbulence on length scales greater than the width of the

instantaneous plume, thus increasing the mean plume width L and decreasing μ0 downwind.

Very close to the source (up to X/X0 ≈ 0.01 in these experiments) L is increased more by

molecular diffusion than by turbulent advection, but at larger downwind distances its increase

is dominated by turbulent advection. Reasonably near the source the instantaneous plume

is broadened mainly by molecular diffusion, and not by turbulence (which mostly exists at

length scales greater than that of the instantaneous plume width). Thus θM AX (which is found

in the instantaneous plume) decreases more slowly than μ0 with increasing distance from the

source. Further downwind L increases, and turbulent advection reduces μ0 more slowly. Far

enough downwind we expect θM AX/μ0 to reach a peak and then decrease. This behaviour

of θM AX/μ0 is what Fig. 2 shows. For most atmospheric releases we expect the source size

to be rather greater than the conduction cut-off length, and as described above we expect

similar behaviour of θM AX/μ0.

If there is an upper bound on the turbulent length scales for the velocity, as is the case

for wind-tunnel grid turbulence, then far downwind the mean-plume width is much greater

than the largest turbulent length scale for velocity and, as argued by Mole et al. (2008), we

expect all concentrations to tend to the local mean. Thus θM AX → μ as X → ∞, so on

the centreline we expect θM AX /μ0 → 1. In practice, wind tunnels are not long and wide

enough to approach this limit, and in field experiments one would expect non-stationarity

and inhomogeneity to make this limit difficult to observe.

Figure 3 shows the moment-based and maximum-likelihood estimates of the shape param-

eter k. The moment-based estimates show a rapid decrease in values within X/X0 ≈ 0.02

of the source. Beyond this there is no obvious pattern, with values generally between 0.1

and 0.2. The maximum-likelihood estimates have no obvious pattern throughout, with values

between 0.1 and 0.3. The moment-based estimates give narrower confidence intervals, and

often the estimates of k with the two methods differ by more than the estimated confidence

intervals. It appears that there is a systematic difference between the two types of estimator.

The suggestion is that k does not vary much with downwind distance, except perhaps close

to the source, with values of order 0.2 or a little less. This is different from the results of Mole

et al. (2008), where k was roughly equal to the reciprocal of θM AX/μ0, decreasing to about

0.2 at X/X0 ≈ 0.8, before increasing again with downwind distance. At most distances, the

suggestion here is that the shape of the generalized Pareto distribution (4) is as in Fig. 1a of

Mole et al. (2008), with zero gradient at the upper endpoint. The one case giving an estimate

of k > 0.5, corresponding to infinite gradient at the upper endpoint, is for the moment-based

estimate at the position closest to the source.

Theoretically, close to the source we expect most of the weight of the p.d.f. of concentration

to be close to the source concentration values, and away from zero. For a uniform source with

concentration θ0, this p.d.f. would be δ(θ − θ0) at the source, and for a non-uniform source
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Fig. 3 All values here are on the mean-plume centreline. Left panel: the moment-based estimate of k, as a

function of non-dimensional downwind distance from the source. The squares and solid line are the estimates

of k, and the dashed lines give the 95% confidence intervals, estimated using bootstrapping. Right panel: as left

panel, but these are the maximum-likelihood estimates. The confidence intervals (again 95%) are estimated

using profile likelihood where possible

Fig. 4 Left panel: the moment-based estimate of θM AX /μ0, at non-dimensional downwind distance X/X0 =

0.0161, as a function of crosswind distance Z from the mean-plume centreline, normalized by the mean-

plume width L . The squares and solid line are the estimates of θM AX /μ0, and the dashed lines give the 95%

confidence intervals, estimated using bootstrapping. The asterisks show the mean concentration μ, normalized

by the centreline value μ0. Right panel: as left panel, but these are the maximum-likelihood estimates. The

confidence intervals (again 95%) are estimated using profile likelihood where possible

we expect the p.d.f. to be broadened slightly from this. For (4) to give a peak away from

θ = 0 requires k > 1, so very close to the source we would expect to have large values of k.

Far downwind we expect the concentration p.d.f. to tend to δ(θ − μ), so the same argument

for k holds. From these arguments we would anticipate that k would be large close to the

source, decrease to a minimum, and then increase again very far downwind. Figure 3 does not

show any evidence for the latter, which may just be because we do not have measurements

sufficiently far downwind. The moment-based estimates in Fig. 3 do show evidence for

larger values of k near the source, but since this is not supported by the maximum-likelihood

estimates, it is not clear how reliable this is. The moment-based estimates in Mole et al.

(2008) do show larger values of k at small and large downwind distances, but the suggestion

from Fig. 2 is that the present results are more reliable.

Figures 4, 5 and 6 show the variation of θM AX/μ0, as a function of crosswind distance

Z (with Z = 0 on the centreline), at three downwind distances; Z is normalized by the

mean-plume width L , defined as the standard deviation of the crosswind profile of mean

concentration (which is close to Gaussian: the normalized mean concentration μ/μ0 is also

shown in the figures). Again, both moment-based and maximum-likelihood estimates are
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Fig. 5 As Fig. 4, but for non-dimensional downwind distance X/X0 = 0.323

Fig. 6 As Fig. 4, but for non-dimensional downwind distance X/X0 = 5.16

shown. The downwind distances are X/X0 = 0.0161, close to the source, X/X0 = 0.323,

which is close to the maximum in θM AX/μ0, and X/X0 = 5.16, which is far downwind.

In some cases in the plume fringes convergence was not obtained, so points are not shown.

In some other cases for the maximum-likelihood method, the profile-likelihood method for

the confidence intervals did not converge, and confidence intervals estimated from normal

approximations to the likelihood estimator are used instead. This is especially the case for

X/X0 = 5.16, for which the number of exceedances of the threshold θT tends to be smaller.

For both estimators the width of the confidence intervals is quite variable across the plume,

especially further from the source. Measurements at different positions were made in different

runs, so variability between releases may perhaps explain this.

For |Z/L| < 2 − 3, the moment-based and maximum-likelihood methods give similar

results for θM AX/μ0. At X/X0 = 0.0161 the maximum-likelihood values tend to be slightly

smaller, and at X/X0 = 5.16 the uncertainty is greater than the difference in the estimated

values.

At all downwind distances, for |Z/L| � 3, θM AX/μ0 appears to be fairly constant,

allowing for the larger variability and larger confidence intervals at the far-downwind distance.

Far from the centreline larger concentrations occur only rarely, so to obtain accurate estimates

of their probability distribution will require longer time series than for positions close to the

centreline. This is reflected in the lack of convergence in some cases, and in the generally

larger confidence intervals far from the centreline, especially for the maximum-likelihood

method.

The crosswind variation of μ/μ0, and the value of L , is determined by turbulent advection.

Very far from the centreline the positions are much further from the source than are those

positions near the centreline, so diffusion has had longer to act. Thus we expect θM AX → 0 as
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Fig. 7 Left panel: the moment-based estimate of k, at non-dimensional downwind distance X/X0 = 0.0161, as

a function of Z/L . The squares and solid line are the estimates of k, and the dashed lines give the 95% confidence

intervals, estimated using bootstrapping. Right panel: as left panel, but these are the maximum-likelihood

estimates. The confidence intervals (again 95%) are estimated using profile likelihood where possible

|Z/L| → ∞. At small values of X , where advection reduces μ0 more quickly than diffusion

reduces θM AX , we expect that the decrease of θM AX away from the mean-plume centreline

will be on a larger length scale than L , so we expect θM AX/μ0 to be fairly constant for

|Z/L| < 2 or 3, as seen in Fig. 4.

At values of X close to the downwind peak in θM AX/μ0, we still expect this to be true

because it depends on the cumulative effect while the fluid elements travel from the source to

these downwind distances. So this argument is in agreement with the observations in Fig. 5.

Very far downwind we expect that θM AX → μ, so θM AX/μ0 → μ/μ0, and θM AX/μ0

will decrease on the same length scale L as μ/μ0. Figure 6 suggests that the wind-tunnel

measurements do not extend far enough downwind to identify this regime.

Figures 7, 8 and 9 show the crosswind variation of the moment-based and maximum-

likelihood estimates of k. There is no clear pattern to the results, but the maximum-likelihood

values tend to be a little larger than the moment-based ones. Far from the centreline we believe

the results are less reliable, for the reasons discussed above for θM AX/μ0. The only cases

where the estimates of k are greater than 0.5 are for the moment-based method, in the plume

fringes at X/X0 = 0.323. Here we would expect k < 0.5, so we believe these results are a

reflection of the lack of reliability. The evidence seems to be that k only varies slowly across

the plume. This is what we would expect from the physical arguments given above, except

very far downwind, since k is determined by the distribution of large concentrations, which

are mainly affected by molecular diffusion.

In about 80% of the cases shown, the moment-based estimate of θM AX is larger than that

obtained using maximum likelihood. There also appears to be a tendency for the moment-

based confidence intervals to be narrower than those found with maximum likelihood. The

suggestion is that there is some systematic difference between the two types of estimator.

For applications to toxic or malodorous gases this difference means that the moment-based

estimates of θM AX are likely to be conservative.

4 Discussion

We have used two methods for estimating the maximum possible concentration θM AX and

the shape parameter k of the distribution of large concentrations. One method is based on the

expected behaviour of high-order concentration moments, and the other fits the generalized

123



The Spatial Variation of the Maximum Possible Contaminant…

Fig. 8 As Fig. 7, but for non-dimensional downwind distance X/X0 = 0.323

Fig. 9 As Fig. 7, but for non-dimensional downwind distance X/X0 = 5.16

Pareto distribution (4) directly to concentrations above a high threshold, using maximum

likelihood. The two methods agree reasonably well for all the cases shown, and are in very

close agreement for θM AX on the mean-plume centreline up to X/X0 ≈ 0.3. The moment-

based method used here appears to give better results than that used in Mole et al. (2008).

The results show that on the centreline θM AX/μ0 increases from a value slightly larger

than 1 very near the source, to a value of 5–6 at X/X0 ≈ 0.8, before decreasing again. In the

crosswind direction both θM AX/μ0 and k vary much more slowly than μ/μ0, as we would

expect if they are affected much more by molecular diffusion than by turbulent advection.

Very far downwind we would expect diffusion to dominate if there is an upper bound on the

velocity length scales. In this case θM AX /μ0 and k would vary on the same scale as μ/μ0.

The results suggest that the measurements do not extend far enough downwind to reach this

regime.

These results provide encouragement to proceed with attempts to develop quantitative

models, in particular those based on concentration moments, for θM AX/μ0 and for other

properties of the distribution of large concentrations. Such models would then enable hazard

assessment to be carried out for practical applications involving releases of toxic and mal-

odorous gases in the atmosphere. Some discussion of possible modelling approaches was

given in Mole et al. (2008). In general limits on the quality of results given by this method

will be imposed by the ability of models or experiments to give accurate results for con-

centration moments. The more moments are required, the worse this problem is likely to

be.
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Grid turbulence provides an approximation to homogeneous isotropic turbulence, for

which it is relatively easy to interpret results and develop models. However, in practical

applications releases occur in inhomogeneous boundary-layer turbulence which, unlike grid

turbulence, does not decay with downwind distance. An alternative would be to use wind-

tunnel boundary-layer releases such as those analyzed by Xie et al. (2007).

To avoid the limitation on downwind distances imposed by the dimensions of a wind

tunnel, and to consider real boundary-layer conditions, it would be desirable to repeat the

analysis for field experiments. There are, however, some difficulties with attempting this.

In addition to the usual problems with field experiments of non-stationary conditions and

terrain effects, there is a specific difficulty relating to measuring large concentrations. Large

concentrations are found at the smallest spatial scales present in the concentration field, so

sensors with very good spatial resolution are needed to measure them. Such sensors will

be ones which can only make measurements at a single point, so obtaining a wide spatial

coverage, especially at positions where long time series are needed, is expensive. On the

other hand, a measurement system such as lidar which gives wide spatial coverage cannot

resolve sufficiently small scales to give reliable measurements of the largest concentrations.

Perhaps this problem may be overcome by resolving at the scales of an averaging human

breath.

Acknowledgements We would like to thank Paul Sullivan and Clive Anderson for many useful discussions

over the years on these topics.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-

duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide

a link to the Creative Commons license, and indicate if changes were made.

Appendix 1

We have

p(θ; θT 2) =
p(θ; θT 1)

∫ θM AX

θT 2

p(θ; θT 1) dθ

(10)

and, from (3) and (4),

p(θ; θT ) ≈
1

a

[

1 −
k(θ − θT )

a

]
1
k
−1

. (11)

If the parameters corresponding to θT 1 and θT 2 are (k1, a1) and (k2, a2) respectively, then

1

a2

{

1 −
k2(θ − θT 2)

a2

}
1

k2
−1

=

1

a1

{

1 −
k1(θ − θT 1)

a1

}
1

k1
−1

[

−

{

1 −
k1(θ − θT 1)

a1

}
1

k1

]θM AX

θT 2
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=

1

a1

{

1 −
k1(θ − θT 1)

a1

}
1

k1
−1

{

1 −
k1(θT 2 − θT 1)

a1

}
1

k1

(12)

using (5). Both sides only give the same function of θ if k1 = k2 (= k say), in which case

we have

1

a2

{

1 −
k(θ − θT 2)

a2

}
1
k
−1

=

1

a1

{

1 −
k(θ − θT 1)

a1

}
1
k
−1

{

1 −
k(θT 2 − θT 1)

a1

}
1
k

. (13)

Rearranging this gives

a
− 1

k

2 {a1 − k(θT 2 − θT 1)}
1
k =

{

a1 − k(θ − θT 1)

a2 − k(θ − θT 2)

}
1
k
−1

. (14)

The left-hand side is a constant, so the right-hand side must be too. To remove the θ depen-

dence this constant must be 1, giving

a2 − a1 = −k(θT 2 − θT 1). (15)

This makes the left-hand side of (14) also equal to 1, so it is consistent.

Appendix 2

Sawford and Tivendale (1992) conducted experiments for a steady line source in wind-

tunnel grid turbulence. The source was horizontal and across the wind tunnel, normal to

the horizontal flow direction and in the middle of the cross-section. The main details are

summarized here.

The experiments were carried out in a wind tunnel with a rectangular test section

0.69 m high, 1.07 m wide and 3.3 m long. A grid with circular holes of diameter 0.0208 m in a

hexagonal pattern was used to generate turbulence. The hole spacing was M = 2.54×10−2 m,

giving a solidity ratio of 0.39. The source was a heated Nichrome wire of diameter

0.213 mm placed a distance X0 = 12.2M downstream of the grid. The mean air speed

was U = 5.0 m s−1, with a corresponding Reynolds number U M/ν of 8500, where ν is the

kinematic viscosity of unheated air (1.5 × 10−5 m2 s−1 at 20 ◦C).

Temperatures (i.e. scalar concentrations here) were measured using a platinum cold wire

which had a diameter of 1.27 µm and a length of 0.4 mm. In time the sampling was at

4096 Hz, with the signal low-pass filtered at 2 kHz. Statistics were calculated from 20 separate

1-s samples, i.e. from a total of 81,920 points. According to Sawford and Sullivan (1995)

frequencies up to 1 kHz accounted for about 90% of the temperature variance near the source,

and over 99% of the variance far downstream.

Chan (2009) dealt with possible shortcomings of the temperature measurements caused

by the mounting of the cold wire (see, for example, Paranthoen et al. 1982 and Tsuji et al.

1992), and concluded that when the measurements were normalized by the centreline mean,

as in the present paper, they were unlikely to cause a problem.
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