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Abstract: An avalanche photodiode with a ratio of hole-to-electron ionization coefficients, k 

= 0, is known to produce negligible excess noise irrespective of the avalanche gain. The low 

noise amplification process can be utilized to detect very low light levels. In this work, we 

demonstrated InAs avalanche photodiodes with high external quantum efficiency of 60% 

(achieved without antireflection coating) at the peak wavelength of 3.48 µm. At 77 K, our 

InAs avalanche photodiodes show low dark current (limited by 300 K blackbody background 

radiation), high avalanche gain and negligible excess noise, as InAs exhibits k = 0. They 

were therefore able to detect very low levels of light, at 15-31 photons per 50 µs laser pulse 

at 1550 nm wavelength. These correspond to the lowest detected average power by InAs 

avalanche photodiodes, ranging from 19 to 40 fW. The measurement system�s noise floor 

was dominated by the pre-amplifier. Our results suggest that, with a lower system noise, 

InAs avalanche photodiodes have high potential for optical detection of single or few-photon 

signal levels at wavelengths of 1550 nm or longer. 

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further 

distribution of this work must maintain attribution to the author(s) and the published article�s title, journal citation, 

and DOI. 

1. Introduction 

The ability to detect light efficiently is increasingly important for applications in 

communications, security, medicine and metrology. Conventional semiconductor 

photodiodes have limited sensitivity, especially in photon-starved and high-speed 

applications such as free space optical communication and remote sensing. In these 

applications, avalanche photodiodes (APDs) are often the preferred optical detectors. APDs 

utilize their internal gain, achieved via impact ionization, to transform electron-hole pairs 

generated by a few absorbed photons into an avalanche of charged carriers, resulting in a 

much larger, detectable electrical signal. 

Two key performance parameters in conventional APDs are the mean gain, M, and the 

excess noise factor, F. The latter characterizes the additional noise caused by the impact 

ionization process. It is known that an avalanche material with disparate electron and hole 

ionization coefficients, Į and ȕ, respectively, exhibits low excess noise factors [1], provided 

the carrier with the higher ionization coefficient initiates the avalanche process. Assuming 

insignificant dead spaces and uniform electric field, 1(1 )(2 )F kM k
M

= + − − , where k = 

ȕ/Į (or Į/ȕ) for an electron (or a hole) initiated avalanche process [1]. In an ideal APD, the 

minimum excess noise factor limit of 2 is obtained at large M, when ȕ = 0, i.e. k = 0 (for Į > 

ȕ and electron-initiated avalanche process). Thus a non-zero k limits the maximum gain from 

an APD before its excess noise degrades its performance. 

Among the well-characterized semiconductor materials, Si APDs exhibit k between 0.05 

and 0.1, for APD designs with thick avalanche regions (operating voltages > 100 V) [2] and 

those with thin avalanche regions (operating voltages ~30-40 V) [3]. Consequently Si APDs 

dominate light sensing applications at operating wavelengths, Ȝ, between 0.4 and 1.0 µm. For 

the shortwave infrared (IR) light with Ȝ between 1.0 and 1.6 µm, InGaAs/InP APDs 

(originally developed for optical fiber communication systems) are currently the most 
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commonly used APDs. They typically exhibit k ~0.4, higher than the more recently 

developed InGaAs/InAlAs APDs (k ~0.2 [4]). 

Unlike APDs for optical fiber communications, low photon or single photon detection 

demands APDs operating with gains in excess of 104 in tandem with a low noise pre-

amplifier. At such a high gain, achieving F →1, below the conventional excess noise theory 

is desirable. Over the past two decades, several ideas have been proposed to reduce k to 

realize low-noise shortwave IR APDs. These include APDs incorporating avalanche region 

consisting staircase band-structures [5,6], superlattices [7], impact-ionization-engineered 

heterojunctions [8], Si (with fused InGaAs absorption region) [9], Si (with Ge absorption 

region) [10] and more recently AlGaAsSb [11] and AlInAsSb [12]. Of these, the most 

promising APDs are those incorporating Si, AlGaAsSb and AlInAsSb avalanche regions, 

because they exhibit low noise, k ~0.01-0.1. More commonly, APDs currently used for very 

low photon detection are those designed to operate in �Geiger� mode, in which the APD is 

biased beyond its breakdown voltage. 

In a Geiger mode APD, absorption of a single photon can result in a large current pulse so 

the device is also called Single Photon Avalanche Diode (SPAD). Commercial Si-based 

SPADs, produced by custom processes [13] or CMOS technologies [14], can detect single 

photons with wavelengths of 0.4-1.0 µm. Typical values for peak single photon detection 

efficiency (SPDE) of Si-based SPADs are 40-50%, usually occurring at 400-500 nm 

wavelength. Improved CMOS processes and designs have improved the peak SPDE, 

although SPDE at longer wavelengths remain low. For example, the red-enhanced SPAD 

reported in [15] exhibited SPDE of 60, 12, and 1% at wavelength of 500, 800 and 1000 nm, 

respectively. 

For detecting photons with wavelengths between 1.0 and 1.6 µm, commercially available 

InGaAs/InP SPADs [16] offer typical SPDE up to 32% at 1550 nm wavelength. Higher 

SPDE (exceeding 55% at 1550 nm) was achieved by incorporating more effective 

cancellations of capacitive transient in InGaAs/InP SPADs [17]. Alternatively, 

Superconducting Nanowire Single Photon Detectors (SNSPDs) offer much higher SPDE 

(typically > 80%), but with the significant disadvantage of cryogenic cooling down to ~2 K. 

Since such cooling requirement is incompatible with practical, large-scale adoption of 

quantum communication (optical fiber-based [18] or air-ground [19]) and quantum imaging 

[20,21], high performance SPADs for wavelengths of 1.0-1.6 µm are highly desirable. 

An avalanche material with F → 1 would be ideal for single photon detection. It can offer 

photomultiplier-like characteristics, such as high gain with negligible amplification noise and 

very fast detection, as well as enable photon number analysis. Avalanche materials exhibiting 

F ~1.0-1.5, such as InAs [22] and HgCdTe [23�25], also have high quantum efficiency and 

are suitable for imaging arrays, making them potentially the most desirable type of single 

photon detector in the mid infrared range. The excess noise factor below 2 can be explained 

by the dead space effects [26], when the dead space is comparable to the mean distance 

between impact ionization. 

Single photon detection using HgCdTe APDs [27] and small-format APD arrays [28] 

have been reported. In [28], the 4x4 array cooled to 77 K was able to detect optical pulses as 

weak as 1 or 20 photons per pulse for pulse width of 70 ps or 1 µs, respectively. Despite 

excellent performance from HgCdTe APDs, an alternative detector technology such as InAs 

APDs for operation at and beyond 1550 nm wavelength is worthwhile because HgCdTe 

APDs are both expensive and incompatible with the global initiative to eventually phase out 

the use of mercury [29]. In this work, we report the performance of InAs APDs in detecting 

very weak optical pulses at 1550 nm wavelength. The lower detection limit, currently 

imposed by electronic noise, was found to be ~15 photons within a 50 µs pulse. 
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2. Experimental details 

The InAs APDs used in this work were fabricated from a wafer grown by molecular beam 

epitaxy on a (100) n-type InAs substrate. The wafer structure details are shown schematically 

in Fig. 1(a). The wafer includes a highly doped 100 nm p-type InAs layer for low ohmic 

resistance. This is followed by a layer of AlAs0.16Sb0.84, which presents a large conduction 

band barrier of ~1.22 eV [30], to reduce undesirable diffusion of minority electrons from the 

surface. We have made two changes to our APDs relative to our previous generation of InAs 

APDs [31]. A relatively thick InAs p-type absorption layer of 3500 nm (compared to 700 nm 

in [31]) ensures pure electron injection at the intended wavelength of operation, 1550 nm. A 

linearly graded p-type doping profile in this p-layer reduces loss of photogenerated electrons 

through recombination with the majority holes. To achieve higher avalanche gain, the 

avalanche region consists of a 6000 nm (compared to 3500nm in [31]) thick unintentionally 

doped InAs layer. 

Using device fabrication procedures described in [32], mesa APDs with optical windows 

and nominal diameters of 240 µm were produced. No antireflection coating was deposited on 

the optical window. An APD under test is shown with probe tips in contact with its metal 

contacts and optical fiber�s end over its optical window in Fig. 1(b). 

Measurements were carried out on the InAs APDs to obtain the dark current versus 

voltage characteristics (forward and reverse bias), responsivity versus wavelength at a fixed 

reverse bias, avalanche gain versus reverse bias, and weak light detection. For all 

measurements, the device-under-test (DUT) was placed in a low temperature probe station 

(model ST-500 of Janis Research), which maintained the desired temperature of the DUT 

ranging from 77 and 300 K. The probe station coupled external light into the device chamber 

with an optical fiber feed-through connected to micromanipulators. 

For the spectral response measurements, a monochromator-tungsten lamp combination 

provided monochromatic light at wavelength from 600 to 4000 nm, to facilitate 

measurements of photocurrent versus wavelength on our InAs APDs and a reference diode 

(Judson J12-18C-250U). 

For the avalanche gain measurements, the light source was a 1550 nm wavelength laser 

modulated at 10 kHz with 50% duty cycle ratio. The optical path included two fixed optical 

attenuators (26.5 dB each) and a calibrated variable optical attenuator (0-80 dB) to obtain the 

required optical attenuation. The DUT�s photocurrent was amplified and converted into a 

voltage signal by a low-noise current preamplifier (model SR570 of Stanford Research 

Systems), before being measured by a lock-in amplifier. The avalanche gain was defined as 

the ratio of the photocurrent measured using a lock-in amplifier to the unity gain 

photocurrent at Vr = -1.0 V. 

The measurements for weak light detection used an identical setup as the avalanche gain 

measurements, except that the lock-in amplifier was replaced with a spectrum analyzer 

(model SR760 of Stanford Research Systems). This was chosen to clearly illustrate the signal 

and noise levels during the measurements. 
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Fig. 1. (a) Cross-sectional schematic diagram of InAs APD. (b) Fabricated APDs with 

diameters of 240 µm. 

3. Results 

 

Fig. 2. Data of dark current versus voltage in (a) reverse and (b) forward bias at 300 and 77 K. 

A total of 10 devices were tested. Only results from 3 of the best APDs, referred to as APD1, 

APD2 and APD3, are presented for clarity. Dark current versus voltage characteristics of the 

InAs APDs at 77 and 300 K are shown in Fig. 2. Three sets of data are shown for a given set 

of experimental conditions and they are in agreement. In the forward bias shown in Fig. 2(b), 

the dark current drops rapidly when the APDs were cooled from 300 to 77 K. At 77 K, the 

dark currents at forward bias voltages from 0 to 0.13 V are fairly constant and range between 

450 and 670 pA, demonstrating a photovoltaic effect with a clear increase in the open-circuit 

voltage. This constant current extends to the reverse bias voltages in Fig. 2(a), Vr, of 0 to 

−1.0 V. They are interpreted as background radiations from parts of the probe station 

chamber at higher temperatures than the DUT. Beyond −1.0 V, dark currents increase with 

reverse bias rapidly. Clearly the dark current could be reduced by reducing the device 

diameter to below 240 ȝm in future work. 
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Fig. 3. (a) Measured room temperature responsivity from our InAs APDs reverse-biased at 

−0.2 V. Data for a commercial reference InAs photodiode are also included. (b) 77 K 

avalanche gain measured on three APDs using a 1550 nm laser. 

Data of responsivity versus wavelength for our InAs APD at Vr = −0.2 V at 300 K are 

compared with those of the commercial reference InAs photodiode in Fig. 3(a). Note that 

there is no appreciable avalanche gain from the InAs APD at −0.2 V (see data later). At 

wavelengths between 2.0 and 4.0 ȝm, our InAs APDs exhibit higher responsivity than the 

commercial reference diode. Peak responsivity values are 1.68 and 1.48 A/W in our APD and 

the reference diode, respectively. Our measured peak responsivity of 1.68 A/W at the peak 

wavelength of 3.48 µm corresponds to an external quantum efficiency of 60%. Even higher 

responsivity may be obtained by including anti-reflection coating on our APDs to minimize 

light reflection at the air-semiconductor interface. 

In Fig. 3(b), experimental avalanche gain versus reverse bias characteristics from three 

APDs (APD1, APD2 and APD3), repeated on different days (where possible), are compared. 

There are two and three sets of data for APD1 and APD3 respectively, but only a single set 

of data for APD2, which had degraded by the time a second measurement was attempted. For 

a given reverse bias, it can be observed that the avalanche gain varies between different 

APDs and different measurements for the same APD. 

The variations observed in Fig. 3(b) are attributed to uncertainties in the position of the 

optical fiber�s tip in relation to the optical window of the DUT. Different photocurrent 

readings (e.g. 7.1, 2.6, and 2.3 nA) from repeated measurements on a given DUT at −1.0 V 

were recorded, when the measurements involved optical fiber re-positioning. Much of the 

uncertainties associated with the positioning of the optical fiber stems from the optical fiber 

being transparent (as shown in Fig. 1(b)). It is possible that the 1550 nm wavelength light 

may have been injected at the sidewall of the mesa APDs, leading to different carrier 

generation profiles. Since electron ionization coefficients are much larger than hole 

ionization coefficients, mixed carrier injection produces lower gain than pure electron 

injection. Hence variation in the avalanche gain in Fig. 3(b) is believed to arise from different 

carrier generation profiles. 

The three APDs were used in further photocurrent measurements for weak light 

detection. The 1550 nm wavelength light was heavily attenuated and the mean number of 

photons per pulse was estimated using the optical attenuation setting and responsivity value 

of 0.52 A/W. Spectra of power density versus frequency from APD3 at −6 and −18 V using 

optical signals with 391 or 196 photons per pulse are shown in Fig. 4. 

As expected, a higher optical power leads to a stronger power density peak. For a given 

optical power, increasing the reverse bias increases the power density peak from the APD 

because of increasing avalanche gain. The data also show that the noise floor of the spectra is 

unaffected by the reverse bias applied to the DUT and the corresponding change in dark 
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current. Combining this with the pre-amplifier having a noise floor of 0.2 µV/Hz1/2 at a gain 

of 105 V/A, we attribute the noise floor observed from Fig. 4 to the measurement system 

noise. In addition, it is expected that if the total current in our APD is << 1 µA, the resultant 

shot noise would remain insignificant compared to the pre-amplifier noise. 

Data in Fig. 4 also indicate that avalanche gain does not contribute to significant noise. 

This is expected since InAs APDs exhibit excess noise factor of ~1.5 independent of gain and 

temperature [31]. Hence the APD�s signal-to-noise ratio increases from 3 at −6 V to 24.45 at 

−18 V, for an optical power of 1 pW (391 photons over a 50 µs pulse) and assuming a noise 

floor of 0.2 µV/Hz1/2. 

 

Fig. 4. Measured power spectrum density of APD3 at 77 K, at (a) different reverse bias 

voltages and (b) different photon numbers. These measurements were taken with a span of 6 

Hz. 

Having achieved a good signal-to-noise ratio, we further reduced the optical power to 

investigate the performance of our APDs under low photon conditions. Our best results are 

shown in Fig. 5. The noise floor is predominantly contributed by the system noise. However 

due to the differences in the avalanche gain we had to bias the APDs at different reverse 

biases to achieve the best SNR. Since the carrier generation profiles are different, the peak 

magnitude measured is different in each spectrum. The zoomed-in spectra taken using the 

SR760 spectrum analyzer with a span of 0.76 Hz show clear signal peaks corresponding to 

15-31 photons per 50 µs laser pulse. The corresponding detected average power ranges from 

19 to 40 fW, giving a signal-to-noise ratio above 2. Given the preamplifier noise is nominally 

specified to be 0.2 µV/Hz1/2, a larger signal to noise ratio may be achieved if an amplifier 

with lower noise is used. Therefore with improved quantum efficiency (possibly via an 

optimized antireflection coating) and a lower amplifier noise, InAs avalanche photodiodes 

could detect single or few-photon signals at 1.55 µm or longer wavelengths (with high 

responsivity as shown in Fig. 3(a)), which are ideal for eye-safe imaging, range measurement 

and gas sensing applications. 

 

Fig. 5. Measured power spectrum density of APD2 and APD3 at 77 K. The peak magnitude 

corresponding to the number of absorbed photons is included at the top-right corner of each 

spectrum. These measurements were taken with a span of 0.76 Hz. The lines at 0.5 normalized 

magnitude were included to illustrate that signal to noise ratio is larger than 2. 
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4. Conclusion 

InAs avalanche photodiodes have been fabricated and evaluated for low photon detection at a 

wavelength of 1.55 µm. A high external quantum efficiency of 60% at the peak wavelength 

of 3.48 µm was obtained (without antireflection coating) at room temperature. When cooled 

to 77 K, the dark current was found to be limited by 300 K background radiation. The high 

quantum efficiency, low dark current and negligible excess noise factor enable our InAs 

avalanche photodiodes to detect very low light levels of 15-31 photons per 50 µs laser pulse 

at a wavelength of 1.55 µm. The corresponding detected average power ranges from 19 to 40 

fW. Measurements using the spectrum analyzer indicated that the noise floor is dominated by 

the pre-amplifier noise. These suggest that a fully optimized InAs avalanche photodiode (for 

example with an optimized antireflection coating) coupled to a pre-amplifier with lower 

noise can achieve single or few photon detection at 1.55 µm or longer wavelengths. 
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