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Motivation for developing real-
time or fast CFD

Interactive Design 
optimisation using 

CFD 

Traditional Design 
optimisation using 

CFD 



Indoor outdoor connection

• Naturally ventilated buildings are common worldwide and are 
advocated as part of sustainable and resilient infrastructure development  

• However the relationship between external airflow and indoor air 
quality is still an area of much debate and challenging research. 

• Even for simple building geometries, naturally induced airflow patterns 
can be highly complex.

• Since modelling outdoor and indoor air is a problem of scale/time, 
where large eddies dominate external flow but smaller eddies dominate 
inside buildings, 

• Care needs to be taken when modelling these phenomena together. 



Real-time CFD

•Whilst the use of CFD-based simulation tools has led to significant insights into 
the role of spatio-temporal flow structures and its capability to transport or 
disperse heat, moisture and pollutants in general 

•CFD has never been able to enter the realm of forecasting in the field of indoor 
environment. 

•The main reason for this is that CFD-based tools which are  currently available or 
in use require a substantial amount of   computational resources and user time to 
get reasonably accurate results. 

•The traditional CFD approach  using finite-volume method (FVM) to capture the 
detail of urban flows and transient behaviour requires increasingly substantial 
computing resources. 

•However, graphical processing units (GPUs) are becoming increasingly powerful 
with massively parallel capabilities, and therefore lend themselves to the airflow 
simulation process using a novel lattice Boltzmann method (LBM)



Why LBM
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Theoretical Background of Lattice 
Boltzmann Method (LBM)



Model classification for fluid 
flows

Model type Macroscopic Mesoscopic Microscopic

Characteristic
model assumption

Interaction of
molecules in the
fluid neglected

Distribution of
molecules in the
fluid considered

Interaction of
single molecules
in the fluid
considered

Examples:
Models

Navier-Stokes,
Euler, Stokes,
Heat Equation

Liouville,
Boltzmann, BGK-
Boltzmann Eqn

Molecular
dynamics
(Newton’s laws)

Examples:
Observed
quantities

Fluid velocity,
pressure, density,
temperature

Mean free path,
mean molecular
velocity, density

Molecular mass,
velocity, extent
and form

Examples:
Numerical
methods

Spectral, finite
difference
(FDM), volumes
(FVM) and
elements (FEM)

Monte Carlo,
lattice Boltzmann,
finite differences,
volumes and
elements

Molecular
dynamics (MD)

Kn<<1 Kn≈1



• Boltzmann equationȈ డడ௧  ࣈ ڄ డడ࢞ ൌ ܥ ݂ǡ ݂Ȉ ݂ሺ࢞ǡ ǡࣈ ሻݐ
• Here ࣈ’s are the 

microscopic velocities

• Navier-Stokes equationȈ డ࢛డ௧  ࢛ ڄ સ࢛ ൌ െસ ଵோ ȟ࢛Ȉ સ ڄ ࢛ ൌ Ͳ
• Here, ࢛ is the 

macroscopic or 
hydrodynamic velocity



Navier Stokes

Lattice LiouvilleLiouville

Lattice 
Boltzmann

Boltzmann

Newton Lattice Gas

Hierarchy of models (Succi 2001)

Ref.: Raabe; Modelling 
Simul. Mater. Sci. Eng. 12 
(2004) R13–R46)



Computational procedure of
LBGK scheme
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Playing Billiards with fictitious 
particles

• Playing billiards on a discrete 
space-time lattice to simulate 
continuum fluid flow (bottom up 
approach)

• fi’s are the pseudo particles in 
LBM



Navier-Stokes vs Lattice Boltzmann

Conventional CFD
• CFD solves the conservation 

equations of macroscopic properties 
(i.e., mass, momentum, and energy) 
numerically

• Nonlinear advection

• Non-local parallel limited

• Boundary conditions difficult

• Geometry setup slow

• 3D time dependent flow expensive 
to solve

• Complex physics require complex 
models

Lattice Boltzmann
• LBM treats fluids as a fictitious 

collection of interacting 
mesoscopic (between micro and 
macro) particles

• Linear advection

• Local and parallel & SIMD

• BC easy for arbitrary geometry

• Geometry setup fast

• 3D time-dependent flow 
straightforward and fast

• Complex physics involve simple 
models

Claude-Louis Navier (1785-1836)
George Stokes (1819-1903)

Ludwig Boltzmann (1844-1906)



• LBM for 3D Turbulent and Thermal Flow



The D3Q19 Model

• It has a minimum number of velocities while 
maintaining good isotropy of the lattice

• The simulation of the velocity field is carried 
out on such a D3Q19 lattice; 

• The complex collision operator is 
approximated by using the standard BGK 
scheme 

• The distribution functions f , is close to a 
local equilibrium f(eq) and relaxes toward this 
equilibrium with some characteristic time Ĳ



Temperature coupled Model

• To simulate thermal flows we use the coupled mode

• Here the velocity is simulated using D3Q19 lattice using 
BGK and the temperature is computed on a smaller D3Q6 
lattice 

• Boussinesq approximation is used to couple temperature 
and velocity via buoyancy force

• The evolution  of temperature distribution function Ti on 
the lattice is given by
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Extending LBM to turbulent flows



Turbulent flow modelling

Big whorls have little whorls 
That feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity--- L F Richardson

(N~Re9/4)
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Inclusion of Turbulence, LBM 
sub-grid model

• To include the effect of turbulence without excessive 
increase of computational expense 

• We use the simple Smagorinsky sub-grid model to 
include large Re flows

• With the current model of single relaxation time , 
simulations becomes unstable at high Re hence the use 
of sub-grid modelling

• Stress tensor from LBM
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Graphics Processing Unit 
(GPU)

• The GPU is a computer component built for 
parallel computation originally for video 
games.

• GPU and CPU architectures are       
completely different.

• Thus GPU requires special            
programming (CUDA) techniques.

• GPUs are much faster than CPUs.

• GPU acceleration for LBM: 100x



LBM on a single GPU

2D Cavity 3D Cavity



Validation against Tominaga et al. 2015

22

a) Isolated building b) Array of equal sized buildings

c) Array with tall central building d) Array with small central building

For use in the urban environment, we conducted a validation study against a 
wind tunnel model of a cubical building with cross-flow ventilation in isolated 
and in an array format. Then we ran a parametric study to investigate the 
effect of having either a tall central building or a small central building.



Results – Isolated building
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Time to simulate 1 second of 
flow
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Lower is better

Fluent took 11200 seconds to simulate one second of flow for the 
isolated case and 14800 seconds for the array case. How long did it 
take the LBM code? 1.5s. That’s almost 7500 times faster. And that’s 
only on 1 graphics card.



Hospital Environment Control, 
Optimisation and Infection Risk 
Assessment (HECOIRA)

Figure Schematic diagram of symbiotic simulation ʹbased control for indoor environment

Simulation based decision support 
& Control

Current EPSRC funded project



Published works



Ongoing work

• Implement more accurate boundary conditions

• Implement Multiple relaxation model, hence more 
stable simulation even at higher Re with less lattice 
resolution

• Non-uniform lattice and curved boundaries

• Moving object with Immersed Boundary

• Multi-GPU implementation

• Coupling with DEM
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