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ABSTRACT

We present a new method of analysing and quantifying velocity structure in star-forming

regions suitable for the rapidly increasing quantity and quality of stellar position–velocity

data. The method can be applied to data in any number of dimensions, does not require the

centre or characteristic size (e.g. radius) of the region to be determined, and can be applied to

regions with any underlying density and velocity structure. We test the method on a variety

of example data sets and show it is robust with realistic observational uncertainties and

selection effects. This method identifies velocity structures/scales in a region, and allows a

direct comparison to be made between regions.

Key words: methods: data analysis – methods: statistical – stars: formation – stars: kinemat-

ics and dynamics – open clusters and associations: general.

1 IN T RO D U C T I O N

Star-forming regions are an important part of our understanding of

the Universe. Their formation and evolution has important implica-

tions for our grasp of planet formation, star formation, and stellar

evolution.

In an effort to understand these regions and their evolution,

several methods have been developed for quantifying aspects of

their spatial structure. For example, the Q parameter (Cartwright &

Whitworth 2004) describes the degree of spatial substructure in

a region which aids investigations into how substructured regions

evolve. The � (Allison et al. 2009) and � (Maschberger & Clarke

2011) parameters evaluate the degree of mass segregation in a

region which has significant implications for our understanding

of how massive stars form, how clusters form, and how clusters

evolve.

Such methods of quantifying spatial structure have proved valu-

able and are well used, but there are not corresponding widely used

methods for quantifying velocity structure. In the absence of such

methods, several approaches have been used. The most basic ap-

proach is to look at the raw velocity data, often in the form of

arrows overplotted on physical space, e.g. Galli et al. (2013) and

Kounkel et al. (2018). This is taken further in Wright et al. (2016)

and Wright & Mamajek (2018) which colour code arrows according

to their direction. This approach can be helpful for getting a sense

of a region’s velocity structure, but does not provide an objective

output that quantifies it. As a result, interpretation based on this

alone is often subjective. Wright et al. (2016) and Wright & Ma-

majek (2018) also perform spatial correlation tests to confirm the

presence of kinematic substructure in their data sets, but these tests

can say little about the distribution of that substructure.

⋆ E-mail: rjarnold1@sheffield.ac.uk

Alfaro & González (2016) present a minimum-spanning-tree-

based method of quantifying kinematic substructure. This method

also provides graphical indications of how this substructure is dis-

tributed. However, it is primarily designed for (and solely applied

to) radial velocity data sets.

Another tool that has been used to study velocity structure is

the PPV (position–position–velocity) diagram which plots stellar

positions on two axes and one velocity component on a third, e.g

Da Rio et al. (2017). Efforts to include extra velocity components

using, for example, colour-coding or different-sized data points

generally make the diagram far too complex to reasonably interpret.

It is also difficult to display multidimensional errorbars. This limits

the usefulness of PPV diagrams when the third spatial component

and/or additional velocity components are measured.

The lack of objective, quantitative tools for studying kinematic

substructure can in part be attributed to a previous absence of sig-

nificant quantities of high-quality velocity data. However, the next

few years will see a revolution in kinematic data for Galactic astro-

physics due to Gaia, large multi-object spectroscopy radial velocity

surveys, and longer time–baseline proper motion studies. With more

and more position–velocity data becoming available, we need tools

with which to analyse and interpret it.

In this paper, we introduce a new method for analysing velocity

structure, borrowing from the concept of variograms (a tool used in

geology), which are based on principles introduced in Krige (1951),

and formalized in Matheron (1963). Here, the method is discussed in

the context of analysing velocity structure in star-forming regions,

but the method is extremely general and can be applied to regions of

any size and morphology. This makes it well suited for objectively

comparing very different regions. The method can also be applied to

data sets in any number of dimensions without additional difficulty

and it does not demand that the position and velocity data are

in the same number of dimensions. High-dimensional data sets

C© 2018 The Author(s)
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Analysing velocity structure 3895

are often hard to visualize and apprehend, so this method aids

the interpretation of such data sets (e.g. as provided by Gaia). Its

quantative nature also makes it well suited for objectively analysing

the degree of kinematic substructure in a region. Examples of data

sets that this method could be applied to include Wright et al.

(2016), Gagné & Faherty (2018), Franciosini et al. (2018), Kuhn

et al. (2018), and Wright & Mamajek (2018).

A program called the Velocity Structure Analysis Tool, VSAT,

which runs this method is available at https://github.com/r-j-arnol

d/VSAT.

2 TH E V S AT M E T H O D

We outline the method below before applying it to a variety of test

data sets.

In brief, for every possible pair of stars, the distance between

them (�r) is calculated along with the pairs velocity difference

(�v). Pairs are then sorted into �r bins. In each bin, the mean �v

of the pairs it contains is calculated. These mean �v values are then

plotted against their corresponding �r values. The values and shape

of this distribution can be used to understand the velocity structure

of the region and can be directly compared with those produced for

any other region (i.e. they are in informative physical values of km

s−1 and parsecs).

The method is applied twice, each using a different definition

of velocity difference, �v, which highlight different aspects of a

region’s velocity structure. The first definition is referred to as the

magnitude definition, �vM. If star i has velocity vector vi and star j

has velocity vector vj then �vM is the magnitude of their difference,

| vi − vj |. We stress that �vM is the magnitude of the difference of

the star’s velocities, and not the difference of the magnitudes. The

equation to calculate �vM (assuming two dimensions for simplicity)

is:

�vijM =
√

(vxi − vxj )2 + (vyi − vyj )2. (1)

As �vM is a magnitude, it is always positive.

The other definition of �v is referred to as the directional defini-

tion, �vD. It is the rate at which the distance between the stars, �r,

is changing, i.e. it is how fast the stars are moving towards/away

from one another. This value is positive if �r is increasing (stars are

moving away from each other), negative if �r is decreasing (they

are moving towards each other), and zero if they are not moving

relative to each other. As such, this could be considered a measure

of velocity divergence. In two dimensions, the equation to calculate

�vD is:

�vijD =
(xi − xj )(vxi − vxj ) + (yi − yj )(vyi − vyj )

�rij

. (2)

This definition is particularly useful for investigating if a region

(or structures within a region) are expanding or collapsing.

The method makes no assumptions about the underlying distri-

bution of the star’s positions or velocities and does not require the

region’s radius or centre to be defined. We show in Section 5 that it is

relatively insensitive to even quite large observational uncertainties

and biases, and works reasonably even when N is small (<100).

Throughout, we will assume that the data we are dealing with

is 2D velocities (proper motion) and 2D positions: i.e. what would

be provided by Gaia with good precision (and what is also simple

to present in a figure). It is trivial to extend the method to full

6D information from simulations, or to add radial velocities (with

a different uncertainty), or indeed any combination of spatial and

velocity dimensions.

A full step-by-step explanation of the method now follows.

(i) Calculate �r and �v for every possible pair of stars.

For any pair of stars i and j, their separation �rij is (in 2D):

�rij =
√

(xi − xj )2 + (yi − yj )2. (3)

Calculate �v using either the magnitude or directional definition as

desired. Note that as all measures are relative, the frame of reference

is irrelevant (i.e. there is no need to shift into a centre-of-mass or

-velocity frame).

(ii) Calculate errors on �v.

If there are observational errors, propagate them to calculate σ�vij
,

the error on each �vij. A measurement �vij has weight

wij =
1

σ 2
�vij

. (4)

Observational errors on stellar positions are typically much smaller

than on their velocities, so they are neglected in this paper.

(iii) Sort the pairs into �r bins.

Each bin should contain a significant (>>30) number of pairings,

but because the number of pairings scales as N2 (where N is the

number of stars in the data set) even fairly low N will result in

a relatively large number of pairings. As long as the number of

pairings in each bin is large, the bin widths have very little impact

on the results (in the examples shown later, we use bins of width

0.1 parsecs and most bins contain > 1000 pairs).

(iv) For each �r bin, calculate the mean �v of the pairs it

contains, �v(�r).

This gives the mean velocity difference of stars separated by a given

�r.

In the case that there are observational errors, use the weighted mean

for this step. The uncertainty on this mean due to observational

errors is:

σobs =

√

1
∑

wij

, (5)

where the sum is over the pairs of stars ij in the bin.

(v) Calculate errors due to stochasticity.

The value of �v(�r) calculated for each bin obviously depends on

the precise positions and velocities of the stars.

However, even in ‘perfect’ data, there is a stochastic error due

to the sampling of an underlying distribution with N points. The

uncertainty due to stochasticity in each bin is the standard error of

the �v values in the bin, σ stochastic, which is calculated by

σstochastic =
σ�v(�r)
√

npairs

, (6)

where σ�v(�r) is the standard deviation of the �v values in the bin,

and npairs is the number of pairs of stars in the bin.

If there are observational errors, then the stochastic error must use

the weighted standard deviation of the �v:

σ�v(�r) =

√

∑

wij (�vij − �v(�r))2

∑

wij

, (7)

where the sums are over pairs ij in the bin.

(vi) Combine the errors.

Combine the stochastic errors with the observational errors cal-

culated in step (iv) to get the total error on �v(�r) in each

bin:

σtotal =
√

σ 2
obs + σ 2

stochastic. (8)

MNRAS 483, 3894–3909 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
3
/3

/3
8
9
4
/5

2
5
1
8
4
2
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 1

7
 J

a
n
u
a
ry

 2
0
1
9

https://github.com/r-j-arnold/VSAT


3896 B. Arnold and S. P. Goodwin

Figure 1. An artificial region with random velocities projected on to a

6 parsecs by 6 parsecs box in the x–y plane. Each star is represented by a

dot with an arrow showing its velocity.

Figure 2. An artificial region projected on to a 6 parsecs by 6 parsecs box

in the x–y plane. Each star is represented by a dot with an arrow showing its

velocity. The velocity of each star is the negative of its position in order to

produce a very simple collapsing velocity structure.

(vii) Plot �v(�r) with errorbars.

Produce a plot using the magnitude definition �vijM and the direc-

tional definition �vijD.

As we will show, these plots contain a significant amount of quan-

titative and qualitative information on the spatial-velocity structure

of a distribution.

To help illustrate the step by step explanation, we apply the

method to two simple cases shown in Figs 1 and 2, both of which

have 500 stars with Gaussian random positions. In Fig. 1, the ve-

Figure 3. Physical separation, �r, plotted against velocity difference as

calculated by the magnitude definition, �vM, for the region shown in Fig. 1

in orange, and for the region shown in Fig. 2 in blue.

locities are also drawn randomly from a Gaussian, so there is no

correlation between a star’s position and its velocity. In Fig. 2, the

star’s velocities are the negative of their positions to create a ‘col-

lapsing’ distribution. We provide more realistic examples later, but

these suffice to illustrate the method.

Fig. 3 shows �vM plotted against �r for for the random (orange

line) and simple collapsing (blue line) distributions shown in Figs 1

and 2.

The orange line is flat which shows that in the region with random

velocities there is no velocity structure on any spatial scale. This

is as expected as in this region there is no correlation between the

distance between two stars and their velocity difference. It is worth

noting that from Fig. 1 the eye can be fooled into thinking that the

locations of high velocity stars are biased towards the centre. This

is an artefact of there being more stars near the centre, and so there

is a greater chance of a high-velocity star appearing there. This

highlights the need for objective numerical methods for analysing

velocity structure.

The blue line (collapsing region) is more interesting. Because

the velocities in this region are the negative of the star’s position,

the difference in two star’s velocities is directly proportional to

how far apart they are. Therefore, we expect a linear relationship

between �r and �vM, and this is clearly visible in Fig. 3. Inspection

of Fig. 2 confirms that in this region stars that are very close to

one another (low �r) have practically identical velocities, so low

velocity differences �vM. As a result in Fig. 3, �vM is low at low

�r. In contrast, inspection of Fig. 2 shows that stars that are far

apart (high �r) have very different velocities (high �vM), which is

reflected in Fig. 3.

In Fig. 4, �vD(�r) is plotted for the random and collapsing

distributions shown in Figs 1 and 2. Recall that by this definition,

negative �vD means the stars are moving towards one another, and

positive �vD means the stars are moving apart.

For the random velocity distribution (orange line) �vD(�r) is flat,

again showing no preferred scales or trends. It has a value of roughly

zero showing no global expansion or contraction as expected given

the velocities were drawn from a Gaussian distribution centred on

zero.

The blue line (collapsing distribution) is entirely negative indi-

cating that at all separations stars are moving towards each other.

MNRAS 483, 3894–3909 (2019)
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Analysing velocity structure 3897

Figure 4. This plot shows physical separation, �r, against velocity differ-

ence as calculated by the directional definition, �vD, for the region shown

in Fig. 1 in orange, and for the region shown in Fig. 2 in blue.

Again, given that this region is collapsing that is expected. We also

see that �vD becomes more negative as �r increases. This is be-

cause stars that are further apart are moving towards each other

faster in this region.

We draw the readers’ attention to the increase in the error with

�r visible in Figs 3 and 4. This is due to the decreasing number of

pairs in bins with larger and larger �r. As a result, npairs is low for

very high �r bins and from equation (6) the uncertainties are larger.

3 PL U M M ER SPHERES

The examples used above are very simplistic. In this section, we

apply the method to the more realistic case of Plummer spheres.

We generate a Plummer sphere using the method of Aarseth,

Henon & Wielen (1974), with 1000 stars and a half mass radius

of 2 parsecs. We scale the velocities by three different factors to

produce one Plummer sphere with virial ratio αvir = 0.3 (sub-

virial), one with αvir = 0.5 (virialized), and one with αvir = 0.7

(super-virial). Here, αvir = T/|�|, where T is the kinetic energy, and

� is the potential energy.

We would expect a sub-virial distribution to collapse and a super-

virial distribution to expand but we have not imposed this in any

way other than by scaling all velocities by the appropriate factor.

We run an N-body simulation of each Plummer sphere for 1 Myr in

order to allow them to start to adapt to the imposed virial ratios.

Fig. 5 shows �vM(�r), and Fig. 6 �vD(�r) for all three Plummer

spheres. In both figures, the green lines are used for the αvir = 0.3

Plummer sphere, orange for the αvir = 0.5 Plummer sphere, and

blue for the αvir = 0.7 Plummer sphere.

In Fig. 5 all three lines have the same shape: large �vM at low

�r which decreases towards high �r. The reason for this is that

Plummer spheres have a high central velocity dispersion (at the

deepest part of the potential) which decreases at larger radii. The

majority of pairs of stars with low �r are located in the core as,

by definition, this area is dense and so contains many stars that are

close together. These low �r pairs are therefore made up of stars

with a high velocity dispersion so any two star’s velocity vectors

are likely to be very different, and the magnitude of this difference,

�vM, will be large. In contrast, stars that make up high �r pairs are

predominantly located in the halo, where the velocity dispersion is

smaller, so �vM is low.

Figure 5. Plot showing �vM(�r) for three Plummer spheres. The x-axis

is the physical separation �r and the y-axis is the velocity difference �vM.

�vM(�r) of the αvir = 0.7 case is shown by a blue line, the αvir = 0.5 case

by an orange line, and the αvir = 0.3 case by a green line.

Figure 6. Plot showing �vD(�r) for three Plummer spheres. The x-axis

is the physical separation �r and the y-axis is the velocity difference �vD.

�vD(�r) of the αvir = 0.7 case is shown by a blue line, the αvir = 0.5 case

by an orange line, and the αvir = 0.3 case by a green line.

There is a clear vertical offset between Plummer spheres with

higher virial ratios in this figure. This is because, as virial ratio is

the ratio of kinetic to potential energies, stars in regions with high

virial ratios will have higher speeds on average. Therefore, velocity

differences between pairs of stars in those regions are more likely

to be high.

Otherwise, the velocity structures of the three Plummer spheres

are near-identical according to �vM. There is a ‘kink’ present in

all three lines at �r ∼11 parsecs. This is just a peculiar feature

of this particular Plummer sphere realization (a similar feature is

not present in Plummer spheres generated with different random

number seeds).

In Fig. 6, we show �v(�r) for each of the Plummer spheres using

the directional definition �vD. While in Fig. 5 all three Plummer

spheres showed the same velocity structure with only a vertical

offset due to their virial ratio, here the three Plummer spheres appear

quite different.

Recall that positive �vD is indicative of expansion, and a negative

value is indicative of collapse. The blue line (αvir = 0.7) has values

MNRAS 483, 3894–3909 (2019)
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3898 B. Arnold and S. P. Goodwin

Figure 7. Plot showing �vD(�r) for the αvir = 0.7 Plummer sphere. The

true velocity structure is shown in blue. After the velocities are randomly

shuffled between stars, the recalulated velocity structure is plotted in grey.

The x-axis is the physical separation �r and the y-axis is the velocity

difference �vD.

that are generally positive, the orange line (αvir = 0.5) is roughly

flat, and the green line (αvir = 0.3) is always negative.

We examine the αvir = 0.5 Plummer sphere (orange line) first.

For separations of less than 10 parsecs (i.e. separations that contain

the majority of the pairs of stars), �vD is flat, showing that stars are

equally likely to be moving towards each other as away from each

other. This is as would be expected for a region that is in neither

bulk expansion nor contraction. At separations above 10 parsecs,

the stars are generally moving towards each other. This may be due

to stars with such extreme separations being mainly found in the

extreme halo of the Plummer sphere, and they are being attracted

back towards the centre. As a result, they are moving towards each

other on average. However, given the size of the error bars, it is also

possible the apparent inconsistency of the velocity structure with

zero at large separations is an artefact of stochasticity.

For the collapsing (αvir = 0.3) case, the line is below zero at

every separation. That means, at every separation, on average, the

stars are moving closer together.

The expanding case has positive �vD at separations below

∼10 parsecs; on average, stars at these separation are moving away

from each other. As in the αvir = 0.5 case, stars with extreme sep-

arations are found to be moving towards one another. Again, this

may be due to stars on the outskirts being attracted back towards

the centre or it may due to a combination of stochasticity and large

error bars at high �r.

Uncertainty over whether a feature is real or an ‘artefact’ can

be an issue in bins where npairs is low, as is typically the case

in large �r bins. To examine whether this feature is significant,

velocities are shuffled randomly between stars which removes any

real velocity structure from the data. The method is then reapplied

and any ‘features’ observed in the result must be due to stochasticity.

This is done 10 times and the results are plotted in grey in Fig. 7.

The actual velocity structure is again plotted in blue for comparison.

From Fig. 7, it is is clear that any ‘features’ in the actual velocity

stucture of the αvir = 0.7 Plummer sphere at �r > ∼9 parsecs are

not significant. The same analysis is applied to the αvir = 0.3 and

αvir = 0.5 Plummer spheres. In the αvir = 0.3 case, all features are

found to be significant up to �r ∼ 13 parsecs, and in the αvir = 0.5

case, the structure is found to be consistent with the randomized

cases (so no systematic expansion or contraction) at all �rs.

Figure 8. A distribution with low substructure generated by the box fractal

method projected into a 1.8 parsec × 1.8 parsec box. Each star is represented

by an arrow. The position of the arrow corresponds to the position of the

star and the arrow itself indicates the star’s velocity.

3.1 Interpreting observations

If an observer observed the three spherical clusters in this section,

they would find them to be very similar in their spatial structure. An

analysis of their velocity magnitudes �vM would show a structure

such as in Fig. 5 and it would be possible to say that they each

have a Plummer-like velocity distribution. Additionally, an analysis

of �vD(�r) would show that one is expanding, another collapsing,

and the other appears static.

4 C OMPLEX SUBSTRUCTURED R EGI ONS

Plummer spheres are fairly simple example distributions. We now

apply the method to complex substructured distributions generated

by the box fractal method.

A full description of the box fractal method is available in Good-

win & Whitworth (2004); however, a brief overview is given here.

A single ‘parent’ star is placed in the centre of a box, and then

the box is divided into smaller boxes. The probability that each of

these smaller boxes has of containing a ‘child’ star is chosen by the

user. If the probability is low the fractal will have a high degree of

substructure, and if the probability is large the fractal will be more

smooth. If a box does contain a child star, it is placed approximately

in the centre of the box (noise is added to the position to avoid an

obviously gridlike structure). The velocity of the child star is the

same as its parent’s velocity plus some random component. After

this, each child star becomes a parent and the process is repeated to

produce the desired number of stars (extra stars can be deleted at

random).

Note that here we are only interested in investigating the appli-

cation of the VSAT method to substructured distributions, so the

absolute values of e.g. radius and virial ratio are unimportant.

4.1 Distributions with low substructure

An example of a fractal with low substructure and 1000 stars is

shown in Fig. 8 and the arrows show 2D velocity vectors. Clear

MNRAS 483, 3894–3909 (2019)
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Analysing velocity structure 3899

Figure 9. The velocity structure of the distribution with low substructure

shown in Fig. 8. The velocity structure �vM(�r) is shown by a blue line

and �vD(�r) by an orange line.

structure in both the positions and velocities of the stars is obvious,

but too complex to interpret by eye in any meaningful way. It is pos-

sible to tell there is substructure, but without other information the

eye could not reasonably judge the degree of velocity substructure

or how it is distributed.

In Fig. 9, we show the magnitude (blue line) and directional (or-

ange line) �v(�r) plots for the fractal in Fig. 8 (note that everything

is done in 2D).

�vM(�r) (blue line), is ∼2 km s−1 when the separations are

low, rising to ∼3 km s−1 at separations of ∼0.7 parsecs and then

remaining roughly constant.

This initial increase of �vM with �r is because, as described

above, when child stars are produced they inherit most of their ve-

locities from their parents, plus a random component. As a result, in

the completed distributions, the stars closest together have very sim-

ilar velocity vectors, so the magnitude of their difference, �vM, is

small. Stars further away from each other are very distantly ‘related’

so have very different velocity vectors and their �vM is big.

The 0.7 parsecs length scale is significant because it is the ap-

proximate radius of the distribution. Stars separated by this length

scale or greater are generated from different ‘child stars’ of the

very first generation in the production of the fractal. The random

changes applied at each generation after that average to a net ad-

ditional difference of zero, so �vM remains roughly flat at �r ≥
0.7 parsecs.

The directional velocity structure, �vD(�r) (orange line), is al-

ways positive meaning that stars tend to move away from each other

on all scales. There is some structure in �vD showing that expan-

sion increases on scales up to 0.5 parsecs, then is roughly even,

before increasing again on scales of >1 parsec.

Fig. 10 shows �vM(�r) (top panel) and �vD(�r) (bottom panel)

for nine distributions statistically identical to that in Fig. 8 (only the

random number seed used to generate the distributions has been

changed). Each distribution has the same colour in both panels.

In the top panel of Fig. 10, every distribution’s velocity magnitude

structure has the same basic shape: low �vM at small separations

which increases with separation to up to around 0.7 parsecs and then

is roughly flat. That said, the details of each individual line (distri-

bution) are different, and some show ‘structure’ at larger scales.

In the bottom panel of Fig. 10, some distributions have predomi-

nantly negative (collapsing) �vD and some predominantly positive

Figure 10. This figure shows �vM(�r) (top panel) and �vD(�r) (bottom

panel) of nine distributions with low substructure generated by the box

fractal method.

(expanding) because the box fractal method does not preferentially

make either expanding or collapsing distributions. There are fea-

tures visible on individual lines in this plot, reflecting that individual

distributions (and parts of individual distributions) do have some ve-

locity structure.

4.2 Highly substructured distributions

We now examine in detail a distribution with high substructure,

illustrated in Fig. 11, again with arrows showing the 2D velocities.

This distribution has very clear spatial and velocity structure on a

variety of scales. Highly substructured distributions are produced

using the box fractal method by reducing the probability of each box

containing a ‘child’ star. The resulting distribution is less smooth as

stars only continue to be generated in boxes that do have children.

The velocity structure of the highly substructured distribution

from Fig. 11 is shown in Fig. 12, where �vM(�r) is shown by the

blue line and �vD(�r) is shown in orange.

Broadly, the �vM(�r) of the highly substructured distribution

has the same shape as �vM(�r) of the distribution with low sub-

structure: �vM increases with �r and then plateaus. However, as

we would expect, in the highly substructured case, the line has ad-

ditional features, including a plateau at ∼ 0.3 parsecs and a dip at

�r > 1.1 parsecs. As will be shown in Fig. 14 and discussed later,

MNRAS 483, 3894–3909 (2019)
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3900 B. Arnold and S. P. Goodwin

Figure 11. A highly substructured distribution generated by the box fractal

method projected into a 1.8 parsec × 1.8 parsec box. Each star is represented

by an arrow. The position of the arrow corresponds to the position of the

star and the arrow itself indicates the star’s velocity.

Figure 12. The velocity structure of the distribution with high substructure

shown in Fig. 11. The velocity structure �vM(�r) is shown by a blue line

and �vD(�r) by an orange line.

the features in �v(�r) due to the velocity substructure are often

significant in the highly substructured distributions.

The �vD(�r) of the distribution in Fig. 11 will now be examined

in detail in order to demonstrate using the velocity structure plots to

investigate the detailed dynamical structure of a region (recall that

this is the orange line in Fig. 12). Inspection of this figure shows

a ‘peak’ in �vD between �r ∼ 0.3 and �r ∼ 0.6 parsecs and a

‘trough’ in �vD between �r ∼ 0.8 and �r ∼ 1.2 parsecs.

To interpret these features, we can consider which stars contribute

more than others in these separation ranges. For example, if a star

is in densely populated area, it would be part of many low �r

pairs and would appear many times in low �r bins. Understanding

which stars are contributing most heavily to the interesting regions

of the velocity structure (in this example’s case 0.3–0.6 parsecs and

0.8–1.2 parsecs) helps us to understand the structure. Accordingly,

Figure 13. This figure shows the highly sustructured distribution from

Fig. 11. The stars are colour-coded according to how many times they

appear in �r bins between 0.3 and 0.6 parsecs (top panel), and between 0.8

and 1.2 parsecs (bottom panel).

the number of times each star appears in �r bins between 0.3 and

0.6 parsecs is counted. The fractal is plotted with the stars colour-

coded by their counts in these bins in the top panel of Fig. 13. The

same is done for the �r bins between 0.8 and 1.2 parsecs in the

bottom panel of Fig. 13.

First, we will look at the simpler case, which for this distribution

is the �r 0.8–1.2 parsecs range, where �vD is negative. Inspection

of the bottom panel of Fig. 13 shows that two clumps contribute

strongly to these bins. These clumps have been circled in blue

and black on the figure for clarity. Comparison of this figure with

Fig. 11 shows that these clumps are moving towards each other,

therefore �vD is negative in this �r range. From this analysis,

we can anticipate that these clumps will continue to move towards

one another (at least in the short term, and in the 2D plane we are

observing – we have no idea here about the third dimension of either

position or velocity).

The 0.3–0.6 parsecs range is more complicated. Inspection of the

top panel of Fig. 13 shows that stars in a small clump at coordi-

nates around (0.15, 0.15) parsecs which has been circled in black

contribute most often to these bins. The stars in several surrounding

MNRAS 483, 3894–3909 (2019)
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Analysing velocity structure 3901

clumps also contribute significantly, and these clumps have also

been circled for clarity.

By comparing Fig. 11 and the top panel of Fig. 13, we see that

the stars in the central clump (black circle) have a bulk motion

downwards on the figure (this direction is defined as ‘south’ for

simplicity). To the north, there are two clumps, one circled in orange

which is moving to the north-west, and the other one circled in blue

moving east. Therefore, these three clumps are all moving away

from each other, resulting in �vD being positive. In particular, the

clump circled in orange is moving directly away from the main

body of the distribution. In the short term, we would expect this

clump to continue to separate from the majority of the distribution

(at least in this projection).

There is one other clump with stars which contribute significantly

to the 0.3–0.6 parsecs �r bins, which is in the south and circled in

green. This clump is moving northeast, directly towards the central

clump and the clump circled in blue (so negative �vD) and away

from the clump circled in orange (positive �vD). Although the �vD

contribution from stars in this clump is mostly negative, the number

of stars it contains is small, so it is easy to explain why the mean

�vD in the 0.3-0.6 parsecs �r range is positive. It seems likely that

the black- and green-circled clumps will continue to move towards

each other in the short term.

In summary, with only the raw stellar positions and velocities

shown in Fig. 11, the complex velocity structure of the distribution

is very difficult to understand or make judgements on by eye. The

method presented in this paper has been used to explore and interpret

the dynamical state of this distribution and make predictions about

its short-term future.

For the purpose of comparison, nine additional highly substruc-

tured regions are generated using the same method but different

random number seeds. These region’s velocity structures are shown

in Fig. 14 where the top panel shows �vM(�r) and the bottom panel

�vD(�r).

The first feature of note is that there is much less structure in

both panels of Fig. 10 than in their corresponding panels in Fig. 14,

which reflects the significant velocity substructure in this latter set of

distributions. This is useful because while it is easy to distinguish

the differing levels of spatial structure in Figs 8 and 11 by eye

the distributions are too complex to tell simply by looking if the

velocity structures are different. Therefore, even if the actual degree

of velocity structure in each set of distributions were unknown,

we could still say with confidence that there is significantly more

velocity structure in this latter set.

We also note that in Fig. 14 each individual line in both panels

appears quite different from the others. This is unsurprising as the

distributions are produced using different random number seeds so

each is unique, and the distributions are highly substructured so two

statistically identical distributions may have very different forms .1

In the top panel (�vM), the velocity structures show a general

upwards trend; although individual structures show significant de-

viation from this (as was mentioned in the discussion of Fig. 12)

on the whole �vM correlates positivity with �r. This increase of

�vM with �r is a result of the box fractal generation method which

produces distributions where stars that are near one another have

similar velocities and stars that are far apart have very different ve-

locities. The magnitude of the features on each line makes it difficult

to say with confidence if there is a plateau at large �r.

1This raises the question as to if these distributions are indeed ‘the same’,

however, that is a discussion beyond the scope of this paper.

Figure 14. This figure shows the velocity structure �vM(�r) (top panel)

and �vD(�r) (bottom panel) of nine highly substructured distributions gen-

erated by the box fractal method.

In the bottom panel, as is the case in Fig. 10, some distributions

have predominantly negative �vD and some predominantly positive

�vD as the box fractal method is not biased towards making either

expanding or collapsing distributions.

5 IN C L U D I N G O B S E RVAT I O NA L

UNCERTAI NTI ES

In this section, we test whether the method is robust when faced

with imperfect data.

The velocity structure of a simulated star cluster is measured, then

observational errors are applied to the data, and the velocity struc-

ture is re-calculated. The ‘true’ velocity structure and ‘observed’

velocity structure are then compared. A simulation with an unusual

spatial and velocity evolution is used to make this more challenging.

The cluster is taken from Arnold et al. (2017). That paper gives

all the details of the simulations, but this cluster contains N = 1000

stars with masses drawn from the Maschberger IMF (Maschberger

2013) using a lower limit of 0.1 M⊙ and an upper limit of 50 M⊙.

It has been evolved for 2 Myr and has split into a binary cluster as

shown in Fig. 15.

Although the results presented here concern only this cluster, the

same procedure has been applied to a variety of other simulated

clusters, and similar results are found.

MNRAS 483, 3894–3909 (2019)
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3902 B. Arnold and S. P. Goodwin

Figure 15. A cluster from a simulation with an unusual velocity evolution.

Observational errors are applied to this cluster and the ‘true’ and ‘observed’

velocity structures are compared.

5.1 Velocity uncertainties

As stated in Section 2, this paper only considers errors on velocities

as they are typically significantly larger than errors on positions.

We also assume that all stars in the analysis are true members of the

cluster. Later, we remove low-mass stars and examine the impact

on the results, but do not add ‘contaminants’ (how important these

are will vary significantly depending on the observational data set).

Observational uncertainties are simulated by replacing each star’s

‘true’ velocity with an ‘observed’ velocity with an associated error.

The observed velocity is drawn from a Gaussian centred on the

true velocity. The width of the Gaussian used is the observational

uncertainty being simulated, σ sim (i.e. the true velocity usually lies

within the error bar of the observed velocity). This is done for

the x, y, and z components of the velocity separately, i.e. the true

x velocity of a star is replaced with an observed x velocity, etc.

Here, σ sim values of 0, 0.4, 0.8, 1.2, and 1.6 km s−1 are used.

The σ sim = 0 km s−1 case is the true velocity structure as there

is no observational uncertainty (although it still has an uncertainty

associated with stochasticity as in all previous cases).

For each σ sim, the observed �vM(�r) and �vD(�r) are calcu-

lated. These are shown in Fig. 16 where the velocity structure with

σ sim = 0 km s−1 is shown by the blue line, 0.4 km s−1 is the orange

line, 0.8 km s−1 is the green line, 1.2 km s−1 is the red line, and

1.6 km s−1 is the purple line.

From inspection of the top panel, it is clear that the mean �vM,

�vM, that is found increases with observational uncertainty from

∼2 km s−1 when there is no observational error, o ∼2.2 km s−1

when the error is σ sim = 0.4 km s−1, and as σ sim increases this

trend continues.2 The reason for this is that uncertainties in the

velocities cause the velocity dispersion to be artificially inflated. As

a result, the observed difference between any two velocity vectors is

more likely to be larger rather than smaller than the ‘true’ difference.

2Note that this increase is not equal to σsim

√
2 as may be expected.

The inflation of �vM by observational error is not of great im-

portance. Much of the useful information regarding the velocity

structure of a cluster using the magnitude definition is contained in

the shape of the �vM(�r) line, not its placement on the �vM-axis.

Therefore, it is reasonable to analyse �vM(�r) to investigate a re-

gion’s velocity structure without correcting for inflation of �vM.

Nevertheless, for the interested reader, the inflation of �vM by ob-

servational error is discussed in the appendix, which also describes

how this it can be corrected using Monte Carlo methods.

For the mean time, the lines are shifted such that in every case

their �vM matches that of the true velocity structure (σ sim = 0 km

s−1),3 Fig. 17.

This figure shows a good agreement between the shape of the

observed velocity structures. As the observational uncertainty in-

creases, the observed velocity structure reproduces the true velocity

structure less well, but the overall structure remains essentially

recognisable even in the cases where the simulated uncertainty on

each velocity component is greater than the 3D velocity dispersion

of the cluster (1.53 km s−1). From this, we conclude that the method

deals well with observational uncertainty up to and potentially be-

yond the point where the errors are as large as the velocity dispersion

of the region. For Gaia, velocity uncertainties depend largely on the

apparent magnitude of the source. Table B.1 in Lindegren et al.

(2018) gives median values of these uncertainties as a function of

apparent magnitude for Gaia DR2. For a G-dwarf at ∼1 kpc, we

would expect errors in proper motion of around 0.3–1 km s−1.4

In the bottom panel of Fig. 16, we show the directional velocity

structure �vD(�r) (with the lines for different errors having the

same colours as in the top panel). What is obvious here is that the

observational errors have essentially no effect on the directional

structure. This is because even with uncertainties the apparent di-

rections of motion are usually roughly correct, and errors between

pairs tend to average out rather than sum (as they did above). (Note

that we assume the errors are uniform across our ‘field of view’, if

they are not this could introduce a bias but we have not investigated

this potential effect.)

5.2 Mass cutoffs

A probable bias in observations is to not observe low-mass stars as

they are typically faint. (Note here that larger errors on fainter star’s

velocities would be included in the error propagation). We examine

the effect of selection limits by removing stars of increasingly high

mass from our region.

The region has 1000 stars in total which reduces to 428 stars of

>0.3 M⊙, 207 stars of >0.6 M⊙, 128 stars of >0.9 M⊙, and only

83 stars of >1.2 M⊙ (these mass limits are rather arbitrary and are

just chosen as examples).

Fig. 18 shows the different �vM(�r) (top panel), and �vD(�r)

(bottom panel) plots. Different coloured lines represent different

mass limits as described in the figure.

From Fig. 18, we see that the same basic velocity structure is

observed at all mass limits for both �vM(�r) and �vD(�r). There

does appear to be a sytematic increase in the amplitude of both

�vM(�r) and �vD(�r) at high �r and high mass cutoff. This

3The Monte Carlo method works well, but not perfectly. Overlaying the

lines exactly allows their features to be compared more easily by eye.
4The random error in DR2 for G magnitudes of 15–17 is ∼0.06–0.2 mas

yr−1, however there is also a systematic error at the close angular separations

we are interested in of ∼0.1 mas yr−1 (see Lindegren et al. (2018) for details).

MNRAS 483, 3894–3909 (2019)
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Analysing velocity structure 3903

Figure 16. The velocity structure of the cluster in Fig. 15 with simulated observational uncertainties applied. The top panel shows �vM(�r) and the bottom

panel shows �vD(�r). In both panels, a blue line is used for the true velocity structure, orange for a simulated observational uncertainty of 0.4 km s−1, green

for 0.8 km s−1, red for 1.2 km s−1, and purple for 1.6 km s−1.

Figure 17. Top panel of Fig. 16 with each line shifted such that their �vM matches that of the true velocity structure.

MNRAS 483, 3894–3909 (2019)
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3904 B. Arnold and S. P. Goodwin

Figure 18. The velocity structure of the cluster in Fig. 15 as measured by the method using different mass cutoffs. The top panel shows �vM(�r) and the

bottom panel shows �vD(�r). In both panels, the blue line is the result using all stars, the orange line using stars above 0.3 M⊙, green uses those above 0.6

M⊙, red above 0.9 M⊙, and purple above 1.2 M⊙.

apparent increase is not observed in other simulations from the same

set. It is therefore determined to be a peculiarity of this particular

simulation like the apparent ‘kink’ observed in Fig. 5.

The overall robustness of the measured velocity structure against

mass cutoffs is encouraging, especially considering the 1.2 M⊙
cutoff leaves only 83 of the cluster’s original 1000 stars remaining,

but it is still able to reproduce the shape of the true underlying

velocity structure reasonably well.

That each of our lines for different mass limits are very similar

shows that in this simulation they all trace a similar velocity ‘field’.

This may not be the case in reality, for example in some regions the

star’s spacial and velocity distributions may be a functions of mass

(mass segregated regions being an obvious example).

Nevertheless, we can only measure the velocity structure of the

stars which are detected, and from these tests this appears to be

robust.

As the mass of the cut-off increases, the level of noise increases

which is unsurprising as fewer stars survive the higher the cutoff.

When there are large error bars as a result of low-N, the random-

ization approach used in Section 3 could be used to confirm which

features in the observed structure are significant.

6 M ULTIPLE STELLAR SYSTEMS

So far, we have assumed all stars are single. However, in obser-

vational data and more realistic simulations, many stars will be in

binaries or higher-order multiples. Multiple systems, particularly

those in close orbits, often have high orbital velocities. However,

from the point of view of the global velocity structure of a region, a

system’s centre of mass velocity better describes the motion of the

stars over time than their individual velocities. Here, the impact of

binary systems on the velocity structure returned by the method is

examined (higher order multiples are not included for the sake of

simplicity).

This is done by first generating a distribution of 5000 artificial

binary systems. This large number is chosen to dampen noise due

MNRAS 483, 3894–3909 (2019)
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Analysing velocity structure 3905

to stochasticity within the distribution. As a result, fluctuations

observed in the results can be confidently attributed to the impact

of binary systems.

The binary systems are generated as follows. The mass of the

primary star is drawn from the Maschberger IMF (Maschberger

2013). The mass ratio of the system is drawn from a uniform dis-

tribution between 0.2 and 1 (Raghavan et al. 2010) and the mass of

the primary is multiplied by this factor to produce the mass of the

secondary. The period, P of the system is drawn from a lognormal

distribution centred on log P = 5.03 with a standard deviation of

2.28 (here P is in days (d)) (Raghavan et al. 2010). From this, the

semimajor axis of the system is calculated. Orbits are circular and

the phase and inclination angle of the system are chosen randomly.

The position and velocity of the system’s centre of mass are also

drawn randomly, the position from a uniform distribution within a

1 parsec × 1 parsec × 1 parsec cube, and the velocity from a Gaus-

sian distribution with a standard deviation of 3 km s−1 in a random

direction.

Synthetic proper motion and radial velocity measurements are

then generated from this distribution. Proper motion measurements

are produced by evolving the distribution forwards by 5 years (grav-

itational forces exerted on the systems by each other are neglected

because of the shortness of this time-scale). The change in each

star’s position in the x−y plane is used to calculate its observed

proper motion. Stars’s radial velocities are taken to be their instan-

taneous velocities in the z-direction.

In Fig. 19, we show the velocity structure of this distribution of

binaries. In the left column, are the results using proper motion

(2D) velocities, and in the right column are results using radial (1D)

velocities velocities. The top row uses �vM for each case, and the

bottom row uses �vD.

In all four panels, the results using the system centre of mass ve-

locities are shown by black lines. The centre of mass velocities more

accurately describe the distribution’s underlying velocity structure

than the velocities of the individual stars which contain an orbital

component. All four of these black lines are generally flat as ex-

pected for a random velocity field. There is a slight deviation from

this at large �r because as �r increases fewer and fewer systems in

the 1 parsec square box are sufficiently far apart to populate these

bins, making them vulnerable to stochasticity (see earlier).

The other coloured lines in Fig. 19 are the velocity structure recal-

culated using the individual velocities of (some) stars. To model ob-

servational limitations, we remove some fraction, fUn, of the lowest-

mass (hence lowest luminosity) stars. For fUn = 0 (blue lines), all

primaries and companions are observed. For an unobserved frac-

tion fUn = 0.25 (orange lines), the 25 per cent lowest-mass stars

are ‘unobserved’ and are not included in the velocity structure cal-

culation, and similarly for fUn = 0.5 (green lines), and fUn = 0.75

(red lines).

Note that (as described earlier) as the size of the region is 1 parsec-

by-1 parsec any features on scales greater than 1 parsec should be

ignored (or at least taken with extreme caution).

We also note that the results described here reflect the impact

of binary stars in the worst case scenario: the binary fraction is

100 per cent, and only a single epoch of radial velocity data is

used. Nine other distributions, each with 5000 binary systems, are

produced and analysed as described here. Their results show the

same general trends as the one presented in this paper.

We will first discuss the results using �vM (top row of Fig. 19).

In both the cases, where the proper motions (left-hand panel) and

the radial velocities (right-hand panel) are used, the flat shape of

the centre of mass determination of �vM(�r) (the black lines)

is largely retained by the results using stellar velocities (coloured

lines). As is to be expected, this agreement is poorer when fUn is

high (and so more stars are unobserved), and at large �r (where

bins contain fewer pairs and the impact of a small number of stars

can be more important). As a result, artificial structure is visible

at high fUn and �r. In Fig. 19, particularly in the radial velocity

case, this artificial structure predominantly increases �vM. In the

nine other realizations of the distribution, however, there is an even

spread between cases where the artificial structure increases and

decreases �vM.

It is clear from the figure that the results using stellar velocities

are off-set to higher �vM. This is due to an inflation of the ‘velocity

dispersion’ from the extra velocity components from binary motion.

The degree of the inflation is larger in the radial velocity case

than the proper motion case as orbital motions, particularly in tight

binaries, can add significant instantaneous component to the stellar

velocity but these are somewhat ‘washed out’ by the time baseline

of proper motion observations. As discussed in Section 5.1, the

inflation of �vM has minimal impact on the interpretation of the

distribution’s velocity structure. Overall, the agreement between

the velocity structure of the region as calculated using the centre of

mass velocities, and the structure using the stellar velocities is good

for all but the highest fUn and �r.

The bottom row of Fig. 19 shows �vD(�r) using proper motions

(left-hand panel) and radial velocities (right-hand panel). In both

cases the directional velocity structure is extremely similar for the

centres of mass (black lines), and complete or fairly complete binary

samples (blue and orange lines): a flat distribution at zero �vD.

When half, or more, of low-mass stars are unobserved (fUn = 0.5

green line, fUn = 0.75 red line), some artificial structure appears.

For most �rs, this structure has an amplitude below 0.3 km s−1, so

would almost certainly be lost in the noise of real data. As in the

�vM results, the artificial structure can both increase or decrease

�vD, and is most severe at high �r.

For the case presented in Fig. 19, the fUn = 0.5 results using the

proper motions (left panel, green line) is startlingly well behaved.

This is a quirk of the binary distribution presented here; in general,

there is some artificial structure in the fUn = 0.5 results. In the radial

velocity results, there is more deviation, which is more typical.

It is worth reiterating that in the case of radial velocities a single

epoch of observations is assumed. If there were multiple epochs, an

observer could potentially estimate binary system’s centre of mass

velocity, even if only one star is observed. If an orbital solution

cannot be found but a fluctuation in a star’s radial velocity is ob-

served, the suspected binary could be removed from the data set.

This prevents contamination of the calculated velocity structure by

an unknown orbital component and, as was shown in Section 5.2,

the method is robust even when a high fraction of stars are not

observed.

As described, there are 10 000 stars in the distribution used

to produce Fig. 19 and this large N is chosen to dampen noise

due to the stochasticity in the distribution (except, as discussed, at

high �r where npairs unavoidably becomes low). However, many

observational data sets have much lower N. For comparison, the

procedure described above is repeated for a distribution of 1000

stars (500 binary systems). The results are shown in Fig. 20.

The velocity structure as calculated using the system’s centres

of mass velocities is less flat than in Fig. 19 due to the increase

in stochasticity caused by lower N. The velocity structure of the

systems themselves is not of interest here however; it is the degree

of agreement between it and the velocity structure calculated using

the stellar velocities that is being examined.

MNRAS 483, 3894–3909 (2019)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
3
/3

/3
8
9
4
/5

2
5
1
8
4
2
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 1

7
 J

a
n
u
a
ry

 2
0
1
9



3906 B. Arnold and S. P. Goodwin

Figure 19. The velocity structure of a distribution of 5000 binary systems. The top two panels use the �vM definition and the bottom two �vD. The left-hand

column calculates the velocity structure using synthetic proper motion data, and the right hand one synthetic radial velocity data. In all four panels, the black

lines are the velocity structure calculated using the centre of mass velocities of the binary systems. The other lines use the velocities of the individual stars. The

blue lines are the velocity structure calculated when all stars in the sample are observed (the unobserved fraction fUn is zero). The orange lines are the results

when fUn is 0.25, the green when fUn is 0.5, and the red when fUn is 0.75.

Inspection of Fig. 20 shows the results are noisier and have

larger uncertainties than those in Fig. 19 which can be attributed

to the lower N. Nevertheless, the agreement is relatively good

between the results using centre of mass velocities and stel-

lar velocities although, as was the case in Fig. 19, this be-

comes worse at high �r and fUn, and there is an increase in

�vM with fUn. Again, nine other distributions of 500 binary sys-

tems were generated and show the same general trends as in

Fig. 20.

We now summarize the effect of binaries. Binaries ‘inflate’ �vM

with respect to the binary centre of mass determination (exactly

by how much depends on the binary population); however, the

overall structure of �vM remains similar even when a significant

fraction of low-mass stars are unobserved. The level and structure

of �vD remains very similar, though there are deviations when the

‘unobservable’ fraction is very high.

What is recomforting is that the VSAT method is capable of

extracting real structure from even a single epoch of radial velocity

MNRAS 483, 3894–3909 (2019)
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Analysing velocity structure 3907

Figure 20. This figure has the same structure as Fig. 19 but it shows the velocity structure of a distribution of 500 binary systems rather than 5000. The top

panels use the �vM definition and the bottom panels �vD. The left column calculates the velocity structure using proper motions, and the right-hand one uses

radial velocities. The black lines show the velocity structure calculated using the binary system’s centre of mass velocities, and the other lines are the velocity

structure as calculated using the velocities of the individual stars. The blue lines use all stars in the sample, the orange lines are the results when fUn is 0.25,

the green when fUn is 0.5, and the red when fUn is 0.75.

data contaminated with binary motions. Such an analysis should be

treated with rather more caution than proper motion data or multi-

epoch radial velocity data, but it still contains useful information.

7 C O N C L U S I O N S

In this paper, we present a method of examining the velocity struc-

ture of star-forming regions by plotting the physical separation of

pairs of stars (�r) against their mean velocity difference (�v).

Distributions of �v(�r) for different regions can be directly com-

pared to each other. Two definitions of �v are used, the ’magnitude’

definition (�vM), and the ‘directional’ definition (�vD).

This method does not require the region’s centre or radius to be

defined, requires no assumptions about the region’s morphology,

and can be applied to data in any number of dimensions in any

frame of reference. The method also includes the treatment of ob-

servational errors, and is shown to be useful even for data with large

errors.
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3908 B. Arnold and S. P. Goodwin

The output from the method requires some interpretation, and

we have shown a number of examples of how to interpret more

complex data. This is of particular relevance as we enter this new

era of an unprecedented quantity and quality of velocity data.

Although this method was created for the purpose of investigating

velocity structure in star-forming regions, it is extremely generic;

there is no reason the data it is applied to must be r and v of stars.

This makes it a potential tool for investigating very different data

sets.

A Python program which runs the method, the Velocity Structure

Analysis Tool, VSAT, can be found at https://github.com/r-j-arnold/

VSAT. In the near future, we intend to publish a paper demonstrating

the application of this method to observational data (Arnold et al.,

in preparation).
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APP ENDIX : C ORRECTING INFLATION

The increase in �vM with uncertainty will now be explained in

more detail. As only the magnitude definition of �v is affected, the

M subscript will be dropped to avoid overly long subscripts in this

appendix.

The true velocities of stars in a region (vT) have some distribution.

A cartoon, idealized picture of this is shown by a blue line in Fig. A1,

where the x-axis is velocity, and the y-axis is the probability of a

star having a given velocity. Due to observational uncertainties, it is

impossible to perfectly measure the true velocities vT, and instead

we observe velocities vobs. The effect of observational uncertainties

is to smear out the true velocity distribution. The observed velocity

distribution is shown by the orange line in Fig. A1 for our cartoon

Figure A1. Cartoon depicting the broadening of the observed velocity

distribution due to observational uncertainties. The x-axis shows a range of

velocities and the y-axis their probability. A true velocity distribution (in

blue) is broadened into the observed velocity distribution (in orange).

case. Notice that the observed velocity distribution is wider that the

true velocity distribution.

When the velocity difference between two stars in a region is

measured this can be thought of as drawing two velocities from the

velocity distribution and calculating the difference between them. If

the distribution is narrow, then the range of likely velocities is small

so the two velocities drawn will usually have a small difference

between them, therefore �v will be small. In contrast, if the distri-

bution is wide it is more likely that any two values drawn will be

very different, so �v will be large. As discussed, the observed ve-

locity distribution is wider than the true velocity distribution, so the

observed mean velocity difference between pairs of stars (�vobs) is

larger than the true mean velocity difference between pairs of stars

(�vT). Because the width of the vobs distribution increases with

uncertainty, so does �vobs. This is why in the top panel of Fig. 16

there is a positive correlation between �v and σ sim.

As discussed above, observational errors broaden the observed

velocity distribution, so the true velocity distribution can be crudely

approximated by a narrower version of the observed velocity dis-

tribution. In brief, the observed velocity distribution is narrowed by

different amounts and Monte Carlo methods are used to find which

width best reproduces the observed velocity distribution once obser-

vational errors are applied. Many velocities are then drawn from this

best-fitting distribution, and �v is calculated. This is the estimated

value of �vT given the observed velocities and the errors.

The exact method used will now be described in more detail.

Diagrams shown in Fig. A2 are referred to to aid this description.

For both of these plots the x-axis is velocity, and the y-axis is

probability. They show how the method would be applied to some

cartoon non-Gaussian velocity distribution (the black line in the

left-hand panel of Fig. A2).

First a Gaussian kernel is applied to the observed velocities to

produce a probability density function (pdf) of the observed veloc-

ities (red line in both panels of Fig. A2). It is assumed that the true

velocities pdf is the same shape, but narrower. How much narrower

is unknown, and though it can be analytically calculated if the dis-

tributions are Gaussian that will often not be the case. Instead, many

different widths are tested, each model being a ‘guess’ at the true

velocity structure. To prevent Fig. A2 becoming overcrowded, only

three models are shown (blue dashed lines). In this diagram, it is
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Figure A2. Diagrams aiding the explanation of how to correct for �v inflation by observational uncertainties. For both the left-hand and right-hand panels, the

x-axis is velocity and the y-axis is probability. The left-hand panel depicts a true velocity distribution (black line), the observed velocity distribution (red line)

and three models of the true non-Gaussian velocity distribution using different widths (blue dashed lines). The right-hand panel shows the observed velocity

distribution (red line), and the simulated observations assuming each of the models from the left-hand panel (blue dashed lines).

obvious that the first is much wider than the vT distribution, the

second is almost exactly right, and the third is much narrower. In

reality vT would be unknown, so it is not so easy to compare.

For each model, N velocities are drawn and observational un-

certainties are applied as per the method described earlier in this

section. The distributions of these simulated velocity observations

are what we would expect to observe if the model were the true dis-

tribution. This is repeated many times (100 in this paper) in order to

obtain reliable results. The right-hand panel of Fig. A2 shows how

these simulated observational distributions compare to the actual

observed distribution. If the model the velocities are drawn from is

a good match for the true velocity distribution, then the simulated

observations distribution will replicate the actually observed distri-

bution well. From the left-hand panel of Fig. A2, it is evident that

width 1 is too large, width 2 is approximately correct, and width

3 too narrow, and this is reflected in the right-hand panel. Clearly,

the simulated observations using width 2 is the best match to the

observations, and so is taken to be a good approximation of the true

velocity structure.

Now that the true velocity distribution has been modelled, a large

number of velocities are drawn from it and �v is calculated. This

�v is the estimated value of �vT.

To quantify how accurate this is, the method is applied to five

very different simulated regions, A, B, C, D, and E. For each, the

true �vT is calculated, then observational uncertainties are applied,

and the Monte Carlo method is used to estimate �vT from the ob-

served velocities. This is done for observational uncertainties (σ sim)

between 0.1 and 1.6 km s−1 in steps of 0.1 km s−1. In each case, the

difference between the true �vT and the value of �vT estimated us-

ing the Monte Carlo method is computed. This difference is referred

to as the inaccuracy. For each of the five simulations, inaccuracy is

plotted against σ sim, which is shown in Fig. A3.

From Fig. A3, we see a rough correlation between σ sim and in-

accuracy, which is expected. More importantly, we see that the

inaccuracy observed is low, typically �0.1 km s−1 except for ex-

tremely high uncertainties. We therefore conclude that �vT can be

recovered from the observed velocities with reasonably high accu-

racy. Unfortunately, exact error limits can’t be calculated because

error is introduced by the assumption that the true velocity distribu-

tion has the exact same shape as the observed velocity distribution,

it is only narrower. This assumption will never be perfectly true

but only close, and without knowing the true velocity structure

it is impossible to know how close. Therefore, the error can’t be

quantified.

Nevertheless, it has been shown this method can reproduce �vT

with reasonable accuracy if the errors on the velocity measurements

are not too high. Also, as stated earlier, �vT is largely irrelevant to

interpretation of the velocity structure when �vM is used, it is the

shape which contains the majority of the information.

Figure A3. Plot showing the inaccuracy of the value of �vT estimated

using the Monte Carlo method. The x-axis is the observational uncertainty

applied to the data and the y-axis is the inaccuracy. Different colours are

used for each of the five simulations tested.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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