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Abstract

We introduce a new model of preferential attachment with fitness, and establish a time

reversed duality between the model and a system of branching-coalescing particles.

Using this duality, we give a clear and concise explanation for the condensation

phenomenon, in which unusually fit vertices may obtain abnormally high degree: it

arises from a growth-extinction dichotomy within the branching part of the dual.

We show further that the condensation is extensive. As the graph grows, unusually

fit vertices become, each only for a limited time, neighbouring to a non-vanishing

proportion of the current graph.
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1 Introduction

The classical model of preferential attachment is an increasing sequence of random

graphs (Gn), beginning from a finite graph G0. To construct Gn+1 from Gn, a vertex pn
is randomly sampled from Gn, with the probability of picking each vertex v weighted

according to its degree degn(v). Then, a single new node is attached to pn via a single

new edge. More generally, the new node may be joined via m new edges to m existing

nodes, each sampled independently from Gn, weighted by degree and with replacement.

This model is perhaps the simplest example of a stochastic model in which earlier gains

(in the form of higher degree) confer an advantage towards future growth. It has been

studied extensively and the structure of Gn as n → ∞ is well understood; see for example

Chapter 8 of van der Hofstad (2016) and the references therein.

The classical model was generalized by Bianconi and Barabási (2001), with the

addition of fitness values for the vertices. A higher fitness value confers a better chance

of attaching to the new incoming vertices. More precisely, nodes are assigned i.i.d. fitness

values Fv ∈ [0, 1], and a node v with fitness Fv now carries weight Fv degn(v) (instead of
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Extensive condensation in a model of preferential attachment with fitness

degn(v)). Cases in which Fv has support [0, 1] but P[Fv = 1] = 0 are of particular interest.

In such cases, as the graph grows large, it is possible that the vertices with fitnesses

approaching 1 will capture a macroscopic fraction of the edges – a phenomenon known

as condensation.

Using evidence from numerical simulations Bianconi and Barabási predicted that

once their graph became large ‘a single node captures a positive proportion of the links’

– this is known as ‘extensive’ condensation. Dereich et al. (2017) showed recently that

extensive condensation did not, in fact, occur.

A second extension of the classical model, known as preferential attachment with

choice, was studied by Malyshkin and Paquette (2014). Their model does not include

fitnesses; rather, to obtain Gn+1 from Gn a set {p1, . . . , pR} of vertices are sampled

from Gn, each using the same degree-weighted mechanism as in classic preferential

attachment (independently, and with replacement). A single new vertex then attaches

via a single new edge to whichever pi has the highest degree.

Malyshkin and Paquette showed that in their model a so-called persistent hub emerges

– a single vertex v which, at some random time N , has maximal degree (within GN ) and

which then remains as the vertex of maximal degree for all time. When R > 2, they

establish extensive condensation through showing that the degree of the persistent hub

grows linearly.

In the present article we introduce a new model, which modifies the model of

Malyshkin and Paquette (2014) to include fitnesses. Like Bianconi and Barabási (2001),

we take the vertex fitnesses to be i.i.d. values in [0, 1]. In our model, to obtain Gn+1

from Gn, we sample vertices {p1, . . . , pR} from Gn, each using the same degree-weighted

mechanism as in classic preferential attachment (independently, and with replacement).

Then, attach a single new vertex vn to whichever pi has the highest fitness.

We will show that, in contrast to the Bianconi-Barabási model, in our model extensive

condensation does occur. However, it occurs without the emergence of a persistent

hub. This results in a delicate situation in which a succession of ever fitter vertices grow

to eventually topple the previously dominant positions of older (and less fit) vertices.

Our model provides the first rigorous example of a preferential attachment graph with

extensive condensation via such behaviour. From hereon, let us refer to the model as

PAC – ‘Preferential Attachment with Choice by fitness’.

We analyse PAC using techniques which, to our knowledge, are novel to prefer-

ential attachment; we exhibit a time-reversed duality between PAC and a system of

branching-coalescing particles. This type of duality is perhaps best known in the context

of population genetics where genealogical trees, described by branching-coalescing

particles, are used to represent historical transfers of genetic information.

Note that sampling the vertex v weighted according to degn(v) is equivalent to

sampling a half-edge (in Gn) uniformly at random, and then picking the associated vertex

v. For this reason it is advantageous to consider half-edges. For convenience, we assign

to each half-edge the same fitness as its associated vertex. We will use genealogies

to track new half-edges inheriting fitness values from pre-existing half-edges. These

genealogies will be closely connected to the duality used, in a spatial model of population

genetics, by Etheridge et al. (2017).

In the genealogical dual process of PAC, if we suppress coalescence and consider

the behaviour when the graph is large, we obtain that the branching part of the dual

approximates a Galton-Watson process, at least when restricted to only finitely many

generations. Using this fact we will be able to give a clear and concise explanation of why

(and, under what condition) condensation occurs: precisely, when this Galton-Watson

process has positive probability of non-extinction. Non-extinction corresponds to the

genealogy of a new half-edge extending far backwards in time, far enough that it has a
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chance of being descended from an unusually fit vertex born long ago. Moreover, we will

give an intuitive description of the limiting degree-weighted fitness measure, in terms of

the number of leaves of a Galton-Watson tree.

The most involved part of the present article will be showing that condensation, when

it occurs, is extensive. Here, we require a more sensitive analysis of the dual process

than the Galton-Watson approximation can provide. We use a mixture of martingale-like

calculations and weak convergence techniques, which will permit us to observe the

genealogy of a new half-edge in detail. We are able to identify an explicit constant

β ∈ (0, 1) such that the fittest vertex present at time ≈ nβ will grow to neighbour an

asymptotically positive proportion of Gn.

1.1 Condensation in random graphs

In physics, Bose-Einstein condensation is a phenomenon in which, within particu-

lar types of matter and at low temperature, a positive proportion of particles occupy

the lowest quantum energy state. Such particles are known as the ‘condensate’ and,

remarkably, their existence permits quantum effects to become visible at macroscopic

scale. Within random graphs, the term condensation was introduced by Bianconi and

Barabási (2001), who represented half-edges of their graph as particles within a Bose

gas, with fitnesses corresponding to energy states – but inverted, so as the fitness value

1 corresponds to the zero energy state.

Phase transitions, such as that characterising the emergence of a Bose-Einstein

condensate, only become sharp when the number of particles tends to infinity. However,

in this limit, there are two natural ways in which one might define what is meant by

the emergence of a Bose-Einstein condensate. Firstly, we might ask that a macroscopic

fraction of particles remain in the lowest energy state; alternatively, we might ask that

a macroscopic fraction of particles become arbitrary close to the lowest energy state.

The former definition corresponds to extensive condensation, the latter to non-extensive

condensation.

More generally, condensation refers to the formation of an atom in the limit of

sequence of measures. We refer the reader to van den Berg et al. (1986) for further

discussion of Bose-Einstein condensation, and let us now, in the same spirit, offer a

precise definition of condensation in the context of random graphs.

Consider an increasing sequence of finite graphs (Gn), with vertex and edge sets

Gn = (Vn, En), in which each vertex v has a fitness value Fv ∈ [0, 1]. We define the

quantities

µn(A) =
1

2|En|

∑

v∈Vn

degn(v)1{Fv∈A}, (1.1)

ℓn(A) =
1

2|En|
max
v∈Vn

degn(v)1{Fv∈A}. (1.2)

Thus, µn is a random probability measure on [0, 1] which measures the fitnesses present

in Gn, weighted according to degree. The quantity ℓn(A) is not a measure; it is the

proportion of half-edges in Gn that are attached to the highest degree vertex with fitness

in A.

Definition 1.1. Let Bǫ(a) = [a− ǫ, a+ ǫ] ∩ [0, 1].

1. We say that condensation occurs at a if lim
ǫ→0

lim inf
n→∞

E [µn(Bǫ(a))] > 0.

2. We say that condensation at a is extensive if lim
ǫ→0

lim inf
n→∞

E [ℓn(Bǫ(a)] > 0.

3. We say that condensation at a occurs around the persistent hub v, if v is a fixed

vertex with fitness a such that lim inf
n→∞

E

[
1

|En|
degn(v)

]
> 0.

EJP 25 (2020), paper 68.
Page 3/42

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP462
http://www.imstat.org/ejp/


Extensive condensation in a model of preferential attachment with fitness

For many models with fitness, including PAC, the weak limit µn → µ exists almost

surely and the limit µ is deterministic. In such cases condensation at a is equivalent

to µ possessing an atom at a. Extensive condensation occurs only when the degrees

of individual vertices make non-negligible contributions to the formation of this atom.

These three definitions provide qualitative measures of how strongly the structure of Gn

becomes dominated by a small fraction of high degree nodes, as n → ∞. Clearly, 3 ⇒ 2

⇒ 1.

As we have mentioned, we are interested in models for which condensation occurs

either at a = 1 or not at all. In such cases, condensation occurs only through a positive

fraction of the half-edges appearing on ever fitter vertices. Extensive condensation

captures the more specific event that, in the limit, individual vertices become (each

perhaps only for a limited time) neighbouring to a positive fraction of the graph.

Remark 1.2. From now on, we use the term condensation to mean condensation at 1.

Let us now summarise the various techniques which have been used to rigorously

analyse condensation in models of preferential attachment, with particular attention

given to models incorporating fitness and/or choice. Readers familiar with this literature

may wish to move directly on to Section 1.2, and will not miss out on any notation by

doing so.

We first recall a natural coupling between the classic preferential attachment model

and an urn process. Fix, v0 ∈ G0. Colour v0 white and all other vertices black; pass

these colours on to the associated half-edges. Now, regard each half-edge of Gn as a

coloured ball within an urn Un. From the dynamics of classic preferential attachment,

the one-step dynamics of (Un) are as follows. To obtain Un+1 from Un, we:

1. Draw a ball uniformly at random from Un and note its colour. Return this ball to

the urn.

2. Add a new black ball to the urn, and also add a new ball of the same colour as was

drawn in step 1.

Then, at all times, the number of white balls in Un is equal to degn(v0). The new black ball

corresponds to the half-edge associated to a new vertex v; the drawn ball corresponds to

sampling the (colour of the new half-edge attached to the) vertex to which v connects.

It is straightforward to extend the coupling to track the joint degree of multiple balls,

using multiple colours.

The first rigorous analysis of the Bianconi-Barabási model was provided by Borgs et al.

(2007), who extended the idea described above to couple the model to a generalized

Pólya urn process. In a generalized Pólya urn each colour is assigned a different activity

value (in this case, given by a function of the fitness). Crucially, these activity values

weight how balls are drawn from the urn, in a way that exactly matches the fitness-

dependent sampling used in the Bianconi-Barabási model. With this coupling in hand,

Borgs et al. invoked the limit theory of urns provided by Janson (2004), and showed

rigorously that condensation occurred. However, this limit theory applies only when the

urn has finitely many colours, meaning that discretization of the fitness values was a

necessary step within the proof.

As we have mentioned, Bianconi and Barabási (2001) predicted extensive conden-

sation within their model. This prediction was shown to be false by Dereich et al.

(2017), who embedded the Bianconi-Barabási model in continuous time (a technique

advocated by Janson) and, having done so, viewed it as a multi-type branching process

with reinforcement. In this formulation, half-edges correspond to individuals within the

branching process, and having greater fitness corresponds to being a type of individual

that branches at faster rate. Individuals with the same fitness are referred to as a family.

EJP 25 (2020), paper 68.
Page 4/42

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP462
http://www.imstat.org/ejp/


Extensive condensation in a model of preferential attachment with fitness

(In fact Dereich et al. considered a more general case than Bianconi and Barabási, by

including an extra parameter controlling the rate at which new edges appear between

existing vertices.)

The argument given by Dereich et al. for non-extensive condensation proceeds via

computations based on the growth rates and birth times of families, utilising the inde-

pendence inherent within branching processes. Their result requires regular variation

of the fitness distribution near 1, which covers the range of parameters of interest to

Bianconi and Barabási. For non-regularly varying fitness distributions the behaviour is

not known, but see Section 8 of Dereich et al. (2017) for a discussion.

The analysis of Malyshkin and Paquette (2014) relies heavily on the appearance

of a persistent hub within their model. It proceeds by first showing that the number

of possible persistent hubs is almost surely finite, followed by showing that for any

two vertices, which one has higher degree may switch only finite many times. These

arguments rely on comparisons to classical preferential attachment (which is also known

to have a persistent hub). With this information in hand, Malyshkin and Paquette used

stochastic approximation to analyse the growth of the persistent hub, which they show

to have degree of asymptotic order n when R > 2 and order n
logn when R = 2.

More generally, stochastic approximation is well established as a method of studying

urn processes and preferential attachment models. We refer the reader to the survey

article of Pemantle (2007) for details. A rather general application of stochastic approx-

imation to an extension of the Bianconi-Barabási model can be found in Dereich and

Ortgiese (2014). We will discuss the applicability of stochastic approximation to PAC in

Remark 2.9.

Some authors have considered variants of preferential attachment with choice in

which the chosen vertex is not (or is not always) the fittest or the most valent of the R

samples. Examples of such models, which have typically been studied through stochastic

approximation, appear in Malyshkin and Paquette (2015) and Haslegrave et al. (2020).

The latter includes a particular example with R = 3 and attachment to the vertex with

middle fitness, in which condensation occurs at a random location within (0, 1).

For models with choice, the coupling described earlier results in an urn process for

which multiple balls must be drawn and reacted to on each time step. Janson (2004)

comments that such urns are often intractable, however we will be able to analyse the

urn process arising from PAC using the aforementioned duality.

1.2 Multiple waves of natural selection

In populations genetics, models that feature multiple waves of natural selection

towards ever fitter individuals, are rare. To our knowledge, at the present time all known

tractable examples are close relatives of the model introduced by Desai and Fisher

(2007), who described an extension of the Moran model in which mutations produce

ever fitter individuals and selection brings the descendants of some of these individuals

to dominance. A detailed rigorous analysis, in the limit of large population size, was

given recently by Schweinsberg (2017); see also the references therein for variants and

special cases that were treated in earlier articles.

In loose terms, we may compare a wave of natural selection in which a fit sub-

population emerges and grows to dominance (this is known as a selective sweep)

followed by their later demise in a subsequent even fitter wave, to the growth and

eventual decline of 1
n degn(v), where v is a fit vertex within PAC. Schweinsberg (2017)

showed that within the Desai-Fisher model, and under suitable assumptions, the initial

growth of each new wave could be approximated by a branching process. However, this

approximation breaks down once the new wave becomes a positive fraction of the total

population, after which point a fluid limit is used. The same paradigm can be found
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within the infectious disease literature, for example in Ball and Sirl (2017) (for a single

wave of infection), and also within the heuristics described for our own proofs in Section

2.2. However, in our case time will be reversed and we will be tracking the growth of

the genealogies of half-edges.

There are substantial differences between the Desai-Fisher model and PAC. In the

Desai-Fisher model individuals die and are replaced, whereas in PAC once a vertex has

appeared it remains present forever. Moreover, in the corresponding regime of the

Desai-Fisher model, the individuals that cause the (j + 1)th wave first appear during the

jth wave, whereas within PAC we will see that a new fittest vertex born at time ≈ nβ,

where β ∈ (0, 1), will survive through several waves of dominance by less fit (but older)

vertices, before it has its own chance at time ≈ n.

2 Results on preferential attachment with choice by fitness

Let us now define the notation which, from now on, we use (only) for PAC. From

hereon we refer to PAC as ‘the’ model. The model is parametrized by (the distributions

of) a pair of random variables, F taking values in [0, 1] and R taking values in N. For

clarity, we use the convention that N = {1, 2, . . .}, so R does not take the value 0. Let

(Fn) be a sequence of i.i.d. samples of F , and let (Rn) be a sequence of i.i.d. samples of

R.

We describe an increasing sequence of random graphs (Gn)n≥0 with vertex and edge

sets Gn = (Vn, En). We begin from a graph G0, which we will take to be a single vertex v0
with a self-loop. In fact, our results hold for an arbitrary finite initial graph G0, but we

follow a common convention and make this choice for simplicity.

Definition 2.1. The dynamics of (Gn) are as follows. At each time step we will add a

single new vertex vn to the graph, so that Vn = {v0, v1, . . . , vn}. The new vertex vn is

assigned the fitness value Fn. Given Gn−1 and the fitnesses of its vertices, we attach vn
according to the following rule.

1. First, we sample an ordered set of Rn existing vertices, which we label as (pn,j)
Rn
j=1.

Each of the pn,l is sampled independently and with replacement, from Vn, according

to preferential attachment. That is, for each index l = 1, . . . , Rn, the probability of

picking the vertex v ∈ Vn is proportional to degn−1(v).

2. We define the (unordered) set

Pn = {pn,1, pn,2, . . . , pn,Rn
}. (2.1)

A single new vertex vn joins the graph by attaching via a single new edge to the

fittest vertex in Pn.

We assume that the distribution of F is absolutely continuous, with essential supremum

1. Consequently, distinct vertices have unique fitness values and step 2 is well defined.

Remark 2.2. Within Pn, which vertex is fittest depends on the order of the fitness values,

but not on their specific values. Thus, whilst µn defined by (1.1) does depend on the

distribution of F , in fact in PAC the distribution of the graph Gn does not.

The key parameter in PAC is the distribution of R, which affects both µn and Gn.

Heuristically, when R tends to take larger values, we should expect that fit vertices will

become more successful at capturing edges, thus making condensation more prone to

occur. We will assume, throughout, that

E[R] < ∞.

EJP 25 (2020), paper 68.
Page 6/42

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP462
http://www.imstat.org/ejp/


Extensive condensation in a model of preferential attachment with fitness

We now state our results rigorously. Our first result sets the scene, and shows that as

n → ∞ each vertex grows towards infinite degree but, whilst doing so, does not become

a persistent hub.

Theorem 2.3. Let v be a (deterministic) vertex. Then, degGn
(v) → ∞ almost surely, and

1
n degGn

(v) → 0 in probability.

The next result describes the precise limiting distribution of the degree weighted

fitnesses distribution µn, as n → ∞. Of course, this results in a characterization of when

condensation occurs. The statement involves a particular Galton-Watson process which,

as we have already mentioned, will play a key role in the proof.

Theorem 2.4. Suppose that E[R2] < ∞. Let L be the number of leaves of a Galton-

Watson tree, started with a single individual and with offspring distribution M given

by

P[M = m] =

{
1
2 if m = 0
1
2P[R = m] if m ∈ N.

(2.2)

Let (Cn)n∈N be a sequence of i.i.d. copies of F , independent of L. Then, almost surely,

as n → ∞, µn converges weakly to the probability measure µ on [0, 1] given by

µ([0, a]) =
1

2
P[F ≤ a] +

1

2

(
P

[
L < ∞ and max

i=1,...,L
Ci ≤ a

]
+ 1{a=1}P[L = ∞]

)
. (2.3)

where a ∈ [0, 1].

Corollary 2.5. Suppose that E[R2] < ∞. Then condensation occurs if and only if

E[R] > 2.

Note that we do not observe condensation at R = 2, when the Galton-Watson process

is critical. Criticality may well lead to other interesting behaviour, but we do not explore

this possibility within the present article. It is clear that Corollary 2.5 follows immediately

from Theorem 2.4, because P[L = ∞] > 0 if and only if E[R] > 2. We state our final

result:

Theorem 2.6. Suppose that E[R2] < ∞ and that E[R] > 2. Then, extensive condensation

occurs.

Combining Theorems 2.3 and 2.6, we have that extensive condensation occurs

without the formation of a persistent hub. Our proofs of the above theorems rely on a

time-reversed duality, between (Gn) and the genealogy of an urn process (Un), which

is naturally coupled to (Gn) in the same style as described (for classical preferential

attachment) in Section 1.1. The genealogy of (Un) can in turn be coupled, but only for a

limited time, to a Galton-Watson tree T n with offspring distribution (2.2). We introduce

these couplings in Sections 2.1.1 and 2.1.3, to be followed by a heuristic outline of the

proofs in Section 2.2. The proofs themselves, of Theorems 2.3, 2.4 and 2.6 are given in

Sections 3, 4 and 5 respectively.

In Section 6 we discuss a natural extension to our results; we consider the effects

of incorporating a mechanism commonly used to control the strength of preference

that incoming vertices have for making connections to high degree vertices. In PAC

this mechanism is closely related to attaching new vertices onto the existing graph via

multiple new edges.

2.1 Couplings and dualities

2.1.1 Coupling to an urn process

We define an urn process (Un) which will be coupled to (Gn). In the urn, each ball will

have a colour, represented as a number in [0, 1], and this colour corresponds to a fitness
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value (of a vertex) in the graph model. The balls themselves correspond to the half-edges

of the graph. We write balls in bold case e.g. u, and we write the colour of u as col(u).

From now on, we will use the terms fitness and colour interchangeably. Formally, let Un

be the set of half-edges in the graph Gn, where n ∈ N0. For each u ∈ Un, we set col(u) to

be the fitness of the vertex to which u is attached.

Definition 2.7. The dynamics of the process (Un) are as follows. Label the two initial

half-edges in G0 as c0 and s0. To construct Un, given Un−1, do the following:

1. Draw Rn balls, independently and uniformly at random, from Un−1. Label these

balls

Pn = {pn,1, . . . ,pn,Rn
} . (2.4)

2. Let cn be a new ball with col(cn) = max{col(pn,l) : l = 1, . . . , Rn}. Let sn be a new

ball with col(sn) = Fn.

3. Define Un = Un−1 ∪ {cn, sn}.

Using the notation above, we divide the balls within Un into two distinct types: the

cue balls cn and source balls sn. Recall that we take the initial graph G0 to be a single

vertex with a self-loop. We extend the terminology of ‘cue’ and ‘source’ to U0, by writing

U0 = {s0, c0} and specifying that s0 is a source ball and c0 is a cue ball. We write

Sn = {s0, s1, . . . , sn} and set S = ∪nSn. We define Cn and C analogously for cue balls.

Thus, Un = Sn ∪ Cn and we set U = S ∪ C.

The process Un is a projection of Gn, in the sense that Un forgets the graph structure

and remembers only howmany half-edges of each colour were present in Gn. Nonetheless,

Un is a Markov process with respect to the filtration generated by (Rn, Fn,Pn). Note

that the random measure µn satisfies

µn(A) =
1

|Un|

∑

b∈Un

1{col(b) ∈ A}. (2.5)

Thus, µn(A) is the proportion of balls with colour ∈ A at time n. We can therefore

understand (2.3) as expressing the limiting distribution of the colour of a ball drawn

(uniformly) from the urn at large time.

2.1.2 Representation as a genealogy

We equip the balls in the urn U with a genealogy that records the way in which each new

cue ball cn inherits its colour from a single pre-existing ball. We will use terminology

from population genetics to describe this genealogy. The fitness values (i.e. colours) play

precisely the role of fitnesses in population models.

We say that Pn from (2.4) are the potential parents of cn. We refer to the unique

ball in Pn with colour col(cn) as the parent of cn. We say that cn is a child of its parent

ball. To handle time n = 0, we say that s0 is the parent of c0, and we give c0 precisely

R0 potential parents all of which are equal to s0, where R0 is an independent copy of R.

Lastly, source balls do not have any parents or any potential parents.

A finite sequence (b(k))Kk=1 of balls in which, for all k, the ball b(k+1) is the parent of

b(k) (resp. potential parent of b(k)), and in which b(K) is a source ball, is said to be the

ancestral line (resp. a potential ancestral line) of b(1). We stress that each ball has a

unique ancestral line, but multiple potential ancestral lines. Each potential ancestral line

ends in a source ball, which necessarily has no potential parents. Given any ball b ∈ U ,
we write b↓ for the set of balls that appear in one or more of the potential ancestral lines

of b, including b itself. The set b↓ is known as the set of potential ancestors of b. If we

EJP 25 (2020), paper 68.
Page 8/42

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP462
http://www.imstat.org/ejp/


Extensive condensation in a model of preferential attachment with fitness

Figure 1: A graphical representation of the genealogy of the urn (Un), in a case with

only two different colours of balls. Columns correspond to balls, with source balls

on the left and cue balls on the right. Rows correspond to time-steps, with one new

source ball and one new cue ball introduced on each row. The relative fitness of the two

colours is shown by an inequality. Smaller black dots correspond to potential parents

chosen by cue balls, and the lines connecting them to balls represent the genealogy.

Looking backwards in time, branching is visible at each step of time when the new

cue ball samples its potential parents, as black dots on the same row. Coalescences

occur when the same potential parent is sampled more than once (at possibly differ-

ent times); one such event is visible at n = 1, 2 within the column of the initial cue

ball.

couldn’t see the fitness values of the balls, but could see which balls made up the sets

Pn, then b↓ represents the full set of balls which might have been lucky enough to have

their own fitness value passed on b. Thus

col(b) = max
{
col(u) : u ∈ b↓

}
= max

{
col(s) : s ∈ b↓ ∩ S

}
. (2.6)

In words: the colour of b is the colour of the fittest source ball within its potential

ancestors. This fact is a natural consequence of point 2 of Definition 2.7. See Figure 1

for a graphical explanation.

Equation (2.6) is in the same spirit as the duality used (for a version of the spatial

Λ-Fleming-Viot process) by Etheridge et al. (2017). More generally, dualities of this

kind are instances of ancestral selection graphs, introduced by Krone and Neuhauser

(1997). The selective mechanism of always choosing the potential parent with maximal

fitness simplifies their structure considerably, whereas in general they can lead to quite

intractable dual processes.

We will be particularly interested in the structure of c↓n, when n is large. It is natural

to view c↓n as a branching-coalescing structure: coalescence of (potential) ancestral lines

occurs when a given ball is a (potential) parent to more than one cue ball. Similarly,

when a cue ball has more than one potential parent we say that it as a branching of

potential ancestral lines.

We write b↑ for the set of balls which contain b within their ancestral line. The set

b↑ is known as the family or descendants of b. When b is a source ball we refer to b as

the founder of the family b↑, and the members of this family at time n are Un ∩ b↑. Note

that all elements of b↑ have the same colour as b, and that if v is the vertex to which the

source ball sk is attached, then

degGn
(v) = |Un ∩ s

↑
k|. (2.7)
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We stress that b↑ is based on ancestral lines, whereas b↓ is based on potential ancestral

lines. Hence, b↑ depends on the sequence of fitnesses (Fn), but b
↓ does not.

Theorem 2.3 states that P[|b↑| = ∞] = 1 and 1
n |b

↑ ∩ Un| → 0 in probability, for any

fixed ball b ∈ U . Theorem 2.6 is more complex to translate, but note that it is implied

if, as n → ∞, we see a non-vanishing probability that supk≤n
1
n |s

↑
k ∩ Un| has asymptotic

order n. That is, the size of the largest family at time n should be of order n.

2.1.3 Coupling to a Galton-Watson process

There is a natural coupling between the urn process (Un) and a Galton-Watson process,

which we will now describe. This coupling is only valid for a limited time; a Galton-Watson

tree can only accurately represent the genealogy of cn as far backwards in time as that

genealogy remains tree-like. Let Wn
0 = {cn}. Then, iteratively, define

Wn
k = {p : p was a potential parent of some b ∈ Wn

k−1}.

Note that Wn
k is an (unordered) set, so that even if p is a potential parent to more than

one b ∈ Wn
k−1, only one instance of p appears in Wn

k . Note also that Wn
k ⊆ c↓n contains

precisely the kth generation of potential ancestors of cn Since source balls have no

potential ancestors it is possible for Wn
k to become empty. Let

Kn = inf
{
k ∈ N : ∃pi,l = pi′,l′ such that (i, l) 6= (i′, l′) and ci, ci′ ∈ Wn

0 ∪ . . . ∪Wn
k−1

}
.

In words, Kn is the first generation of Wn
k in which we encounter a coalescence. We

use the usual convention that the empty set has inf ∅ = ∞, covering the case where no

coalescences are encountered (which may occur when if Wn
k becomes empty).

Lemma 2.8. Let Wn
k = |Wn

k |, and let (Zk) be a Galton-Watson process with offspring

distribution given by (2.2). Then there exists a coupling such that (Wn
k )

Kn−1
k=0 = (Zk)

Kn−1
k=0 .

Proof. Let us first note that, by Definition 2.7, the potential ancestry of any given ball is

independent of the fitness values of (all) balls. Thus fitnesses play no role in this proof;

all quantities considered are independent of them.

Given the process (Wn
k ), we define Zk = Wn

k for k < Kn, and for k ≥ Kn we allow Zk

to evolve independently of (Wn
k ) as a Galton-Watson process with offspring distribution

(2.2). It remains to show that Zk has the desired distribution for j < Kn. To this end,

let us consider when k < Kn and Wn
k = m. Thus Zk = Wn

k , and we look to calculate the

distribution of Zk+1. We must consider two cases.

• If k + 1 = Kn then by definition of Zk, then the transition Zk 7→ Zk+1 will be

independent of (Wn
k ) and will be that of a Galton-Watson process with offspring

distribution (2.2).

• If k + 1 < Kn then Zk+1 = Wn
k+1. We have Wn

k = m, so Wn
k contains m (distinct)

balls, but we do not know the identity of these balls. Moreover, because k < Kn,

each such ball is not an element of Wn
0 ∪ . . . ∪ Wn

k−1. Thus, each such ball is,

independently of each other, and independently of Wn
0 ∪ . . . ∪Wn

k , a cue ball with

probability 1
2 and a source ball with probability 1

2 . By point 1 of Definition 2.7,

these cue balls each, independently, have i.i.d. numbers of potential parents with

common distribution matching that of R. Because k + 1 < Kn, the identities of

these potential parents are distinct. Thus, Wn
k+1 is the sum of m i.i.d. copies of R,

and the transition Wn
k 7→ Wn

k+1 is that of a Galton-Watson process with offspring

distribution (2.2).

In both cases, the transition Zk 7→ Zk+1 has the desired distribution. �
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We will show in Lemma 3.2 that P[Kn ≤ k] → 0 as n → ∞, for all k ∈ N. In words, as

n → ∞ the coupling of c↓n to a Galton-Watson tree remains valid for an arbitrarily large

O(1) number of generations of this tree.

2.2 Outline of proofs

All of our proofs rely on the couplings detailed above. The proof of Theorem 2.6

relies on analysing the genealogy of (Un) directly, whereas Theorem 2.4 uses only the

Galton-Watson coupling, and Theorem 2.3 uses both. We outline all three proofs in this

section.

Let us discuss Theorem 2.3 first. In terms of the urn process, the first part of Theorem

2.3 asserts that P[|u↑| = ∞] = 1. The proof rests on the observation that, when Pn is

sampled, then for any fixed ball u, the probability of u ∈ Pn is of order 1
n as n → ∞. If

we could apply the Borel-Cantelli lemma then, with a little extra work we could deduce

that (almost surely) u was a parent infinitely often, thus |u↑| = ∞. Unfortunately, the

lack of independence means the Borel-Cantelli lemma does not apply; instead we will

use the Kochen-Stone lemma.

The second part of Theorem 2.3 asserts that |u↑∩Un|/|Un| → 0 in probability. Because

this quantity has expectation (1(u∈S) +
∑n

0 P[cj ∈ u↑])/(2n+ 2), the zero limit is implied

if P[cn ∈ u↑] → 0. To prove the latter, we use that the genealogy of c↓n is that of a

Galton-Watson tree, at least for a large O(1) number of generations. If this Galton-

Watson tree dies out (i.e. in O(1) generations) then it has bounded size and is unlikely

to include any fixed ball, in particular u. If it does not die out, then c↓n will include

many source vertices, at least one of which is likely to be fitter than u. In both cases,

cn /∈ u↑.

Theorem 2.4 establishes the limiting distribution of colours present in Un. Our proof

first establishes the result in the case where only a two element set {0, 1} of colours are
permitted. It is straightforward to upgrade this case into Theorem 2.4. The argument

for the two colour case relies on establishing the distribution of col(cn) as n → ∞.

Heuristically, as n → ∞, we again compare c↓n to a Galton-Watson tree, and again the

extinction/non-extinction dichotomy is key. If the Galton-Watson tree dies out, then the

colour of cn is the maximal colour of the source balls at its leaves. If it does not die out,

then c↓n contains many generations, which will mean that high probability there will be a

source ball of maximum colour (i.e. colour 1, in the two colour case) within c↓n, in which

case col(cn) = 1. Recalling that half of all balls are cue balls, and the other half sources,

along with (2.2) these considerations lead directly to the formula (2.3) given in Theorem

2.4. The first term on the right of (2.3) represents the i.i.d. colours of source balls, the

latter term represents the cue balls.

The proof of Theorem 2.6, given in Section 5, takes up the majority of the present

article. The outline is as follows. Finding the largest family at time n is essentially the

same as identifying which source sk, for k ≤ n, was most likely to have founded the

family to which cn belongs. This, in turn, relies on understanding the behaviour of the

genealogy of c↓n during the stage at which it stops being tree-like, and coalescences start

to have a significant effect. Thus, we are trying to examine a property of the model that

the Galton-Watson coupling will not capture. For this reason, the Galton-Watson coupling

is not used in the proof of Theorem 2.6, and we do not think in terms of the associated

parent-child generations.

Consider the urn process (Uk)
n
k=0. Looking backwards in time, as k decreases from n

to 0, we will see that at around time k ≈ nβ , where

β =
E[R]− 2

E[R]
,
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there starts to be a positive probability that a potential parent sampled for ck will already

have been sampled as a potential parent of some cj ∈ c↓n for k < j ≤ n. More precisely,

we will follow the process

Hn
k = {u ∈ Uk : u ∈ Pj for some cj ∈ c↓n with j ≥ k + 1}.

backwards in time (i.e for k = n, n− 1, . . . , 0). Note that Hn
· may both grow and shrink in

size. During the transition k + 1 7→ k, the set Hn
· will lose sk and ck if they were present,

but if ck was present then any potential parents of ck that were not already present will

be added in.

We denote the number of elements in the set Hn
k by |Hn

k |. We will see that when

k ≈ nβ, |Hn
k | is of order k. Consequently, at this point a potential parent of ck+1 has a

non-negligible chance of being in Hn
k ; thus coalescence becomes non-negligible. In fact,

the force of coalescence very quickly becomes strong, with the consequence that for

k ≪ nβ essentially the entire urn Uk will be included in c↓n, and in particular essentially

all sources sj with j ≪ nβ will be included. However, the fittest source ball sj ∈ c↓n will,

with high probability, be born during a ‘critical window’ of time, j ∈ [cnβ , Cnβ ] where

c > 0 is small and C < ∞ is large.

We now summarise the techniques within the proof. When k ≫ nβ we will use

iterative arguments, backwards in time, to construct bounds on the N ∪ {0} valued

process |Hn
k |. The resulting bounds on |Hn

k | will eventually break down, because in order

to stay tractable they will partially ignore coalescences. However, they will stretch just

far enough to see that, when k ≈ Cnβ for suitably large C, the set Hn
k comprises a small

but non-negligible fraction of Uk, with positive probability.

We then switch techniques, and for k ∈ [cnβ , Cnβ ] we aim to establish a fluid limit for

the [0, 1] valued process k 7→ |Hn
k |/|Uk|, in reverse time as k decreases. After a suitable

rescaling of time, this limit turns out to be an ordinary differential equation, with a

stable fixed point at 1 and an unstable fixed point at 0; so starting just above zero results

in attraction towards 1. Having established the ODE limit, the key question becomes

whether the critical window is actually long enough for the ODE to escape from 0. Using

an artificially longer critical window, by e.g. taking a larger value of C, does not help

because this results in an initial condition closer to zero. However, on escaping 0, we

obtain non-vanishing behaviour for |Hn
k |/|Uk| during k ∈ [cnβ , Cnβ ], which results in a

positive probability that sk ∈ c↓n.

The final step of the proof involves combining the above results with the records

process of col(sk). We show that an unusually fit source ball born at around time k ≈ nβ

may start a family that grows to include a non-vanishing proportion of Un, as n → ∞.

Thus, extensive condensation occurs.

Remark 2.9. Let us briefly survey what we might achieve via alternative methods. For

PAC, the techniques used by Malyshkin and Paquette (2014) are unavailable because

a persistent hub does not emerge. The techniques used by Dereich et al. (2017) to

analyse the Bianconi-Barabási model are not available either, because we do not have

independently growing families.

It is possible to use stochastic approximation to recover Theorem 2.4, but doing so

results in a description of µ through the fixed points of a family of differential equations.

This is much less appealing than the intuitive formula (2.3) provided by the Galton-Watson

coupling.

By contrast, it does not seem feasible to prove Theorem 2.6 via stochastic approxima-

tion. The vertex with greatest degree switches identity infinitely often and this greatly

increases the amount of information which must be tracked. Our attempts to find an

alternative proof along such lines resulted in requiring more detailed information about
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the sensitivity of rather general families of ODEs to small perturbations than we were

able to extract. We discuss this issue a little further, after the key proof, in Remark 5.4.

3 Proof of Theorem 2.3

In this section we prove Theorem 2.3 which, re-phrased in terms of the urn process

(Un), is split across two lemmas: we prove that P[|u↑| = ∞] = 1 in Lemma 3.1, and that

|u↑ ∩ Un|/|Un| → 0 in probability in Lemma 3.4.

Lemma 3.1. Let u ∈ U . Then P[|u↑| = ∞] = 1.

Proof. We consider the case of u = s0 and suppose that col(s0) = α > 0. It is easily seen

that the argument for this case can be adapted to a general ball u. Let

An = {pn,1, . . . ,pn,Rn
are all source balls}∩{pn,1 is the fittest of the pn,j}∩{pn,1 = s0}.

Note that, for any n, the probability that a (given) potential parent is both a source ball

and less fit than s0 is
α
2 . Note also that P[pn,1 = s0] =

1
2(n+1) , from which it is easily seen

that P[An] has order
1
n .

We will prove the present lemma by showing that An occurs infinitely often. Since the

An are correlated we will use a version of the Kochen-Stone lemma: if (En) are events

such that
∑∞

n=1 P[En] = ∞ then

lim sup
N→∞

∑
1≤m<n<N P[En]P[Em]

∑
1≤n<m≤N P[En ∩ Em]

≤ P[En infinitely often]. (3.1)

This result can be found as Theorem 1 of Yan (2006). We will take En = Ain , where in is

defined as follows. Let r = inf{r ∈ N : P[R = r] > 0} and set q = P[R = r]. Define i0 = 0

and

in+1 = inf{l ∈ N : l > in, Rl = r, and the (pl
j)

r
j=1 are distinct source balls}.

The events {Rn = r and (pn,j)
r
j=1 are distinct} are mutually independent for different

values of n. Moreover, for any ǫ > 0, for large enough n the chance of the (pn,j)
r
j=1

being distinct is at least 1 − ǫ, and the chance of them being distinct source balls

is at least ( 12 )
r − ǫ. Therefore, it follows from the strong law of large numbers that

(( 12 )
r − ǫ)q ≤ lim infn

in
n ≤ lim supn

in
n ≤ ( 12 )

rq a.s. and thus, since ǫ > 0 was arbitrary,

P
[
in
n → q2−r

]
= 1. (3.2)

Until further notice, we condition on the sequence (in) and work with the conditional

measure P
′[·] = P[· |σ(i0, i1, . . . , )]. Note that, under P

′, the (pin,j)
r
j=1 are conditioned

to be distinct source balls, and thus are distributed as a uniformly random subset of

{s0, . . . , sin−1
} of size r.

We have P
′[Ain ] =

1
in
αr−1. Here, the term 1

in
is the probability of pin,1 = s0 (given

that pin,1 is a source ball) and αr−1 is the probability that the other potential parents are

all with fitness less than α (given that they are distinct source balls). We now consider

P
′[Aim ∩Ain ], where m ≤ n. The probability that pin,1 = pim,1 = s0 is

1
in

1
im

. Hence, given

p
in
1 = p

im
1 = s0, the probability that cin and cim have no other common potential parents

is
(
in−r−1
r−1

)
/
(
in−1
r−1

)
; a short elementary calculation shows that this probability is bounded

between 1− 2r2

in
and 1. Thus,

P
′[Aim ∩Ain ] =

1

in

1

im
αr−1αr−1

(
1 +O

(
1
in

))
.
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Here, as usual, fn = O(gn) means that lim supn |fn/gn| < ∞. Putting these together and

cancelling factors of α, in view of (3.1) we are interested to calculate the limit as N → ∞
of

IN =

∑
1≤m<n≤N

1
in

1
im

∑
1≤m<n≤N

1
in

1
im

(
1 +O

(
1
in

))

By (3.2), for all ǫ > 0, there exists (deterministic) N ∈ N such that, with probability at

least 1− ǫ, for all n ≥ N we have (1− ǫ)q2−r ≤ in
n ≤ q2−r(1 + ǫ). On this event we have

(1− ǫ)2

(1 + ǫ)2
lim inf
N→∞

JN ≤ lim sup
N→∞

IN ≤
(1 + ǫ)2

(1− ǫ)2
lim sup
N→∞

JN

where

JN =

∑
1≤m<n≤N

1
n

1
m

∑
1≤m<n≤N

1
n

1
m

(
1 +O

(
1
n

)) .

It is easily seen that JN → 1 as N → ∞, and since ǫ > 0 was arbitrary we conclude that

also IN → 1. We thus have (3.1) (with En = Ain), and hence P
′[Ain infinitely often] = 1.

Hence also P[An infinitely often] = 1. �

We write T n
k = ∪n

k=0W
n
k and T n = ∪∞

k=0T
n
k . Note that T n = c↓n, which we accept as a

small piece of redundancy in our notation. We write Ln
k = T n

k ∩ S for the set of source

balls in T n
k . Note that this is similar too, but not quite the same as, the set of leaves

of T n
k ; because T n

k is curtailed at generation k, it may also have a number of cue-balls

amongst its kth generation leaves. However, all leaves of T n are source balls.

Lemma 3.2. Let k ∈ N. For all ǫ > 0 there exists δ > 0 and N ∈ N such that for all

n ≥ N ,

P
[
Kn > k and T n

k ∩ U⌊δn⌋ = ∅
]
≥ 1− ǫ.

In particular, P [Kn > k] → 1 as n → ∞.

Proof. We remark that if no coalescences occurred in c↓n, thenKn = ∞ and the statement

of the lemma holds trivially. Let us refer to the single element of Wn
0 as the ‘root’. Fix

k ∈ N. Since P[R < ∞] = 1, it is easily seen that by choosing suitably large A ∈ N

we obtain supn P[|T
n
k | ≥ A] ≤ ǫ. For each b ∈ T n

j there is a potential ancestral line,

containing at most k + 1 balls, between b and the root. Following this ancestral line

backwards in time, the potential parents were chosen uniformly at random from the

current urn. By choosing δ > 0 small, we may control the chance that any of the (at most

k + 1) such potential parents along this line were sampled from within U⌊δn⌋. Thus, we

may choose δ ∈ (0, 1) and N ∈ N such that supn≥N P[T n
k ∩ U⌊δn⌋ 6= ∅] ≤ ǫ.

Conditional on the event {T n
k ∩ U⌊δn⌋ = ∅ and |T n

k | ≤ A}, each potential parent of

each element of T n
k was sampled uniformly from a set of balls with at least δn elements.

The expected number of such potential parents is O(AE[R]) = O(1), and the chance of

choosing any particular ball as a potential parent is O( 1
δn ). Hence, the probability of

seeing the same parent twice tends to zero as n → ∞, and consequently P[Kn ≤ k] → 0

as n → ∞. The result follows. �

Lemma 3.3. For all k, n ∈ N, it holds that P [|Ln
k | < k/2 and Wn

k 6= ∅] ≤ ( 12 )
k/2

Proof. Let An
k denote the event that there is a potential ancestral line of cn containing

at least k cue balls, and that at least k/2 of these cue balls had no source balls amongst

their potential parents. If Wn
k is non-empty then, by definition of Wn

k , there must be a

potential ancestral line of cn that intersects Wn
k . Note that this potential ancestral line
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contains k cue balls, corresponding to k generations of c↓n. If, additionally, |L
n
k | < k/2

then the event An
k must occur. In summary, {|Ln

k | < k/2 and Wn
k 6= ∅} ⊆ An

k .

Each potential parent has probability 1
2 of being a source ball. Hence, for all j,

P[Pj ∩ {s0, s1, . . .} = ∅] ≤ 1/2. Since a potential ancestral line cannot include the same

cue ball twice, P[An
k ] ≤ (1/2)k/2. The stated result follows. �

Lemma 3.4. Let u ∈ U . Then |u↑∩Un|
|Un|

→ 0 in probability as n → ∞.

Proof. We will show L1 convergence to zero, which is equivalent to convergence in

probability because |u↑ ∩ Un|/|Un| ≤ 1. Note that

E

[
|u↑ ∩ Un|

|Un|

]
=

1

|Un|

(
1(u∈S) +

n∑

k=0

P[ck ∈ u↑]

)
.

Since |Un| = 2n+ 2, it suffices to show that P[cn ∈ u↑] → 0 as n → ∞.

Note that P[F1 < F2] is the probability that one source ball has fitness strictly less

than that of another. Since the fitnesses are independent, we have P[F1 < F2] ≤
1
2 . Thus

P
[
cn ∈ u↑ and |Ln

k | ≥ k/2
]
≤ ( 12 )

k/2 (3.3)

because, on the event that cn ∈ u↑ and |Ln
k | ≥ k/2, at least k/2 source balls in T n

k must

either have fitness strictly less than that of u. Let ǫ > 0. Let δ > 0, k ∈ N, N ∈ N, to be

chosen shortly (dependent upon ǫ). For all n ≥ N we have

P
[
cn ∈ u↑

]
≤ ǫ+ P

[
cn ∈ u↑, Kn ≥ k and T n

k ∩ U⌊δn⌋ = ∅
]

≤ ǫ+ P
[
cn ∈ u↑, Kn ≥ k and Wn

k 6= ∅
]
.

≤ ǫ+
(
1
2

)k/2
+ P

[
cn ∈ u↑, Kn ≥ k and Wn

k 6= ∅ and |Ln
k | ≥ k/2

]

≤ ǫ+
(
1
2

)k/2
+
(
1
2

)k/2

The first line of the above follows from Lemma 3.2, from which we obtain N and δ. By

increasing N , if necessary, we may assume that u ∈ U⌊δn⌋. The second line then follows

because, given that cn ∈ u↑ and T n
k ∩ U⌊δn⌋ = ∅, the ancestral line linking cn to u must

extend beyond T n
k , and in particular Wn

k must be non-empty. The third line then follows

by Lemma 3.3. The final line follows from (3.3). Choosing k large enough that 2( 12 )
k/2 < ǫ

obtains that for all n ≥ N , P
[
cn ∈ u↑

]
≤ 3ǫ. This completes the proof. �

4 Proof of Theorem 2.4

In this section we prove Theorem 2.4. Throughout Section 4 we will adopt the

conditions and notation used in the statement of Theorem 2.4 In particular, let L be the

number of leaves on a Galton-Watson tree with offspring distribution (2.2) and let µ be

the measure on [0, 1] defined by (2.3). Let (Ci) be a sequence of i.i.d. copies of F .

Our proof proceeds by first establishing Theorem 2.4 for a fitness distribution F with

only two possible values, 0 and 1. Note that, as defined in Section 2, the model does not

currently allow for such a case because we had specified that the fitness distribution

F must be continuous on [0, 1]. For general F , the extra difficulty is that we must

handle the possibility that there may not be a unique fittest vertex (resp. ball) within

Pn (resp. Pn), defined by (2.1) (resp. (2.4)). This extra difficulty is not more than an

irritation, which is why we excluded it in Section 2. It is convenient to first describe the

case of non-absolutely continuous F at the level of the urn process Un – which, we recall,

is a projection of the graph Gn that records degrees via (2.7) but forgets the rest of the

graph structure. We then show how to reconstruct (Gn).
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To define Un, Definition 2.7 still applies exactly as written, but to define the associated

genealogy we must specify how parent-child relationships are defined in the (additional)

case that the potential parents Pn do not contain a unique fittest ball. If there is not

a unique fittest element of Pn, then the parent of cn is chosen uniformly at random

from the fittest balls within Pn. Subject to this extra rule, the genealogical structure in

Section 2.1.2 remains well defined. Let us denote the parent of cn as simply qn ∈ Pn.

To define Gn, as before we will take the balls of Un to be set of half-edges of Gn. We

will specify how to form these half-edges into a graph, conditionally given the various

processes (Uk, (pk,l),qn, Rk, Fk)
∞
k=0. We will proceed inductively. As before, we take G0

to be a single vertex with a self-loop, and U0 = {c0, s0} contains two balls of the same

colour corresponding to two half edges of the same vertex. Given Gn−1, we already know

the vertex set Vn−1 and we know which half-edges within Un−1 are attached to which

vertices. We attach a single new vertex vn via single new edge, as follows.

1. For l = 1, . . . , Rn we define pn,l ∈ Vn−1 to be the vertex attached to the half-edge

pn,l ∈ Un−1. We define Pn = {pn,1, . . . , pn,Rn
}. Thus the (pn,l)

Rn

l=1 are i.i.d. degree-

weighted samples from Vn−1.

2. We attach the half-edge cn to same vertex as its parent half-edge qn ∈ Un−1 is

already attached to (within Gn−1). We specify that (cn, sn) will together comprise a

new edge, and we attach sn to a new vertex vn. This new vertex is assigned fitness

Fn.

It is immediate that, when F is continuous, the above mechanism precisely matches

Definition 2.1. Moreover, it preserves the connections (2.5) and (2.7) between Gn and

Un. In Section 4.1 we will apply Lemmas 2.8, 3.2 and 3.3 in this extended context.

Their proofs go through exactly as before – in fact this is immediate because they were

concerned only with potential ancestors, the identities of which are unaffected by fitness

values. Restricting to only two colours, the equivalent statement to Theorem 2.4 is as

follows.

Proposition 4.1. Take the fitness space F = {0, 1}, where P[F = 0] and P[F = 1] are

both positive. Then for a = 0, 1,

µn([0, a])
a.s.
→

1

2
P[F ≤ a] +

1

2

(
P

[
L < ∞ and max

i=1,...,L
Ci ≤ a

]
+ 1{a=1}P[L = ∞]

)
. (4.1)

With Proposition 4.1 in hand, it is straightforward to deduce Theorem 2.4. We give

this argument first, to be followed by the proof of Proposition 4.1.

Proof of Theorem 2.4, subject to Proposition 4.1. Recall that Theorem 2.4 assumes a

uniform fitness distribution on [0, 1]. Fix a ∈ [0, 1). Define f(x) = 1{x > a}, and define

a new, two colour, urn process Ũn, with the same set of balls as Un and the same

distribution for Rn, by considering balls with fitness x to have the new fitness x̃ = f(x).

Thus, our new urn process has fitness space {0, 1} and fitness distribution F̃ satisfying

P[F̃ = 0] = P[F ∈ [0, a]], P[F̃ = 1] = P[F ∈ (a, 1]]. Let us write µ̃n for the empirical

measure of colours within Ũn, analogous to (2.5).

Proposition 4.1 applies to our new urn process Ũn. Hence,

µn([0, a]) = µ̃n(0)

a.s.
→

1

2
P[f(F ) = 0] +

1

2
P

[
L < ∞ and max

i=1,...,T
f(Ci) = 0

]

=
1

2
P[F ≤ a] +

1

2
P

[
L < ∞ and max

i=1,...,T
Ci ≤ a

]
.
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Since µn([0, 1]) = 1, we have µn([0, 1]) → µ([0, 1]) = 1. Thus, we have µn([0, a])
a.s.
→ µ([0, a])

for all a ∈ [0, 1]. This implies that
∫
fdµn

a.s.
→
∫
fdµ for all right-continuous step functions

f : [0, 1] → R. Let C[0, 1] denote the space of continuous functions from [0, 1] → R, with

the || · ||∞ norm. Any f ∈ C[0, 1] can be approximated uniformly by right-continuous step

functions, so it follows that
∫
fdµn

a.s.
→
∫
fdµ for all f ∈ C[0, 1]. Moreover, the sequence

of measures (P ◦ µn) is tight, because they are measures on the compact space [0, 1].

Thus, the conditions for Corollary 2.2 of Berti et al. (2006) hold, with the conclusion that,

almost surely, µn converges weakly to µ. �

4.1 Proof of Proposition 4.1

Recall that the conditions of Proposition 4.1 specify that the fitness space is a two

point set {0, 1}, and that each fitness occurs with positive probability. We assume these

conditions for the duration of Section 4.1. The first step of the proof is to show that, as

n → ∞,

P[col(cn) = 0] → P

[
L < ∞ and max

i=1,...,L
Ci = 0

]
(4.2)

To see this, recall that Lemma 2.8 states that Wn
k = |Wn

k | has the same distribution as

a Galton-Watson process, with offspring distribution (2.2), for generations k ≤ Kn. Let

(Ŵn
k )k≥0 be a Galton-Watson process with this same offspring distribution, and couple

Ŵn
k and Wn

k such that Ŵn
k = Wn

k for all n and k ≤ Kn. Let L̂ be the number of leaves

of (Ŵn
k ), and let (Ci) be a sequence of i.i.d. random variables, each with distribution F .

We note that the offspring distribution M , given by (2.2), of Ŵn
k does not depend on n.

Since P[M = 0] ∈ (0, 1), it is easily seen that

P[L̂ < ∞ and Ŵn
k 6= 0] (4.3)

does not depend on n and, moreover, tends to zero as k → ∞. We note also that for all

k, n ∈ N,

P [col(cn) = 0 and Wn
k 6= ∅] ≤ ( 12 )

k/2 + P [col(cn) = 0 and |Ln
k | ≥ k/2]

≤ ( 12 )
k/2 + P[F = 0]k/2. (4.4)

In the above, the first line follows by Lemma 3.3, and the second line follows because

col(cn) = 0 when, and only when, every source ball in c↓n has colour 0.

Let ǫ > 0, let k ∈ N be such that (4.4) and (4.3) are both ≤ ǫ, and let N ∈ N be chosen

as in Lemma 3.2. Then, for n ≥ N we have

P[col(cn) = 0] = O(ǫ) + P

[
max

i=1,...,L
Ci = 0, Kn ≥ k and Wn

k = 0

]

= O(ǫ) + P

[
max

i=1,...,L̂
Ci = 0, Kn ≥ k and Ŵn

k = 0

]

= O(ǫ) + P

[
max

i=1,...,L̂
Ci = 0, Ŵn

k = 0

]

= O(ǫ) + P

[
max

i=1,...,L̂
Ci = 0, L̂ < ∞

]

In the above, the first line follows by (4.4) and Lemma 3.2, and the observation that

col(cn) = 0 if and only if all leaves of (Wn
k ) have colour 0. The second line follows by the

coupling of Wn
k and Ŵn

k introduced above. The third line follows by applying Lemma 3.2

again, and the final line then follows by (4.3). With this in hand, (4.2) follows because L

and L̂ have the same distribution.
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We now upgrade (4.2) into the full statement of Proposition 4.1. Note that the case

a = 1 of (4.1) claims that 1 → 1, which is true, so it remains only to prove the case a = 0.

We have

µn(0) =
1

|Un|

∑

b∈Un

1(col(b)=0)

=
|Sn|

|Un|

1

|Sn|

∑

b∈Sn

1(col(b)=0) +
|Cn|

|Un|

νn︷ ︸︸ ︷
1

|Cn|

∑

b∈Cn

1(col(b)=0) .

Noting that |Sn|/|Un| and |Cn|/|Un| are both equal to 1
2 , we obtain from the strong law of

large numbers that the first term of the above tends (almost surely) to 1
2P[F = 0], and it

remains to consider the term labelled νn. Thus, to prove (4.1) we must show that

νn
a.s.
→ P

[
L < ∞ and max

i=1,...,L
Ci = 0

]
. (4.5)

From (4.2) we already know that E[νn] converges to the right hand side of the above

equation so, by dominated convergence, equation (4.5) follows if we can show that the

random sequence νn converges almost surely to a deterministic limit ν. To establish this

fact we will use the ‘usual’ machinery of stochastic approximation (c.f. Remark 2.9).

Let (Fn) be the filtration generated by (νn). Let An be the event that the potential

parents (pn
l )

Rn

l=1 of cn are all distinct, and let Ac
n denote its complement. These potential

parents are i.i.d. uniform samples of Un and |Un| = 2n+ 2, so

P[An|Rn = r] =
r−1∏

l=1

(
1−

l

2n+ 2

)

Thus P[An|Rn = r] ≥ (1 − r
2n )

r and by Bernoulli’s inequality when 2n ≥ r we have

P[An|Rn = r] ≥ 1− r2

2n . We thus obtain

P[Ac
n] =

2n∑

r=1

P[Ac
n|Rn = r]P[Rn = r] +

∞∑

r=2n+1

P[Ac
n|Rn = r]P[Rn = r]

≤
2n∑

r=1

r2

2n
P[Rn = r] + P[Rn ≥ 2n]

≤
1

2n
E[R2] +

1

2n
E[R]. (4.6)

Note that in the final line of the above we use that Rn is an independent copy of R, with

a distribution that does not depend on n.

Let MR denote the moment generating function of Rn, which does not depend on n.

Let us write λ = P[F = 0] for the probability that a given source balls has colour 0. Then,

E[νn+1 − νn | Fn]

=
1

|Cn+1|
(−νn + P [col(cn+1) = 0 | Fn])

=
1

|Cn+1|

(
−νn + E

[
1An+1

∞∑

r=1

1{Rn+1=r}

r∑

s=0

(
r

s

)
1

2r
(νn)

r−s(λ)s

]
+O(P[Ac

n+1])

)

=
1

|Cn+1|

(
−νn + E

[
1An+1

∞∑

r=1

1{Rn+1=r}

(
νn
2

+
λ

2

)r
]
+O

(
n−1

)
)
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=
1

|Cn+1|

(
−νn +

∞∑

r=1

P[Rn+1 = r]

(
νn
2

+
λ

2

)r

+O
(
n−1

)
)

=
1

|Cn+1|

(
−νn +MR

(
νn
2

+
λ

2

)
+O

(
n−1

))
(4.7)

In the above, to deduce the second line from the first, we condition on the number

Rn+1 = r of potential parents of cn+1, and also on the number s of potential parents of

cn which are source balls; then, if all these potential parents are distinct, (νn)
r−s(λ)s is

the probability that all potential parents of cn+1 have colour 0. We also use (4.6). The

third line follow from elementary calculations, and the fourth line follows by using (4.6)

again.

From (4.7), writing g(ν) = MR(
ν+λ
2 ) − ν, and noting that |Cn| = n + 1, |νn| ≤ 1,

we obtain E[νn+1 − νn | Fn] =
1
n

(
g(νn) +O(n−1)

)
and thus the stochastic approximate

equation

νn+1 − νn =
1

n

(
g(νn) + ξn +O(n−1)

)

holds with ξn = νn+1 − E[νn+1 | Fn]. Since |ξn| ≤ 2 and g : [0, 1] → [0, 1] is continuous, it

follows from Corollary 2.7 of Pemantle (2007) that νn converges almost surely to the zero

set of g. Recalling that λ ∈ (0, 1), we have g(0) = MR(
λ
2 ) > 0 and g(1) = MR(

1+λ
2 )−1 < 0.

Moreover, g′(ν) = 1
2M

′
R(

ν+λ
2 )−1 is an increasing function, thus g has at most one turning

point in [0, 1] and hence also precisely one root in [0, 1]. Therefore, νn converges almost

surely to this root. This completes the proof of Proposition 4.1.

5 Proof of Theorem 2.6

In this section we prove Theorem 2.6, which asserts that extensive condensation

occurs in the model. We assume the conditions of this theorem for the duration of

Section 5; in particular that E[R] > 2 with E[R2] < ∞. From now on, we will write

ζ =
E[R]

2
, β =

E[R]− 2

E[R]
=

ζ − 1

ζ
. (5.1)

Note that ζ ∈ (1,∞) and β ∈ (0, 1). We will introduce a third variable ξ ∈ (ζ,∞) that also

depends only on the distribution of R, in Lemma 5.9.

We use the following extensions of Landau notation. If ak,n and bk,n are a pair of

doubly indexed strictly positive (real-valued) sequences, defined for all k, n ∈ N such

that k ≤ n, then

ak,n . bk,n means that lim sup
k,n→∞

ak,n
bk,n

≤ 1,

ak,n & bk,n means that lim inf
k,n→∞

bk,n
ak,n

≥ 1,

ak,n ∼ bk,n means that lim
k,n→∞

ak,n
bk,n

= 1.

Note that .,& and ∼ do not explicitly specify which pair of variables (k, n above) are

to be used in the limit, but this should be clear from the context in all cases. Our

requirement for this notation comes from Lemma 5.6, which provides a key two-variable

asymptotic that will be used within Section 5.2. We use the same notation for sequences

an, bn of a single variable, with the same meaning, including when we take k = kn
dependent on n.
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5.1 Proof of Theorem 2.6

The proof of Theorem 2.6 relies on behaviour within the critical window [cnβ , Cnβ ],

where c is suitably small and C is suitably large. We will show that the fittest source

ball born during this window has a non-negligible expected family size at time n, as

n → ∞. This, in turn, will be proved by showing that cn has non-vanishing probability to

be descended from the fittest source ball within {scnβ , . . . , snβ}. Note that such a ball

has a non-vanishing probability to be the fittest ball within {s0, . . . , sCnβ}.

Remark 5.1. We assume without loss of generality that Cnβ and cnβ are integer. This

can be achieved by adding a small quantity, at most n−β, to c, C. The difference is

sufficiently small that it does not change our arguments, so we continue to regard c, C

as fixed constants, independent of n.

Let sk(n) denote the fittest source ball in {s0, . . . , sCnβ}. The proof of Theorem 2.6 has

two key ingredients. The first, Proposition 5.2, will be used to show that P[sk(n) ∈ c↓n] is

bounded away from 0 as n → ∞. The second, Proposition 5.3, shows that during time

[Cnβ , n] not many source balls are included in the genealogy of c↓n; few enough that none

of them are likely to be fitter than sk(n). Let us now state these two results rigorously,

for which we require some notation.

Consider balls that are potential ancestors of c↓n. Each such ball has a natural

multiplicity associated to it: the number of times it was chosen as a potential parent of

some (other) potential ancestor of c↓n. Thus, counting with multiplicity means we are

ignoring coalescences, within the genealogy of c↓n. For k ≤ n define

Nn
k =

n∑

j=k+1

1(cj∈c
↓
n)

Rj∑

l=1

1(pj,l=sk) (5.2)

to be the number of times that sk is a potential ancestor of cn, counted with multiplicity.

For i ≤ i′ ≤ n,

Nn
i,i′ =

i′∑

k=i

Nn
k . (5.3)

In words, Nn
i,i′ is the number of source balls {si, . . . , si′}, counted with multiplicity, that

are potential ancestors of cn. Thus, |c
↓
n ∩ {si, . . . , si′}| ≤ Nn

i,i′ . Define also

Hn
k = {u ∈ Uk : u ∈ Pj for some cj ∈ c↓n with j ≥ k + 1}

Hn
k = |Hn

k | (5.4)

Note that Hn
k is the set of balls that were born (non-strictly) before time k, and were a

potential parent of some cj ∈ c↓n where j > k. The quantity Hn
k counts such balls without

multiplicity. We note that the urn contains 2l + 2 balls at time l, so 1
2l+2H

n
l represents

the fraction of the urn included in Hn
l at time l.

Proposition 5.2. For all C > ξ1/ζ and c ∈ (0, 2) we have

E

[
inf

l=cnβ ,...,2nβ

1

2l + 2
Hn

l

]
&

ζ2

4ξ

ζ

ζ + 4ζec/C
.

Proposition 5.3. For all C ∈ (0,∞) we have

E[Nn
Cnβ ,n] .

nβ

βCζ−1
.

In both propositions, the asymptotic inequality is understood to apply as n → ∞. We

will give the proof of Theorem 2.6 now, subject to these two propositions. We will then

prove Proposition 5.3 in Section 5.2, and Proposition 5.2 in Section 5.3.
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Proof of Theorem 2.6, subject to Propositions 5.2 and 5.3. Let c, C satisfy 0 < c < C <

∞ with c < 2 and C > ξ1/ζ , with precise values to be chosen later. Recall that sk(n)
denotes the (almost surely unique) fittest source ball within {s0, . . . , sCnβ}, and let

Sn = |s↑k(n) ∩ Un|

denote the size of the family of sk(n) at time n. Let Qj,n be the event that all sources in

{sl : l = Cnβ + 1, . . . , j − 1} ∩ c
↓
j are less fit than sk(n). Note that

E[Sn] = 1 +

n∑

j=0

P

[
{sk(n) ∈ c

↓
j} ∩Qj,n

]

≥
n∑

j=2−1/βn

P

[
{sk(n) ∈ c

↓
j} ∩Qj,n

]
. (5.5)

In the above, on the final line, the summation includes j ∈ N such that 2−1/βn ≤ j ≤ n.

Consider n large enough that Cnβ < 2−1/βn, and take such a j. Then

P

[
{sk(n) ∈ c

↓
j} ∩Qj,n

]
≥ P

[
sk(n) ∈ c

↓
j

]
− P

[
Ω \Qj,n

]
(5.6)

We now handle the first term on the right of (5.6). Let Pn be the event that cnβ ≤ k(n) ≤
nβ . We have

P

[
sk(n) ∈ c

↓
j

]
= P

[
sk(n) ∈ c

↓
j

∣∣∣Pn

]
P[Pn]

= P

[
sk(n) ∈ Hj

k(n)

∣∣∣Pn

]
P[Pn].

Note that k(n) is uniform on {0, 1, . . . , Cnβ} and measurable with respect to the fitness

values (Fi). The event Pn is also measurable with respect to (Fi). These fitness values

are independent of the sampling of potential parents, hence Hj
l and Hj

l are independent

of k(n) and Pn. Moreover, for all j ≥ i > l, the potential parents of ci ∈ c
↓
j were sampled

uniformly and i.i.d. from Ui; conditional on any such potential parent p being within Ul,

the distribution of p is uniform on Ul. Thus, the conditional distribution of Hj
l given Hj

l

is also uniform (on the subsets of Ul that have size Hj
l ). Consequently,

P

[
sk(n) ∈ c

↓
j

]
= E

[
1

2k(n) + 2
Hj

k(n)

∣∣∣Pn

]
P[Pn]

≥ E

[
inf

l=cnβ ,...,nβ

1

2l + 2
Hj

l

]
P[Pn]

≥ E

[
inf

l=cjβ ,...,2jβ

1

2l + 2
Hj

l

]
P[Pn] (5.7)

Note that the third line above follows because cjβ ≤ cnβ and nβ ≤ 2jβ. We now apply

Proposition 5.2, which gives that there exists N ∈ N such that for all n ≥ N ,

E

[
inf

l=cjβ ,...,2jβ

1

2l + 2
Hj

l

]
≥

1

2

ζ2

4ξ

ζ

ζ + 4ζec/C
.

Note that P[Pn] ∼
1−c
C . Increasing N if necessary, we may also assume that P[Pn] ≥

1
2
1−c
C

for n ≥ N . Thus, continuing from (5.7),

P

[
sk(n) ∈ c

↓
j

]
≥

1

4

ζ2

4ξ

ζ

ζ + 4ζec/C
1− c

C
. (5.8)
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We now look to control the second term on the right of (5.6). The statement of Theorem

2.6 relates to a property of the graph (Gn), and consequently in view of Remark 2.2 we

may assume that the fitness values are sampled according to the uniform distribution

on [0, 1]. By definition of k(n), col(sk(n)) has the same distribution as max{U0, . . . , UCnβ}
where the (Ui) are i.i.d. uniform random variables on [0, 1]. It follows that for any a > 0,

P

[
col
(
sk(n)

)
< 1−

1

anβ

]
= P

[
U1 < 1−

1

anβ

]Cnβ

=

(
1−

1

anβ

)Cnβ

≤ e−C/a. (5.9)

The final inequality on the right hand side of the above follows from recalling that

(1− b
x )

x ≤ e−b for all 0 < b ≤ x. Choosing a = C
ζ logC , we have

P
[
Ω \Qj,n

]
≤ P

[(
Ω \Qj,n

)
∩

{
col
(
sk(n)

)
≥ 1−

1

anβ

}]
+ P

[
col
(
sk(n)

)
< 1−

1

anβ

]

≤
1

anβ
E[N j

Cnβ ,j
] + e−C/a

≤
1

anβ
E[N j

Cjβ ,j
] + e−C/a. (5.10)

In the above, to deduce the second line, for the second term we use (5.9); for the first

term we recall N j
Cnβ ,j

is the number of source balls (counted with multiplicity) within c
↓
j ,

that were born between Cnβ and j, and that each such source ball samples its fitness

independently and uniform on [0, 1]. The third line follows trivially from the second.

We are now in a position to apply Proposition 5.3 by which, increasing N again

if necessary, for all j ≥ 2−1/βN we may assume E[N j
Cjβ ,j

] ≤ 2 jβ

βCβ−1 . Recalling that

2−1/βn ≤ j ≤ n, we thus obtain that when n ≥ N

P
[
Ω \Qj,n

]
≤ 2

1

aβCζ−1

(
j

n

)β

+ e−C/a

≤
2ζ logC

βCζ
+

1

Cζ
. (5.11)

Putting (5.8) and (5.11) into (5.6), and then putting (5.6) into (5.5) we obtain that

E[Sn] &
(
1− 2−1/β

)
n

[
1

4

ζ2

4ξ

ζ

ζ + 4ζec/C
1− c

C
−

2ζ logC

βCζ
−

1

Cζ

]
. (5.12)

Noting that ζ > 1 and β ∈ (0, 1), we may choose c = 1
2 and C sufficiently large that the

term in square brackets, in the above equation, is strictly positive. We thus obtain that
1
nE[Sn] & γ, where γ > 0 is equal to the right hand side of (5.12) divided by n.

Let ǫ > 0 and recall ℓn from (1.2). Since sk(n) is the initial half-edge of the fittest of

the first Cnβ + 1 vertices, it is clear that Fk(n) = col(sk(n)) → 1 almost surely as n → ∞.

Hence we may choose N ∈ N such that for all n ≥ N , P[Fk(n) ≥ 1− ǫ] ≥ 1− ǫ, and when

this event occurs we have ℓn([1, 1 − ǫ]) ≥ 1
2(n+1)Sn. Thus E[ℓn([1, 1 − ǫ])] & (1 − ǫ)γ2 as

n → ∞, which implies that extensive condensation occurs. �

Remark 5.4. In the above proof, it is crucial that, within (5.12), the first term inside the

square brackets (which comes from Proposition 5.2) has order C−1 and the latter terms

(which come from Proposition 5.3) have the lower order C−ζ . Let us briefly attempt

to explain why this occurs. Looking backwards in time, as k decreases, through the

genealogy of c↓n, there are two key transitions that take place:

1. The point at which Hn
k grows large enough to include source vertices that were

unusually fit for their time of birth.
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2. The point at which Hn
k grows large enough to include individual source vertices

with non-vanishing probability.

A priori, these two transitions might not occur simultaneously, although it is clear

that 1 must come non-strictly before 2. The fact that these two transitions do occur

simultaneously is what leads to extensive condensation in PAC – Propositions 5.2 and 5.3

(the latter via (5.10)) tell us that both happen during the critical window. If these two

transitions did not occur simultaneously, one should expect non-extensive condensation.

We believe that, as a rule of thumb, the standard stochastic approximation theorems

(see e.g. Section 2.4 of Pemantle (2007)) are not suitable to prove extensive condensation,

in the absence of a persistent hub or other simplifying factor. The reason is that stochastic

approximation determines only if convergence (of some well chosen quantity to a suitable

limit) occurs – it does not identify the rate of convergence. Thus stochastic approximation

alone will not identify the asymptotic times at which the two key transitions above take

place, and thus does not distinguish between extensive and non-extensive condensation.

Remark 5.5. The reader may ask why we focus on lim infn E[
1
nSn] in preference to

E[lim infn
1
nSn]. Firstly, as discussed in Section 1.1, it is lim infn E[·] which relates to the

existing meaning of extensive condensation within the literature. Secondly, for PAC, we

expect that E[lim infn
1
nSn] = 0. We expect this because the critical window [cnβ , Cnβ ]

will, infinitely often as n → ∞, contain a large number M of vertices that each became a

newly fittest vertex at their time of birth. Let us call this event En. When En happens and

M is large we believe that Sn is close to zero, essentially because the many unusually fit

vertices born during the critical window will then compete with each other as they grow,

resulting in a situation where the largest vertex at time n has degree ǫMn, where ǫM is

close to zero when M is large. Note that E[Sn] can remain bounded away from zero only

because P[En] → 0. We do not attempt a rigorous statement or proof of these claims

within the present article.

5.2 The branching phase of the genealogy

We now turn our attention to proving Propositions 5.2 and 5.3. The latter will appear

at the end of Section 5.2, and the former in Section 5.3. In both cases we investigate

the growth of the genealogy c↓n, backwards in time. In this section we fix a cue ball c↓n,

and look backwards in time at the period during which its genealogy is dominated by

branching. We analyse this phase of the genealogy using iterative methods, with each

iteration moving one step further backwards in time. The following lemma will play a

key role in the calculations.

Lemma 5.6. Let α ≥ 0 and γj ∈ R such that
∑

j |γj | < ∞. Then as k, n → ∞ with k ≤ n,

n∏

j=k

(
1 +

α

j
+ γj

)
∼
(n
k

)α
.

A proof of this lemma is given in Appendix A. We will also make regular use of the

following elementary inequality: for j ∈ N and x ∈ [0, 1],

1− jx ≤ (1− x)j ≤ 1− jx+

(
j

2

)
x2. (5.13)

We now define the notation that we will use to explore c↓n backwards in time. Recall

that the potential parents Pj = {pj,1, . . . ,pj,Rj
} of cj are i.i.d. samples from Uj−1. For

k = 0, 1, . . . , n we define

Gn
k =

n∑

j=k

1(cj∈c
↓
n)

Rj∑

l=1

1(pj,l∈Uk−1) (5.14)
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In words, Gn
k counts, with multiplicity, potential parents p of {ck, . . . , cn} ∩ c↓n that were

born strictly before time k. Note that, as usual, ·n denotes a superscript n and not an

exponent.

Our first goal in this section is to find upper and lower bounds for E[Gn
k ]. In order to

establish the lower bound we will also require an upper bound on E[(Gn
k )

2]. We end with

two applications of these bounds: in Lemma 5.10 we show that when k ≈ nβ we have

E[Gn
k ] ≈ k and, with this choice of k, we give the proof of Proposition 5.3. Let

An
k =

n∑

j=k+1

1(cj∈c
↓
n)

Rj∑

l=1

1(pj,l∈{ck,sk}) (5.15)

In words, An
k is the number of times (counted with multiplicity) that either ck or sk is

chosen as a potential parent of some c ∈ {ck+1, . . . , cn} ∩ c↓n. Similarly, let

Bn
k = 1(ck∈c

↓
n)Rk (5.16)

= 1(ck∈c
↓
n)

Rk∑

l=1

1(pk,l∈Uk−1) (5.17)

In words, Bn
k is the number of potential parents (counted with multiplicity) of ck when ck

is itself in c↓n, and is zero otherwise. Note that all such potential parents are automatically

elements of Uk−1, justifying (5.17). It is immediate from (5.14), (5.15) and (5.17) that

Gn
k = Gn

k+1 −An
k +Bn

k . (5.18)

For k = 0, 1, 2, . . ., we define the sequence of decreasing σ-fields

Gk = σ
(
Rj , 1(cj=pi,l), 1(sj=pi,l) : i ≥ j ≥ k, l ∈ N

)

In words, Gk contains the information of: the number Rj of potential parents of each of

the balls {ck, ck+1, . . .} ∪ {sk, sk+1, . . .}, plus the identities of these potential parents in

cases where they are also elements of {ck, ck+1, . . .} ∪ {sk, sk+1, . . .}.

We will take conditional expectation of (5.18) with respect to Gk+1 in Lemma 5.7, and

the same for (Gn
k )

2 in Lemma 5.9. To this end, we note that:

(⋆) If k + 1 ≤ j ≤ n, and 1 ≤ l ≤ Rj , then 1(cj∈c
↓
n) and 1(pj,l∈Uk) are both Gk+1

measurable.

The first claim holds because if there is a potential ancestral line connecting cn to cj

then Gk+1 can see the identities of these ancestors. The second holds because pj,l ∈ Uk

if and only if pj,l was not born after time k + 1.

We record one further observation for future use:

(†) Consider k + 1 ≤ j ≤ n, and 1 ≤ l ≤ Rj . On the event that pj,l ∈ Uk, we have that

pj,l is uniformly distributed on Uk, with distribution independent of Gk+1.

This observation is an immediate consequence of the fact that each potential parent pj,l

of cj is sampled, independently of all else, uniformly from the set Uj−1.

Lemma 5.7. For k < n, we have

1. E[An
k |Gk+1] =

Gn
k+1

k+1 ,

2. E [Gn
k |Gk+1] = Gn

k+1 −
Gn

k+1

k+1 + 2ζ

(
1−

(
1− 1

2(k+1)

)Gn
k+1

)
.
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Proof. Recall from (5.1) that ζ = E[R]
2 . We address the two claims in turn. In short, the

first claim holds because, by (†), each ball within the subset of Uk counted by Gn
k+1 has

chance 2
|Uk|

= 1
k+1 of being an element of {ck, sk}. Formally, from (5.15), since ck, sk ∈ Uk

we have that

An
k =

n∑

j=k+1

1(cj∈c
↓
n)

Rj∑

l=1

1(pj,l∈Uk)1(pj,l∈{ck,sk}).

Taking conditional expectation with respect to Gk+1,

E[An
k |Gk+1] =

n∑

j=k+1

1(cj∈c
↓
n)

Rj∑

l=1

1(pj,l∈Uk)E

[
1(pj,l∈{ck,sk})

∣∣∣Gk+1

]

=
1

k + 1

n∑

j=k+1

1(cj∈c
↓
n)

Rj∑

l=1

1(pj,l∈Uk) (5.19)

Here, to deduce the first line we use (⋆), and to deduce the second line we use (†). The
first claim now follows from (5.14).

We now address the second claim. We will take conditional expectation of (5.18)

with respect to Gk+1. By (⋆), Gn
k+1 is Gk+1 measurable. We have already calculated

E[An
k |Gk+1] above and it remains to calculate E[Bn

k |Gk+1]. From (5.16) we have

Bn
k = Rk

(
1− 1(ck /∈c

↓
n)

)

= Rk


1−

n∏

j=k+1

Rj∏

l=1

[
1(cj∈c

↓
n)1(pj,l 6=ck) + 1(cj /∈c

↓
n)

]



= Rk


1−

n∏

j=k+1

Rj∏

l=1

[
1(cj∈c

↓
n)
[
1(pj,l∈Uk)1(pj,l 6=ck) + 1(pj,l /∈Uk)

]
+ 1(cj /∈c

↓
n)

]

 . (5.20)

Therefore,

E[Bn
k |Gk+1]

= 2ζ


1−

n∏

j=k+1

Rj∏

l=1

[
1(cj∈c

↓
n)

[
1(pj,l∈Uk)E

[
1(pj,l 6=ck)

∣∣∣Gk+1

]
+ 1(pj,l /∈Uk)

]
+ 1(cj /∈c

↓
n)

]



= 2ζ


1−

n∏

j=k+1

Rj∏

l=1

[
1(cj∈c

↓
n)

[
1(pj,l∈Uk)

(
1−

1

|Uk|

)
+ 1(pj,l /∈Uk)

]
+ 1(cj /∈c

↓
n)

]


= 2ζ

(
1−

(
1−

1

2(k + 1)

)Gn
k+1

)
. (5.21)

Here, in the first line we use (⋆) and the fact that Rk is independent of Gk+1, with mean

E[R] = 2ζ. We use (†) to deduce the second line, and the final line then follows from

(5.14) and |Uk| = 2k + 2. The stated result follows. �

Lemma 5.8. As k, n → ∞ with k ≤ n we have E[Gn
k ] . 2ζ

(
n
k

)ζ−1
.

Proof. From Lemma 5.7 and the left hand side of (5.13),

E[Gn
k ] ≤ E[Gn

k+1]−
E[Gn

k+1]

k + 1
+ 2ζ

E[Gn
k+1]

2k + 2
= E[Gn

k+1]

(
1 +

ζ − 1

k + 1

)
.

By iterating the above inequality we obtain that E[Gn
k ] ≤ E[Gn

n]
∏n

j=k+1

(
1 + ζ−1

j

)
. The

result follows by applying Lemma 5.6 and noting that Gn
n = Rn, with expectation 2ζ. �
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Lemma 5.9. As k, n → ∞ with k ≤ n we have E[(Gn
k )

2] . ξ
(
n
k

)2(ζ−1)
, where ξ ∈ (ζ2,∞)

is a constant that depends only on the distribution of R.

Proof. We will first show that for all k ≤ n,

E
[
(An

k )
2 |Gk+1

]
≤

Gn
k+1

k + 1
+

(
Gn

k+1

k + 1

)2

. (5.22)

To this end, let Ck
j =

∑Rj

l=1 1(pj,l∈{ck,sk}). In similar style to (5.19) note that when k < j,

E[Ck
j |Gk+1] =

Rj∑

l=1

1(pj,l∈Uk)E

[
1(pj,l∈{ck,sk})

∣∣∣ Gk+1

]

=
1

k + 1

Rj∑

l=1

1(pj,l∈Uk). (5.23)

Here, the first equality follows by (⋆) and the second by (†).
We now aim to deduce (5.22). From (5.15) we have

(An
k )

2 = An
k + 2

n∑

j=k+1

j−1∑

j′=k+1

1(cj∈c
↓
n)1(cj′∈c

↓
n)C

k
j C

k
j′ .

For k + 1 ≤ j′ < j ≤ n we have in particular that j′ 6= j, hence pj,l and pj′,l′ are

independent of each other. Hence also Cn
j and Cn

j′ are also independent, and in particular

E
[
Ck

j C
k
j′ |Gk+1

]
= E

[
Ck

j |Gk+1

]
E
[
Ck

j′ |Gk+1

]
. Therefore,

E[(An
k )

2 |Gk+1] = E[An
k |Gk+1] + 2

n∑

j=k+1

j−1∑

j′=k+1

1(cj∈c
↓
n)1(cj′∈c

↓
n)E

[
Ck

j |Gj

]
E
[
Ck

j′ |Gj′
]

≤
Gn

k+1

k + 1
+

1

(k + 1)2




n∑

j=k+1

1(cj∈c
↓
n)

Rj∑

l=1

1(pj,l∈Uk)




2

=
Gn

k+1

k + 1
+

(Gn
k+1)

2

(k + 1)2
.

Here, the second line follows by Lemma 5.7 and (5.23). The final line then follows from

(5.14). Thus we have established (5.22).

We now approach (Gn
k )

2. To keep our notation manageable, during the remainder of

this proof we will write 1c = 1(ck∈c
↓
n)

and 1s = 1(sk∈c
↓
n)
. We define also 1!c = 1− 1c and

1!s = 1− 1s, and also 1c∪s = 1(ck∈c
↓
n or sk∈s

↓
n)
. From (5.18), for k < n we have

Gn
k = (Gn

k+1 −An
k +Bn

k ) (1c + 1!c1s + 1!c1!s)

because the final bracket sums to 1. Note that Bn
k = 1cRk. Note also that if 1!c1!s = 1

then An
k = 0. Thus,

Gn
k =

(
Gn

k+1 −An
k +Rk

)
1c +

(
Gn

k+1 −An
k

)
1!c1s +Gn

k+11!c1!s.

Squaring both sides,

(Gn
k )

2 =
(
Gn

k+1 −An
k +Rk

)2
1c +

(
Gn

k+1 −An
k

)2
1!c1s + (Gn

k+1)
2
1!c1!s

= (Gn
k+1)

2 + 2Gn
k+1 [(Rk −An

k )1c −An
k1!c1s] + (Rk −An

k )
2
1c + (An

k )
2
1!c1s

≤ (Gn
k+1)

2 + 2Gn
k+1 [Rk1c −An

k1c∪s] +R2
k1c + (An

k )
2
1c∪s
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= (Gn
k+1)

2 + 2Gn
k+1 [Rk1c −An

k ] +R2
k1c + (An

k )
2. (5.24)

To deduce the third line of the above from the second, we recall that An
k ≥ 0, and to

deduce the final line we use also that 1c∪s = 1 if and only if An
k 6= 0.

We now prepare to take conditional expectation of both sides of (5.24), with respect

to Gk+1. With this goal in mind we note that

E

[
1c

∣∣∣Gk+1

]
= 1−

(
1−

1

2k + 2

)Gn
k+1

≤
Gn

k+1

2k + 2

The first equality follows from the same calculation as in (5.20) and (5.21) (but without

the Rk term present), and the inequality then follows from (5.13). Recall that Gn
k+1

is Gk+1 measurable, but that Rk is independent of Gk+1 and of 1c. Lastly, recall that

we have Lemma 5.7 and (5.22) to control E[An
k |Gk+1] and E

[
(An

k )
2 |Gk+1

]
respectively.

Putting all these facts together, we obtain from (5.24) that

E[(Gn
k )

2 |Gk+1]

≤ (Gn
k+1)

2 + 2Gn
k+1

(
E[R]

Gn
k+1

2k + 2
−

Gn
k+1

k + 1

)
+ E[R2]

Gn
k+1

2k + 2
+

Gn
k+1

k + 1
+

(
Gn

k+1

k + 1

)2

= (Gn
k+1)

2

(
1 +

2(ζ − 1)

k + 1
+

1

(k + 1)2

)
+

E[R2] + 2

2

Gn
k+1

k + 1

To ease our notation, and with a view to eventually applying Lemma 5.6, for the remainder

of this proof we will write γj = j−2 and θ = 1
2 (E[R

2] + 2). Thus, taking expectations, we

obtain

E
[
(Gn

k )
2
]
≤ E

[
(Gn

k+1)
2
](

1 +
2(ζ − 1)

k + 1
+ γk+1

)
+ θ

E[Gn
k+1]

k + 1
(5.25)

Therefore, iterating (5.25),

E
[
(Gn

k )
2
]
= E

[
(Gn

n)
2
] n∏

j=k+1

(
1 +

2(ζ − 1)

j
+ γj

)

+ θ

n∑

j=k+1

E[Gn
j ]

j

j−1∏

l=k+1

(
1 +

2(ζ − 1)

l
+ γl

)
(5.26)

We now apply Lemma 5.6, but we must be careful because of the summation over j.

Let ǫ > 0. By Lemma 5.6 there exists K = Kǫ ∈ N such that for all j > k ≥ K we have∏j−1
l=k+1(1 +

2(ζ−1)
l + γl) ≤ ( j−1

k+1 )
2(ζ−1)(1 + ǫ). Similarly, by Lemma 5.8, increasing K if

necessary, for all n ≥ j ≥ K we have that E[Gn
j ] ≤ 2ζ(nj )

ζ−1(1 + ǫ). Putting both these

facts into (5.26), for n ≥ k ≥ K we have

E
[
(Gn

k )
2
]
≤ E[R2]

(n
k

)2(ζ−1)

(1 + ǫ) + 2ζθ

n∑

j=k+1

(
n

j

)ζ−1
1

j

(
j − 1

k + 1

)2(ζ−1)

(1 + ǫ)2

≤ (1 + ǫ)2


E[R2]

(n
k

)2(ζ−1)

+ 2ζθ

n∑

j=k+1

(
n

j

)ζ−1
1

j

(
j

k

)2(ζ−1)



= (1 + ǫ)2


E[R2]

(n
k

)2(ζ−1)

+ 2ζθ
(n
k

)ζ−1 1

kζ−1

n∑

j=k+1

jζ−2


 . (5.27)

We have ζ > 1, so

n∑

j=k+1

jζ−2 ≤

∫ n+1

k

jζ−2 dj ≤
1

ζ − 1
(n+ 1)ζ−1.
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Again increasing K if necessary, we may assume that for n ≥ K we have
∑n

j=k+1 j
ζ−2 ≤

1
ζ−1n

ζ−1(1 + ǫ). Thus, continuing from (5.27) we obtain that for n ≥ k ≥ K,

E
[
(Gn

k )
2
]
≤ (1 + ǫ)3

(
E[R2]

(n
k

)2(ζ−1)

+ 2
ζθ

ζ − 1

(n
k

)ζ−1 (n
k

)ζ−1
)

(5.28)

= (1 + ǫ)3
(
E[R2] + 2

ζθ

ζ − 1

)(n
k

)2(ζ−1)

.

= (1 + ǫ)3ξ
(n
k

)2(ζ−1)

In the above we take ξ = E[R2] + 2 ζθ
ζ−1 . Since E[R2] ≥ 4ζ2 we have θ ≥ 2ζ2 + 1 and thus

ξ > 8ζ2 + 2. The stated result follows, because ǫ > 0 was arbitrary. �

As we can see from (5.28), the second term on the right hand side of (5.25) turns out,

after iteration, to be of the same order as the first. Roughly speaking, the first term of

(5.28) corresponds to branching, and the second to (an over-estimate of) coalescing. We

will see the same pattern in the calculations following (5.29), below.

We will now set k to depend on n, such that kn ∼ Cnβ with a suitable C ∈ (0,∞). This

corresponds to the furthest backwards in time (from n) that the iterative methods used

in this section are capable of seeing. In the first part of next lemma we can see that even

reducing the value of C towards 0 results in the lower bound for 1
kE[G

n
k ] drifting away

from the upper bound. This root cause is as follows: in order to remain tractable the

proof of Lemma 5.9 has used a slight underestimate of the coalescence part, in (5.24).

Once coalescences become non-negligible, which occurs around k ≈ nβ when 1
kE[G

n
k ]

becomes non-trivial, that estimate breaks down.

Lemma 5.10. Let C ∈ (0,∞). Suppose that k = kn is such that k ≤ n and k ∼ Cnβ.

Then as n → ∞ we have

1. 2ζ
Cζ

(
1− ξ

8ζCζ

)
. 1

kE[G
n
k ] .

2ζ
Cζ ,

2. 1
k2E

[
(Gn

k )
2
]
. ξ

C2ζ .

Proof. Let us first prove the two asymptotic upper bounds. Recall that β ∈ (0, 1) was

defined in (5.1) and note that (1 − β)ζ = 1. Thus, since k ∼ Cnβ, we have
(
n
k

)ζ−1
∼

(
n

Cnβ

)ζ−1
= 1

Cζ−1n
β ∼ 1

Cζ k. The first upper bound now follows from Lemma 5.8 and the

second upper bound follows from Lemma 5.9. It remains to prove the lower bound from

the first claim of the lemma. We have

E[Gn
k |Gk+1] ≥ Gn

k+1 −
Gn

k+1

k + 1
+ 2ζ

(
Gn

k+1

2k + 2
−

(
Gn

k+1

2

)
1

4(k + 1)2

)

= Gn
k+1

(
1 +

ζ − 1

k + 1

)
− ζ

(
Gn

k+1

2

)
1

2(k + 1)2

≥ Gn
k+1

(
1 +

ζ − 1

k + 1

)
−

ζ

4

(
Gn

k+1

k + 1

)2

. (5.29)

Here, the first line follows from Lemma 5.7 and the right hand side of (5.13), and the

second and third lines are elementary computations. Iterating (5.29), we obtain

E[Gn
k ] ≥ E[Gn

n]

n∏

j=k+1

(
1 +

ζ − 1

j

)
−

ζ

4

n∑

j=k+1

E[(Gn
j )

2]

j2

j−1∏

l=k+1

(
1 +

ζ − 1

l

)
. (5.30)
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We now seek to apply Lemma 5.6, but again we must take care to handle the summation

over j. Let ǫ > 0. By Lemma 5.6 there exists K = Kǫ ∈ N such that for all j > k ≥ K we

have (
j

k

)ζ−1

(1− ǫ) ≤

j−1∏

l=k+1

(
1 +

ζ − 1

l

)
≤

(
j

k

)ζ−1

(1 + ǫ).

Similarly, by Lemma 5.9, increasingK if necessary, we may assume that for all n ≥ j ≥ K

we have E[(Gn
j )

2] ≤ (nj )
2(ζ−1)(1 + ǫ). We thus obtain from (5.30) that for n ≥ j > k ≥ K,

E[Gn
k ] ≥ 2ζ

(n
k

)ζ−1

(1− ǫ)−
ζξ

4

n∑

j=k+1

(
n

j

)2(ζ−1)(
j

k

)ζ−1

(1 + ǫ)2

= (1− ǫ)(2ζ)
(n
k

)ζ−1

− (1 + ǫ)2
ζξ

4

(n
k

)ζ−1

nζ−1
n∑

j=k+1

j−ζ−1. (5.31)

We have ζ > 1, so
∑n

j=k+1 j
−ζ−1 ≤

∫ n

k
j−ζ−1 dj ≤ 1

ζ k
−ζ . Thus, from (5.31) we obtain

E[Gn
k ] ≥ (1− ǫ)(2ζ)

(n
k

)ζ−1

− (1 + ǫ)2
ξ

4

(n
k

)ζ−1

nζ−1k−ζ

=
(n
k

)ζ−1
(
(1− ǫ)(2ζ)− (1 + ǫ)2

ξ

4

(n
k

)ζ−1 1

k

)
.

Recall that k ∼ Cnβ and (1− β)ζ = 1. Therefore, increasing k again if necessary, we may

assume that for all n ≥ k ≥ K we have
(
n
k

)ζ−1 1
k ≥ 1

Cζ (1 − ǫ). Thus for n ≥ k ≥ K we

have

1

k
E[Gn

k ] ≥
1

Cζ
(1− ǫ)

(
(1− ǫ)(2ζ)− (1 + ǫ)2

ξ

4

1

Cζ
(1− ǫ)

)

≥ (1− ǫ)2
2ζ

Cζ

(
1−

ξ

8ζCζ

)
− 3ǫ

ξ

4Cζ
.

The asymptotic lower bound claimed in the first part of the lemma now follows because

ǫ > 0 was arbitrary. This completes the proof. �

Proof of Proposition 5.3. Recall the definition on Nn
i,i′ in (5.3). Let C > 0. We have

E

[
Nn

Cnβ ,n

]
=

n∑

k=Cnβ

E




n∑

j=k+1

1(cj∈c
↓
n)

Rj∑

l=1

1(pj,l∈{ck,sk})1(pj,l=sk)




=

n∑

k=Cnβ

E




n∑

j=k+1

1(cj∈c
↓
n)

Rj∑

l=1

1(pj,l∈{ck,sk})


 1

2

=
1

2

n∑

k=Cnβ

E [An
k ] . (5.32)

In the above, the first line follows from (5.2), (5.3) and from noting that sk ∈ {sk, ck}.
To deduce the second line we use (†) which implies that, for each j, P[pj,l = sk |pj,l ∈
{sk, ck}, cj ∈ c↓n] =

1
2 . The third line then follows by (5.15).

Combining Lemmas 5.7 and 5.8 we obtain E[An
k ] =

E[Gn
k+1]

k+1 . 2ζ 1
k

(
n
k

)ζ−1
. Thus, for

any ǫ > 0 there existsK such that for all n ≥ k ≥ K, E[An
k ] ≤ 2ζ 1

k

(
n
k

)ζ−1
(1+ǫ). Combing

this with (5.32) obtains

E

[
Nn

Cnβ ,n

]
≤ (1 + ǫ)ζnζ−1

n∑

k=Cnβ

k−ζ
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≤ (1 + ǫ)ζnζ−1 (Cnβ)1−ζ

ζ − 1

= (1 + ǫ)
nβ

βCζ−1
.

To deduce the final line of the above we use βζ = ζ − 1. The proposition follows because

ǫ > 0 was arbitrary. �

5.3 The branching-coalescing phase of the genealogy

We now turn our attention to look further backwards into the genealogy of c↓n, in

particular at the full range of times of order nβ. It is during this window of time that

coalescences become frequent. With this in mind, we will now need to count potential

parents of ancestors of c↓n without multiplicity. In fact, it will also become useful to

record their identities. To this end, for convenience we reproduce (5.4) here:

Hn
k = {u ∈ Uk : u ∈ Pj for some cj ∈ c↓n with j ≥ k + 1},

Hn
k = |Hn

k |.

Note that Hn
k is the set of balls that were born (non-strictly) before time k, and were a

potential parent of some cj ∈ c↓n where j > k. Thus, comparing to (5.14), Hn
k is ‘Gn

k+1

counted without multiplicity’. The apparently incongruity between k and k + 1 will not

bother us, because we will shortly shift our emphasis entirely from Gn
k to Hn

k . Moreover,

in this section is it advantageous that Hn
k relates to Uk and not to Uk−1. Let us now

upgrade (†) and Lemma 5.10 to handle Hn
k .

(††) The conditional distribution of Hn
k given Hn

k is uniform on the set of subsets of Uk

that have size Hn
k .

Proof of (††). Recall the definition of Gn
k+1 from (5.14): it counts the number of times a

parent of some c
↓
j (with k + 1 ≤ j ≤ n) was an element of Uk. By (†), each such parent is

a uniformly sampled element of Uk, independently of all else. �

For the remainder of Section 5.3, we fix a pair of constants c, C such that 0 < c < C <

∞. It is understood that they will be chosen dependent upon the common distribution

of the Rk. We assume, without loss of generality, that both cnβ and Cnβ are integer

c.f. Remark 5.1.

Lemma 5.11. Suppose that k = kn ∼ Cnβ . Then, as n → ∞ we have

1. 2ζ
Cζ

(
1− ξ

8ζCζ

)
. 1

kE[H
n
k ] .

2ζ
Cζ ,

2. 1
k2E

[
(Hn

k )
2
]
. ξ

C2ζ .

Proof. It is immediate that Hn
k ≤ Gn

k+1. Thus both asymptotic upper bounds follow

from their counterparts in Lemma 5.10. For the lower bound, by symmetry we have

E[Hn
k |Gn

k+1] = 2kP[b ∈ Hn
k |Gn

k+1], where b is any fixed ball in ∈ Uk. By (†) we have

P[b /∈ Hn
k |Gn

k+1] =
(
1 − 1

2k

)Gn
k+1 , so E[Hn

k |Gn
k+1] = 2k

(
1 − (1 − 1

2k )
Gn

k+1). Using (5.13)

and taking expectations, we thus obtain that E[Gn
k+1] −

1
2

1
2kE[(G

n
k+1)

2] ≤ E[Hn
k ]. Then,

using Lemma 5.10 again we have 1
kE[H

n
k ] &

2ζ
Cζ − 1

4
ξ

C2ζ as required. �

It will be helpful to work with proportions of cue balls rather than with their absolute

number. We set

Zn
j =

1

2(Cnβ − j) + 2
, Y n

j = Zn
j H

n
Cnβ−j (5.33)
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defined for j = 0, 1, . . . , (C − c)nβ. In words, Zn
j is one over the the number of balls

born (non-strictly) before time Cnβ − j, and Y n
j is the proportion of such balls that

constitute Hn
Cnβ−j . The indexing in (5.33) is in preparation for finding a fluid limit, as

n → ∞, of the process k 7→ 1
kH

n
k considered backwards in time – that is as j increases

and k decreases, during the critical window k ∈ [cnβ , Cnβ ]. This is somewhat tricky

because the process Hn
k is non-Markov, with respect to its generated filtration, and also

time-inhomogeneous. We will see that these technical difficulties may be overcome by

taking the limit of (Y n
j , Zn

j ) under a suitable rescaling of time.

We are now ready to state the major result of this section, Proposition 5.12, which

will come as a consequence of the aforementioned fluid limit. We write Y n
u = Y n

j for any

u ∈ [j, j + 1).

Proposition 5.12. If 0 < c < C < ∞ and C > ξ1/ζ then

P

[
for all s ∈ [0, 1], Y n

s(C−c)nβ ≥
ζ

ζ + ec/C(C − s(C − c))2ζ

]
&

ζ2

4ξ
. (5.34)

Let us comment a little further on the strategy we adopt to prove Proposition 5.12,

and outline where the formula (5.34) comes from. We look to obtain a fluid limit for

the [0, 1]2 valued process (Y n
j , Zn

j ), during time j = 0, 1, . . . , (C − c)nβ. We will use

the framework of weak convergence. To this end, we parametrize time using s ∈ [0, 1],

resulting in times s(C−c)nβ , but we will see that it is also helpful to make the substitution

t = log( C
C−s(C−c) ) after which, loosely speaking, the limit of Y n

j will turn out to be the

ordinary differential equation

dy(t)

dt
= 2ζ y(t)(1− y(t)) (5.35)

run for time t ∈ [0, log(C/c)], starting from the initial condition y(0) ≈ Y n
0 . Equation (5.35)

is well known – it is logistic growth at rate 2ζ. The precise formulation of (5.34) comes

from the explicit solution to (5.35), which is y(t) = A
A−(A−1)e−2ζt , where y(0) = A. The

limit of Zn
j will be zero; its presence is solely because (Y n

j , Zn
j ) is a time-homogeneous

Markov process, whereas (Y n
j ) alone is not.

The ODE (5.35) has a stable fixed point at 1 and an unstable fixed point at 0. Our

initial condition y(0) is positive, resulting in attraction towards 1 as t increases. However,

the value of y(0) ≈ 2ζ
Cζ tends to zero as C → ∞, as a consequence of Lemma 5.11. We

need to keep enough freedom to choose a large value for C (as we did in Section 5.1).

Heuristically, as C → ∞ we observe (5.35) started with a vanishing initial displacement,

of order C−ζ , away from its unstable fixed point at y = 0. It is not a priori clear if the

time interval t ∈ [0, log(C/c)] gives long enough to actually escape from 0; fortunately,

we will see that it does. Proposition 5.12 comes from knowing that Y n
j behaves similarly

to y(t), for large n.

With Proposition 5.12 in hand, the proof of Proposition 5.2 is straightforward, so we

will give it now; then we will turn our attention to proving Proposition 5.12.

Proof of Proposition 5.2, subject to Proposition 5.12. We have c ∈ (0, 2) and C >

max(c, ξ1/ζ). Thus C−2
C−c ∈ (0, 1). For s ∈ [C−2

C−c , 1] we have

ζ

ζ + ec/C(C − s(C − c))2ζ
≥

ζ

ζ + ec/C4ζ
.

Thus, by Proposition 5.12, with probability at least ζ2

4ξ , we have that Y n
s(C−c)nβ ≥ ζ

ζ+ec/C4ζ

for all s ∈ [C−2
C−c , 1]. Recalling that Y n

j = Hn
Cnβ−j , and noting that s = C−2

C−c corresponds

to j = 2nβ whilst s = 1 corresponds to j = cnβ, this gives Hn
j ≥ ζ

ζ+ec/C4ζ
for all

j = cnβ , . . . , 2nβ . The result follows. �
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The remainder of this section will focus on proof of Propositon 5.12. As we have

mentioned, j 7→ Y n
j is not time-homogeneous, which is due to its dependence on Zn

j .

However, Xn
j = (Y n

j , Zn
j ) is time-homogeneous, as we will now show. We require some

notation. We define (the function ·′ as)

z′ =

(
1

z
− 2

)−1

and note that Zn
j+1 = (Zn

j )
′. Let Br,a,b be an independent random variable defined as

follows. Take a ∈ N boxes, b ∈ N of which are marked, and distribute r balls (uniformly

at random, with replacement) into these a boxes; Br,a,b is the number of newly occupied

boxes that are not marked.

Lemma 5.13. Fix n ∈ N. The process j 7→ Xn
j is a time-homogeneous [0, 1]2 valued

Markov process, in discrete time j = 0, 1, . . . , (C−c)nβ . The law of its one-step transition,

given that Xn
j = (y, z), is that of

(y, z) 7→
(
y z′

z − z′I0 + z′I1
(
−1 + BR,1/z′,y/z

)
, z′
)

(5.36)

where (I0, I1) is a pair of Bernoulli random variables with distribution given by P[I0 =

1] = P[I1 = 1] = y and P[I0 = 1, I1 = 1] = y2−yz
1−z , and R is an independent sample of the

common distribution of the (Rj).

Proof. Consider the one-step transition of Xn
j to Xn

j+1 where j = Cnβ − k. Suppose that

Xn
j is at location (y, z) ∈ [0, 1]2, so that

y =
Hn

k

|Uk|
, z =

1

|Uk|
.

In the z coordinate of Xn
· , we see the deterministic movement Zn

j 7→ Zn
j+1, which is

simply z 7→ z′. To understand the random movement within the y coordinate, we must

first consider the transition Hn
k 7→ Hn

k−1. To construct Hn
k−1 from Hn

k we must do both of:

1. check if sk ∈ Hn
k ; if it is then we must remove sk,

2. check if ck ∈ Hn
k ; if it is then we must remove ck and add in any potential parents

of ck that were not already there.

By (††), the events sk ∈ Hn
k and ck ∈ Hn

k are not independent. However, by (††) and
using exchangeability we do have

P [sk ∈ Hn
k |H

n
k ] = P [ck ∈ Hn

k |H
n
k ] =

Hn
k

|Uk|
= y (5.37)

P [sk ∈ Hn
k , ck ∈ Hn

k |H
n
k ] =

Hn
k

|Uk|

Hn
k − 1

|Uk| − 1
=

y2 − yz

1− z
. (5.38)

Let (I0, I1) denote a pair of correlated Bernoulli random variables, taking values in

{0, 1}2, with the distribution of
(
1(sk∈Hn

k)
, 1(ck∈Hn

k)

)
given Hn

k , that is

P[I0 = 1] = P[I1 = 1] = y, P[Ic = 1, Ic = 1] =
y2 − yz

1− z
.

We claim that, on the event {ck ∈ c↓n}, the number of potential parents of ck that are

in Hn
k \ Hn

k−1 has the same distribution as an independent copy of BRk,1/z′,y/z. To see

this, note that Hn
k−1 = y/z and |Uk−1| = 1/z′. The claim now follows from (††) and the

definition of Br,a,b.
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Note that we took j = Cnβ − k, so the transition Y n
j 7→ Y n

j+1 is precisely the tran-

sition of Zn
j H

n
k 7→ Zn

j+1H
n
k−1. Putting this together with all the above, we obtain that,

conditionally given Xn
j = (y, z), the transition Xn

j 7→ Xn
j+1 has the same law as

(y, z) 7→
(
y z′

z − z′I0 + z′I1
(
−1 + BRk,1/z′,y/z

)
, z′
)
,

as required. Conditionally given the value of (y, z), the law of this transition does not

depend on time (i.e. on j or k). Thus (Xn
j ) is a time-homogeneous process. Note that I0, I1

are all measurable with respect to σ(Xn), and that the distribution of (I0, I1) depends

only on the current state Xn
j = (y, z).

Hence, (Xn
j ) is Markov with respect to the filtration generated by its own motion, the

i.i.d. sequence (RCnβ , RCnβ−1, . . . , R1), and the i.i.d. random functions {B·,i,i′ : i′ ≤ i}.
(Strictly, we must include a new independent copy of the latter on each time-step.) �

In order to take a fluid limit, it will be convenient to work in continuous time.

Essentially this just means embedding Xn
j as a the jump chain of a continuous time

Markov process, but we also need to handle one more technicality: our fluid limit only

exists around the time of the critical window [cnβ , Cnβ ]. Consequently, once the critical

window of time has passed, it is convenient to make the pre-limiting processes behave

exactly like their limit. Note that the critical window of time ends when Zn
j rises above

1
2cnβ+2

. So, we define a continuous time Markov process Xn
t , taking values in [0, 1]2, as

follows. We write Xn
t = (Yn

t ,Z
n
t ).

• Whilst Zn
t < 1

2cnβ+2
, the process Xn

t evolves with its jump chain having the same

dynamics as (Y n
j , Zn

j ). The holding time of step j 7→ j + 1 is exponential with mean

Zn
j .

• If Zn
t ≥ 1

2cnβ+2
, then Zn

t remains constant and Yn
t evolves deterministically accord-

ing to (5.35).

We have not yet chosen an initial state for Xn
0 (and we will not do so, yet). However, the

following lemma is immediate:

Lemma 5.14. Suppose that Xn
0 = Xn

0 . Let (E
n
j ) be a sequence of independent random

variables with distribution Ej ∼ Exp(1/znj ), and define Tn
j =

∑j
l=1 E

n
j . Then, there exists

a coupling between (En
j ), (X

n
j ) and (Xn

t ), such that Xn
j = Xn

Tn
j
for all j.

Let Xt = (Yt,Zt) be the time-homogeneous Markov process taking values in [0, 1]2

in which the first coordinate evolves according to (5.35), and the second coordinate

stays constant. It is easily seen that both Xn
t and Xt are time-homogeneous strongly

Markov processes. We now begin a sequence of lemmas which will lead us to the proof

of Proposition 5.12.

We will establish in Lemmas 5.15 and 5.16 that Xn
t converges weakly to Xt, from

which it follows immediately that Yn
t converges weakly to Yt. We must then work back

to deduce a corresponding result about Y n
j and the solution to (5.35). Let us now outline

the strategy for doing so.

Let D(E) denote the Skorohod space of càdlàg paths mapping [0,∞) → E. We know

exactly how Yt behaves; it follows the ODE (5.35) which has the explicit solution (5.58).

The content of Proposition 5.12 is essentially that Y n
s(C−c)nβ , where t(s) = log( C

C−s(C−c) ),

behaves in approximately the same way as Yt (and this leads to the lower bound). In

order to deduce this from weak convergence we need to use the Portmanteau theorem,

which requires that a suitable subset of the Skorohod space D([0, 1]2) is open; this

appears as Lemma 5.17. We also need to control the time change t(s) and handle the

fact that Yt has continuous time but Y n
j has discrete time; this is Lemma 5.18. Lastly,
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our information concerning the initial condition Y n
0 = Yn

0 is rather weak. Lemma 5.11

provides only asymptotic bounds on its expectation. In the final step of the proof of

Proposition 5.12, which comes at the end of this section, we employ an artificial trick to

regain some control over this initial condition.

Lemma 5.15. The sequence of processes (Xn) is tight in D([0, 1]2).

Proof. By Corollary 3.9.1 of Ethier and Kurtz (1986), it suffices to check that (f(Yn
· ,X

n
· ))

is tight in D(R), for every Lipschitz f : [0, 1]2 → R. Let us fix such an f and write

Wn
t = f(Yn

t ,Z
n
t ). We will use a standard criterion of Aldous (1978) to check tightness of

(Wn). To this end, for each n ∈ N let τn be a stopping time, with respect to the generated

filtration of Wn. Note that since σ(Wn
t ) ⊆ σ(Xn

t ), it follows immediately that τn is also a

stopping time with respect to the filtration generated by Xn. We use the latter filtration

for the remainder of this proof. The criterion of Aldous (1978) requires us to show that

for all ǫ > 0 there exist θ > 0 and N ∈ N such that for all n ≥ N and s ∈ (0, θ),

P
[
|Wn

τn+s −Wn
τn | ≥ ǫ

]
≤ ǫ. (5.39)

We will spend the remainder of the proof establishing that this equation holds. Let

||f ||Lip denote the Lipshitz constant of f with respect to the L∞ norm on [0, 1]2. Thus,

|Wn
τn+s −Wn

τn | ≤ ||f ||Lip

(
|Zn

τn+s −Zn
τn |+ |Yn

τn+s − Yn
τn |
)
. (5.40)

For t such that t ≥ inf{u : Zn
u ≥ 1

2cnβ }, Z
n
t remains constant and Yn

t ∈ [0, 1] evolves

smoothly and deterministically according to the ODE (5.35). Thus, using (5.40) it is

easily seen that (5.39) holds during this region of time.

It remains to consider t ≤ inf{u : Zn
u ≥ 1

2cnβ }. During this region of time Xn is a

jump process and the rate at which Xn jumps is bounded above by 2Cnβ + 2. At these

jumps, the change in magnitude of Zn is uniformly (over the jumps) O(n−2β) and the

change in Yn is uniformly O(n−β). Thus there exists some constant c̃ ∈ (0,∞) such that

both changes in magnitude are bounded above by c̃n−β. Thus, as time progresses, the

sum of the magnitudes of the jumps is, in both cases, stochastically bounded above by

a Poisson process Vn
t that makes upwards jumps of size c̃n−β at rate 2Cnβ + 2. Since

the jumps of Yn and Zn occur at the same points in time, in fact we can use a single

(coupled) copy of Vn to bound them both. Thus, from, (5.40)

|Wn
τn+s −Wn

τn | ≤ 2||f ||Lip V
n
s (5.41)

Let Tn denote the time taken for the first 4θCnβ jumps made by Vn (rounded upwards).

From part (iii) of Theorem 5.1 of Janson (2018), which gives tail bounds on sums of

exponential random variables,

P[Tn ≤ θ] ≤ exp
(
−(2Cnβ + 2)(2θ)( 12 − 1− log( 12 ))

)

≤ exp
(
−θCnβ(log 16− 2)

)
. (5.42)

Moreover, note that on the event Tn > θ, Vn makes at most 4θCnβ jumps during time

[0, θ], so noting that Vn is an increasing process we have

Tn > θ ⇒ sup
s∈[0,θ]

Vn
s ≤

4θCnβ

c̃nβ
∼

4θC

c̃
. (5.43)

Let ǫ > 0. Choose θ = c̃ǫ/(16C||f ||Lip), which implies that the right hand side of

(5.43) is bounded above by ǫ/(4||f ||Lip), and thus from (5.41) whenever Tn > θ we have

|Wn
τn+s −Wn

τn | ≤ ǫ/2 for all s ∈ [0, θ]. Choose N = (ǫθC(log 16− 2))
−1/β

, which implies

that for all n ≥ N the right hand side of (5.42) is bounded above by e−1/ǫ and hence also
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by ǫ itself. Thus, by conditioning on the event {Tn ≤ θ} we obtain that for all s ∈ [0, θ]

and n ≥ N , P
[
|Wn

τn+s −Wn
τn | ≥ ǫ

]
≤ ǫ. This establishes (5.39) and thus completes the

proof. �

Lemma 5.16. Suppose Xn
0 converges in law to X0. Then Xn converges weakly to X in

D([0, 1]2).

Proof. First, we establish an elementary inequality relating to Br,a,b. Recall the definition

of Br,a,b (just above Lemma 5.13) in terms of placing balls into marked and unmarked

boxes. Let 0 < r ≤ a− b. We claim that

r

(
1−

b

a
−

r

a

)
≤ E[Br,a,b] ≤ r

(
1−

b

a

)
. (5.44)

To see (5.44), note that we can bound Br,a,b from above by counting the total number of

balls placed into unmarked boxes; this is binomial with r trials and success probability
a−b
a = 1− b

a . We can bound Br,a,b below by noting that at most r unmarked boxes will

be chosen in total, so if we place the r balls in turn, then each time we place a ball

the chance of it being placed into an (as yet) unoccupied unmarked box is at least
a−b−r

a = 1 − b
a − r

a ; hence Br,a,b is stochastically bounded below by a binomial with r

trials and success probability 1− b
a − r

a . Thus (5.44) holds.

Now, we will show weak convergence of Xn to X . The argument rests on applying

Theorem 4.8.10 of Ethier and Kurtz (1986), which requires us to establish that the

Markov generators Qn, of X
n, and Q, of X , are close, in a suitable sense. We will

denote partial derivatives of f with respect to its first and second coordinate as ∂f
∂1 and

∂f
∂2 respectively. We take the domain of Qn to be the set of real valued continuously

differentiable functions on [0, 1]2, and note that the generator of Xt, with this same

domain, is

Qf(y, z) = 2ζy(1− y)
∂f

∂1
(y, z). (5.45)

Using (5.36) from Lemma 5.13 and recalling the definition of Xn
t , the generator of Xn

t is

Qnf(y, z) = 1

{
z ≥ 1

2cnβ+2

}
2ζy(1− y)

∂f

∂1
(y, z) (5.46)

+ 1

{
z < 1

2cnβ+2

} 1

z

(
O(z2) (5.47)

+ (1− y)2
[
f(y z′

z , z
′)− f(y, z)

]
+ y(1− y)

[
f(y z′

z − z′, z′)− f(y, z)
]

(5.48)

+ y(1− y)

∞∑

r=1

P[R = r]

r∑

b=0

P
[
Br,1/z′,y/z = b

] [
f(y z′

z + z′(b− 1), z′)− f(y, z)
]

+ y2
∞∑

r=1

P[R = r]
r∑

b=0

P
[
Br,1/z′,y/z = b

] [
f(y z′

z + z′(b− 2), z′)− f(y, z)
])

(5.49)

Here, the O(z2) term has subsumed an O(z) term coming from P[I0 = I1 = 1] = y2−yz
1−z =

y2 +O(z); noting that by Taylor’s theorem f(y z′

z +O(z′))− f(y, z) = O(z), so that after

multiplication in the above only the y2 part is non-negligible.

We will show that

sup
y,z∈[0,1]

|Qnf(y, z)−Qf(y, z)| → 0 (5.50)

as n → ∞. With this equation and Lemma 5.15 in hand it is straightforward to see that

Theorem 4.8.10 of Ethier and Kurtz (1986) applies, with the desired conclusion. We now
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give the proof of (5.50). We begin by examining the two terms in (5.48). Take y ∈ [0, 1]

and z ∈ [0, 1
2cnβ+2

). For such z, we have z = O(n−β) and

z′ − z

z
=

2z

1− 2z
= O(n−β), (5.51)

z′ − z

z2
=

2

1− 2z
= 2 +O(n−β), (5.52)

uniformly in such z. From Taylor’s theorem, and then using (5.51) and (5.52) we have

1

z
(1− y)2

[
f(y z′

z , z
′)− f(y, z)

]
=

1

z
(1− y)2

{
∂f

∂1
(y, z)

[
y
z′

z
− y

]
+

∂f

∂2
(y, z) [z′ − z]

}

= (1− y)2(2y)
∂f

∂1
(y, z) +O(n−β). (5.53)

Similarly,

1

z
y(1− y)

[
f(y z′

z − z′, z′)− f(y, z)
]
= y(1− y)(2y − 1)

∂f

∂1
(y, z) +O(n−β). (5.54)

Similarly again,

1

z
y(1− y)

∞∑

r=1

P[R = r]

r∑

b=0

P
[
Br,1/z′,y/z = b

] (
f(y z′

z + z′(b− 1), z′)− f(y, z)
)

=
1

z
y(1− y)

∞∑

r=1

P[R = r]

r∑

b=0

P
[
Br,1/z′,y/z = b

](∂f

∂1
(y, z)

[
y
z′

z
+ z′(b− 1)− y

]

+
∂f

∂2
(y, z) [z′ − z]

)

= y(1− y)
∂f

∂1
(y, z)

∞∑

r=1

P[R = r]

r∑

b=0

P
[
Br,1/z′,y/z = b

]
(2y + b− 1) +O(n−β)

= y(1− y)
∂f

∂1
(y, z)

∞∑

r=1

P[R = r] (2y + r(1− y) +O(rz′)− 1) +O(n−β)

= y(1− y)
(
2y + 2ζ(1− y)− 1

)∂f
∂1

(y, z) +O(n−β). (5.55)

Here, to deduce the fourth line from third, we use (5.44) along with (5.51) to give that

E[Br,1/z′,y/z] = r(1 − y) +O(rz′) +O(n−β). Then, to deduce the final line we note that∑∞
r=1 P[R = r]O(rz′) = O(E[R]z′) = O(n−β) and that ζ = 1

2E[R].

Finally, using much the same calculations as in (5.55) we obtain

1

z
y2

∞∑

r=1

P[R = r]

r∑

b=0

P
[
Br,1/z′,y/z = b

] (
f(y z′

z + z′(b− 2), z′)− f(y, z)
)

= y2
(
2y + 2ζ(1− y)− 2

)∂f
∂1

(y, z) +O(n−β). (5.56)

Putting (5.53), (5.54), (5.55) and (5.56) into (5.49), after a brief calculation (in which

the terms containing y3 cancel each other out) we obtain that

Qnf(y, z) = Qf(y, z) +O(n−β) (5.57)

It is straightforward to check that the O(n−β) in (5.57) is uniform over y, z ∈ [0, 1].

This comes from the presence of the indicators in (5.46) and (5.47), which ensure that

whenever Qn(y, z) and Q(y, z) differ we must have z ∈ [0, 1
2cnβ+2

), and the fact that our

calculations above only contain non-negative powers of y ∈ [0, 1]. Thus, equation (5.50)

follows immediately, which completes the proof. �
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Let t 7→ y(t;A) denote the (unique) solution to (5.35) subject to the condition y(0) =

A ∈ [0, 1]. That is,

y(t;A) =
A

A− (A− 1)e−2ζt
. (5.58)

Note that y(t; ·) has fixed points at A = 0 and A = 1; the former is unstable and the latter

is stable. Given A ∈ (0, 1), the map t 7→ y(t;A) is a strictly increasing function of t, with

y(t;A) → 1 as t → ∞ and y(t;A) → 0 as t → −∞. Moreover, noting that 0 ≤ y′(t) ≤ 4ζ, it

is easily seen that for A,B ∈ (0, 1),

lim
B→A

sup
t∈R

|y(t;B)− y(t;A)| = 0. (5.59)

Given a function f ∈ D([0, 1]) we set yδf (t) = y(t− δ; f(0)).

Lemma 5.17. For all δ > 0, the following set is an open subset of D([0, 1]):

Dδ =

{
f ∈ D([0, 1]) : f(0) ∈ (0, 1) and inf

t∈[0,∞)
f(t)− yδf (t) > 0

}

Proof. Let dSk denote the usual Skorohod metric on D([0, 1]), see e.g. equation (3.5.2)

of Ethier and Kurtz (1986). We will show that D′
δ = D([0, 1]) \ Dδ is closed. Let

fj , f ∈ D([0, 1]) be such that dSk(fj , f) → 0 (as j → ∞) and fj ∈ D′
δ. It remains only to

show that f ∈ D′
δ. Note that if f(0) = 0 or f(0) = 1 then it is automatic that f ∈ D′

δ, so

without loss of generality consider f(0) ∈ (0, 1).

Set gj = fj − yδfj and g = f − yδf , both elements of D([0, 1]). Then gj − g = (fj − f) +

(yδf − yδfj ). It follows from dSk(fj , f) → 0 that fj(0) → f(0) ∈ (0, 1), and using (5.59) we

have also that supt |y
δ
fj
(t)− yδf (t)| → 0; hence (using the definition of dSk) we have that

dSk(gj , g) → 0.

We have fj ∈ D′
δ, so inft∈[0,∞) gj(t) ≤ 0. Suppose, aiming for a contradiction, that

f /∈ Dδ. Then f ∈ Dδ, so there exists ǫ > 0 such that inft∈[0,∞) g(t) ≥ ǫ, which implies

that dSk(gj , g) ≥ ǫ; but this is impossible since dSk(gj , g) → 0. Therefore we must have

f ∈ Dδ. �

Lemma 5.18. Let t = t(s) = log
(

C
C−s(C−c)

)
. Then t is a bijective transformation

between [0, 1] ↔ [0, log(C/c)]. Moreover, for any ǫ > 0 we have

P

[
sup

s∈[0,1]

∣∣∣Tn
s(C−c)nβ − t(s)

∣∣∣ > ǫ

]
.

1

ǫ2
1

4cnβ
. (5.60)

Proof. The first claim is trivial. For the second, recall Remark 5.1, and note that t(s)

is a uniformly continuous function of s ∈ [0, 1]. Thus, it suffices to prove (5.60) with

the supremum over s restricted to snj = j
(C−c)nβ for j = 0, 1, . . . , (C − c)nβ. For such j

we have Tn
snj

=
∑Cnβ

l=Cnβ−sj(C−c)nβ+1 E
n
l . Since the (En

l ) are independent it follows that

Mn
j = Tn

snj
− E[Tn

snj
] is a square integrable martingale (with parameter j, with respect to

its generated filtration). The maximal inequality gives P[supj |M
n
j | > ǫ] ≤ ǫ−2

E[(Mn
J )

2]

where J = (C − c)nβ − 1. Using independence we have

E
[
(Mn

J )
2
]
=

Cnβ∑

l=cnβ+1

var(El) =
Cnβ∑

l=cnβ+1

1

l2
≤

∫ ∞

cnβ

1

(2l)2
dl ≤

1

4cnβ
.

Moreover,

E[Tn
snj
] =

Cnβ∑

l=Cnβ−snj (C−c)nβ+1

1

l
=

∫ Cnβ

Cnβ−snj (C−c)nβ

1

2l
dl +O(n−β)

from which we obtain E[Tn
snj
] = t(snj ) +O(n−β). The result follows. �
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Proof of Proposition 5.12. We have C > ξ1/ζ . We will show first that

P

[
Y n
0 ≥

ζ

4Cζ

]
≥

ζ2

4ξ
. (5.61)

We have Y n
0 = 1

2Cnβ+2
Hn

Cnβ . From the Paley-Zygmund inequality and Lemma 5.11 we

thus have

P

[
Y n
0 ≥

1

2
E[Y n

0 ]

]
≥

1

4

(E[Hn
Cnβ ])

2

E[(Hn
Cnβ )2]

&
1

4

4ζ2

C2ζ (1−
ξ

8ζCζ )
2

ξ/C2ζ
≥

1

4

ζ2( 12 )
2

ξ
=

ζ2

4ξ
.

Note that in the final inequality above we also used that C > ξ1/ζ implies 1− ξ
8ζCζ ≥ 1

2 .

Similarly, from Lemma 5.11 we have E[Y n
0 ] & 1

2
2ζ
Cζ (1 − ξ

4ζCζ ) ≥ ζ
2Cζ , so we have that

P[Y n
0 ≥ 1

2E[Y
n
0 ]] ≤ P[Y n

0 ≥ ζ
4Cζ ], from which (5.61) follows.

Equation (5.61) is all that we know about the Y n
0 , so we now look to gain some

‘artificial’ control over the initial conditions used in the limit. To this end, independently

of all else, let (In) be a sequence of independent {0, 1} valued random variables such

that

P[In = 1] =
ζ2/4ξ

P

[
Y n
0 ≥ ζ

4Cζ

] .

Define a set M ⊆ UCnβ as follows:

• If 1
Cnβ H

n
Cnβ ≥ ζ

Cζ and In = 1, then let M be a uniformly random subset of Hn
Cnβ of

size ζ
Cζ−1n

β (which we will assume to be an integer c.f. Remark 5.1).

• Otherwise, let M be the empty set.

For j = 0, . . . , (C − c)nβ we define

Ĥn
Cnβ−j = Hn

Cnβ−j ∩

(
⋃

b∈M

b↓

)
. (5.62)

In words, to define Ĥn
Cnβ−j we artificially remove all balls that are not within M from

the genealogy at time Cnβ , and from that point onwards (looking backwards in time) we

only include balls that were potential ancestors of balls in M.

We define Ĥn
Cnβ−j = |Ĥn

Cnβ−j |, define Ŷ n
j using (5.33) with Ĥn

j in place of Hn
j , define

Ẑn
j = Zn

j , and define X̂n
j = (Ŷ n

j , Ẑn
j ). It is immediate that all these quantities evolve

according to the same dynamics as their counterparts without ·̂s (but with different initial

conditions for the first coordinate). Moreover, (5.62) implies that Ĥn
Cnβ−j ≤ Hn

Cnβ−j and,

consequently,

Ŷ n
j ≤ Y n

j (5.63)

for all j. From the definition of M we have that

Ŷ n
0 =

{
ζ

4Cζ with probability ζ2

4ξ

0 otherwise.

Recall the processes Xn
t = (Yn

t ,Z
n
t ) and Xt = (Yt,Zt). Take their initial states to be

Xn
0 = X̂n

0 =

{
( ζ
4Cζ ,

1
2Cnβ+2

) with probability ζ2

4ξ

(0, 0) otherwise.
(5.64)

X0 =

{
( ζ
4Cζ , 0) with probability ζ2

4ξ

(0, 0) otherwise.
(5.65)
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Since we have Xn
0 = X̂n

0 it follows from Lemma 5.14 that we can couple Xn
· and X̂n

· in

such a way that for all j = 0, 1, . . . , (C − c)nβ , X̂n
j = Xn

Tn
j
. Hence, in particular

Ŷ n
j = Yn

Tn
j
. (5.66)

By (5.64) and (5.65) we have that Xn
0 converges to X0. Hence, by Lemma 5.16, Xn

t

converges weakly to Xt in D([0, 1]2), and thus Yn
t converges weakly to Yt in D([0, 1]).

Let δ > 0, to be chosen later, and recall the set Dδ from Lemma 5.17. The path t 7→ Yt

has dynamics given by (5.35), and with probability ζ2

4ξ has initial condition within (0, 1);

on this event we have Y· ∈ Dδ. Thus, by Lemma 5.17 and the Portmanteau theorem we

have

P [Yn
· ∈ Dδ] &

ζ2

4ξ
. (5.67)

On the event Yn
· ∈ Dδ, we have Yn

0 ∈ (0, 1), which by the definition of Yn
0 in (5.64)

implies that Yn
0 = ζ

Cζ . Moreover, on this event we have inft Y
n
t − y(t− δ; ζ

Cζ ) > 0 and in

particular,

inf
t
Yn
t − y(t− δ; ζ

Cζ ) > 0, (5.68)

where t = t(s) is as in Lemma 5.18, and s ∈ [0, 1]. By Lemma 5.18 we have that

P

[
sup

s∈[0,1]

|Tn
s(C−c)nβ − t(s)| ≤ ǫ

]
& 1−

1

ǫ2
1

cnβ
, (5.69)

where ǫ > 0 is to be chosen later. Conditioning also on the event in (5.69), and recalling

that t 7→ y(t− δ; ζ
Cζ ) is increasing, we obtain from (5.68) that, for all s ∈ [0, 1],

Yn
Tn

s(C−s)nβ
− y(t(s)− δ − ǫ; ζ

Cζ ) > 0. (5.70)

Using (5.58) and (5.66), equation (5.70) becomes

Ŷ n
s(C−c)nβ >

ζ/Cζ

ζ/Cζ − (ζ/Cζ − 1) (C−s(C−c))2ζ

C2ζ e2ζ(δ+ǫ)

Choose δ = ǫ = c
4ζC , and after a short calculation we obtain

Ŷ n
s(C−c)nβ >

ζ

ζ + ec/C(C − s(C − c))2ζ
. (5.71)

To sum up, after accounting for the error terms incurred by conditioning on the events

in (5.67) and (5.69), we have that (5.71) holds with probability & ζ2

4ξ . Proposition 5.12

follows immediately from this result and equation (5.63). �

6 Affine preferential attachment and addition of multiple edges

Several authors, dating at least as far back as Dorogovtsev et al. (2000), allow an

extra parameter α, which controls the extent to which new vertices prefer to attach to

existing high degree vertices. In the classical model, the effect of α is that when a new

edge samples which vertex to attach to, the existing vertices are weighted according

to α+ degn(v), instead of just degn(v). This mechanism is sometimes known as ‘affine’

preferential attachment. In PAC, we may apply the same mechanism to the sampling of

potential parents.

The corresponding modification of the urn process in Section 2.1.1 is that each source

ball is assigned activity 1 + α, whilst cue balls have activity 1. Here, activity is meant in
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sense of (drawing balls from) generalized Pólya urns; a ball with activity a > 0 is drawn

with probability proportional to a. If α is an integer, then at the level of the urn process

this mechanism is equivalent to adding α new source balls, all of colour Fn, on the nth

step of the process. For the Galton-Watson process of Section 2.1.3, the effect is that

the probability of 1
2 for p to be a source ball is replaced by 1+α

1+(1+α) , corresponding to

the idea that source balls have activity 1 + α and cue balls have activity 1. The offspring

distribution (2.2) is thus modified to

P[M = m] =

{
1+α
2+α if m = 0
1

2+αP[R = m] if m ∈ N.
(6.1)

With these modifications, the coupling described in Section 2.1.3 carries over. Now, the

Galton-Watson process is supercritical when E[M ] = 1
2+αE[R] > 1, so the appropriate

modification of Corollary 2.5 is that condensation now occurs if E[R] > 2 + α. With (6.1)

in place of (2.2), equation (2.3) continues to hold.

An alternative, and equally natural, extension is to allow new vertices to connect

to more than one existing vertex. Models of this type are considered by, for example,

Bianconi and Barabási (2001) and Dereich and Ortgiese (2014). In PAC, we may permit

each new vertex vn to connect to a random number Vn of existing vertices, with each

such vertex sampled independently according to PAC mechanism. We may also allow

the sequence (Vn) to be random; for simplicity we will assume it is an i.i.d. sequence.

For the urn process associated to PAC, this means that on the nth step of time we would

add Vn new source balls, all of the same colour, plus Vn new cue balls whose colours

would be inherited independently of each other using the usual mechanism. In this

case, the balance of source balls versus cue balls remains exactly even, with the result

that Corollary 2.5 requires no modification. Note that, in order to obtain this result (in

particular, to carry over Lemma 3.2) we must assume that the i.i.d. random variables Vn

have finite expectation.

A Appendix

We give a proof of Lemma 5.6. The case γj = 0 can be found within Exercise 8.3 of

van der Hofstad (2016), and may be established using the Gamma function and Stirling’s

inequality. We give an elementary argument which also covers γj 6= 0.

Let us first consider the case in which γj = 0 for all j. In this case, Lemma 5.6 is

implied by the following inequality: for all α > 0 and all k, n ∈ N such that 2α+ 1 < k ≤
n < ∞ it holds that

(n
k

)α(
1−

α+ α2

k

)
≤

n∏

j=k

(
1 +

α

j

)
≤
(n
k

)α(
1 +

1

n

)α

. (A.1)

The proof of (A.1) proceeds as follows. We first note that

n∏

j=k

(
1 +

α

j

)
= exp




n∑

j=k

log

(
1 +

α

j

)
 . (A.2)

We use the inequality log(1 + x) ≤ x to obtain, for the upper bound,

(A.2) ≤ exp




n∑

j=k

α

j


 ≤ exp

(∫ n+1

k

α

j
dj

)
=
(n
k

)α(
1 +

1

n

)α

.

EJP 25 (2020), paper 68.
Page 40/42

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP462
http://www.imstat.org/ejp/


Extensive condensation in a model of preferential attachment with fitness

Here, we use that 1
j is a decreasing function of j, to bound the

∑
with an

∫
. This

establishes the upper bound claimed in (A.1). For the lower bound, we use that x− x2

2 ≤
log(1 + x), to obtain

(A.2) ≥ exp




n∑

j=k

α

j
−

α2

2j2


 ≥ exp

(∫ n

k−1

α

j
−

α2

2j2
dk

)
=
(n
k

)α(
1−

1

k

)α(
1−

α2

2(k − 1)

)
.

Here, we use that x− x2

2 is an increasing function of x ∈ (0, 1
2 ), along with the assumption

that 2α + 1 < k to ensure that α
k ∈ (0, 1

2 ) and k > 1. For the final line, we use that

e−x ≤ 1−x for x ≥ 0. To finish we note that (1− 1
k )

α(1− α2

2(k−1) ) ≥ (1−α
k )(1−

α2

k ) ≥ 1−α+α2

k

by (5.13). Thus, we have established both sides of (A.1).

In the general case in which
∑

j |γj | < ∞, the same calculations as above results in

multiplication by an additional term containing exp(±
∑n

j=k |γj |), after the integration

step. These terms have no effect on the asymptotic behaviour (up to first order as

k, n → ∞) because
∑n

j=k |γj | → 0 as k, n → ∞.
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