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Abstract

The vyield-vertex tangential loading theory is a coustié approach that accounts for the plastic
straining induced by the part of a stress rate directed taalgém the yield surface. One of the
important applications of this theory is in the study obtgehnical problems involving significant
rotation of principal stress directions. However, it ictwaate to simply regard the tangential loading
as an equivalence to the principal stress rotation. fitore reference, this paper presents an
investigation into the difference between the tangelt&ling theory and a true purely principal stress
rotational loading theoryMathematical derivation shows that the tangential strate includes the
rotational stress rate and an additional coaxial termishassociated with the variation of the Lode
angle. Numerical applications of these two theoriescatdithat in shear dominated problems, such as
simple shear, the two theories are almost identigdliaterchangeable, but in non-shear dominated
circumstances, such as footing, the tangential loadiragythroduces considerably softer results than
the rotational loading theory.
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1. Introduction

The yield-vertex tangential loading (TL) theory, firsthtroduced by Rudnicki and Rice (1975)ais
complementary framework to the conventional plastitiitgory. It assumes that, in addition to the
plastic loading along the ‘straight ahead’ stressing, the part of a stress rate directed tangential to the
yield surface also induces plastic straining. This thears/ $trong influences on the predicted stress-
strain responses of soil and is found to be of importam@®me geotechnical applications such
bifurcation (Yatomi et al., 1989, Papamichos and Vardoulak#95). Extensive investigations,
implementations, and some pertinent improvements regatttimtheory can be found in the literature
(Hashiguchi and Tsutsumi, 2001, Yang and Yu, 2006, Qian et al.,.2008articular, it has been
successfully applied to consider the responses of sgiectall to principal stress rotational loading
(RL) (e.g. Tsutsumi and Hashiguchi (2005)), which refers tocthradition of continuously rotated
principal stress axes but fixed principal stress magnitudes

However, theTL theory is not designated solely for the studyRbf It can also be triggered by a
circular stress path in the n-plane with centre at the origin, which is characterisgd continuous
change of principal stress magnitudes but fixed principaks directionsGiven that the rotation of
principal stress directions is of great academic andipshdmportanceexperimental and numerical
studies where principal stress axes rotated with otheanpders remaining constantvieadrawn
serious attention in the last three decades (Miura €1386, Tong et al., 2010, Qian et al., 2017, Li
and Dafalias, 2004, Tian and Yao, 2018, Li and Yu, 20hQhe literature, there exists a technique of
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isolatingthe part of a stress rate that is responsible foratagion of principal stress directions (see for
example Yu and Yuan (20Q6yang and Yu (2013) and Yuaet al. (2018)) Computation shows that
the inclusion of the plastic loading associated whils rotational stress rate significantly improves th
accuracy of numerical prediction (Yang and Yu, 2013)

Considering that th@'L theory has been frequently used in geotechnical apphcatiavolving
significant principal stress rotation, its differerfcem the true purely principal streft. should be
investigated. Thus, this paper presents a comparativgsenbetween th@L and RL theories. Their
mathematical differences are discussed, and their pexfm@s in the simple shear and strip footing
problems are compared.

2. Tangential loading and rotational loading
Within the elastoplasticity framewarthe total strain rate is decomposed into

&j = & + &) (1)
where the superscriptsandp denote elastic and plastic components, respectivaly.€lastic relation
is assumed to be isotropic, which gives

dij = Eijkzéﬁz (2
where
2
Eiji = K6,y + G(66j, + 6,16y — §5ij5kz) 3
with §;; being the Kronecker delta, aidandG the elastic bulk and shear moduli, respectively. To
facilitate later presentation, the plastic strain E‘%tés further decomposed into two components. The

first component, denoted laypc is associated with the conventional plasticity thg@uperscript),
characterized with a modified Drucker-Prager yield surfacengas

f =+/(asing)? +12 —psing —ccos¢p (4)
wheret = /(s;;s;;)/2 ands;; is the deviatoric stress tenspris the mean normal stressis the soil
cohesion and is the friction angle. Botle and¢ are constant in this work, utilizing a perfect
plasticity framework. The terrfu sin ¢»)? inside the radical sign represents a hyperbolic apmetion
in the meridional (constant Lode angle) plane. When0.5¢ - cot ¢, Eq(4) closely represents the
original Drucker-Prager yield surface. The plastic potéigighen obtained by replacing the friction
angleg with a dilatation angle in Eq(4).

The second component &ff, is eithers‘f’jt when theTL mechanism is used, 6/ when the RL
mechanism is used. The meanifsuperscripts andr are self-evident. The developmeméipjt and
¢ is addressed in the following.

2.1.TL model

Rudnicki and Rice (1975) proposed that the tangential plasdio sateél.”].t is given by

.pt _ 1 .¢
&j = uSii ®)

whereh is a plastic modulus governing the additional loading meisim; and;fj is the part of;;
directed tangential to the yield surface, defined as

SijS
st o oa _ SuSkl . _ t .
$ij = Sij = %z Sk = Nija O (6)

where

1 2 SiiS
Nj = 5 Gucji + 86y — 5 6585 — ) @)
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Substituting Eq(6) into Eq(5), one has

. 1 .

gipjt = ;Nitjkzakz ]
The fourth-order tensdvitjkl is known as the deviatoric tangential projection asajegts an arbitrary
second-order tensor into its deviatoric part tangertidghé yield surface (Hashiguchi, 2014) Fig
1(a), a schematic illustration of the tangential pladtairs rateis shown. It should be emphasized that

the principal (deviatoric) stress presentation in Keg fllustrates only part of the TL mechanism since
Eqs(5~8) are defined in the general stress space.

Using Eq(8), the overall elastoplastic stress raggrstate relation becomes
. (EijabRap)UcaEcak) — 4G% ¢ .
i = [Eijia — (Kp+lmmEmnstRst) | h+2G Nijia)ér ©)

wherel;;andR;; are the normals to the yield and plastic potentialasas respectively,K,, is the

plastic modulus governing the conventional plastic loadimgjis zero in this paper as a result of the
perfect plasticity setting

2.2.RL model
For the purpose of comparison, the rotational plasﬁtimtateéfjr is given similar to Eq(5), written as

.pr
EP_

V=6l (10)
whereh is the same parameter as in Eq@);is the part ob;; that triggers thdkL at fixed principal

stress magnitudeShis rotational raté;; is taken as purely deviatoric since fRE occurs at constant
mean normal stregs It is firstly assumed that the directionafis fixed such that thBL takes place

in the plane otc";oy,rxy) shown in Fig 1(b)Then, thes]; must satisfy the following condition

11)

(ox — a';)/Z _ (6 — dy)/z _ %(UX‘”y)("Tx‘&y)”xyfxy [(Ux - Uy)/z]
i-;y B i—xy %(Ux—ﬂy)z‘*"fazcy Txy
Using EQ(11) and noting thaf + 5 = 0, the following expression for the componentssffis

obtained

1 1 .
o7 |[ > sin’2a, - sin®2a, — cos 2a, sin ZQJ]I .
T 1 . 1 . . .
gy | = | -3 sin?2a, S sin?2a, cos 2a, sin 2a, i gy 12)
o .
Yol |=2cos2a, sin2a, *cos2a, sin2 22 Fxy
~cos2a, sin2a, - cos2a, sin2a, cos?2a,

whereq, is the direction of major principal stress with refere to they-axis. Geometrical relation in

Fig 1(b) indicates thain 2a, = ——= G )
(O'x_o'y)z/4’+fyzcy (O'x_o'y)z/4+7-')2(y
rotational stress rates in the pIanleéf;ﬂ,ryz) and of(*==

,Tz) €an also be obtained. Combining
them altogether, a tensor expressionsfprcan be written as

andcos 2a, = In the same way, the

dirj = Nirjkldkl (13)

For detailed expression of the fourth-order ten&qy,, readers are referred to Yang and Yu (2013)
Compared with thelfjkl in Eq(6), it is found that the role of},, is to project an arbitrary second-

order tensor to its deviatoric part directed along thectline of principal stress rotation. In this sense, it
can be called the deviatoric rotational projection. By Suit®ig Eq(13) into Eq(10), one has

pr Lo
&j = hNijszkz (14)

Obviously, Eq(14) is a counterpaid Eq(8 when theRL mechanism is usedrinally, the overall
elastoplastic stress rate-strain rate relation irRlhenodel is given by



EijabRab)(cdEcakl)  4G? .
( ya a ) Ci C _ N':rkl]gkl (15)
(Kp+UnnEmnstRst) h+26° Y

0ij = [Eijkl -

Inspectionof the foregoing equations indicates that the TL and RL teadehis paper are constructed
in a very similar way to serve the purpose of compari$tie only difference between the two sets of
model formulations is associated with the differenceveenN;,, andNJ,, .

It should be noted that the presentation given here impti@gar yield surfaces the n-plane and in
the plane o(@,rxy) or any other relevant planes. Nevertheless, nomdairghapes can be easily
accounted for along the lireé Hashiguchi and Tsutsumi (2001)

2.3.Comparison of TL and RL

Yu (2006) commented that, under two-dimensional plane straidittms the tangential stress rai,f;

will downgrade to the rotational stress rafeusing the definition of, = cx;gy, Sy = Gy:r", Sey =

T,y andt = /(o, — 0,)%/4 + 72,. However, under general three-dimensional conditions, aheyot
identical.
Noting the deviatoric nature &f; andN;;,;, Eq(13) can be reformulated &s = 6;; = N, (i +
%dmm(skl) = NjjiiSki- Thus, the deviatoric stress rate can be decomposed into

Sij = 8i; + (Uijre — Nij) Sk (16)
wherel; j, is the fouth-order identity tensor. Substituting Eq(16) into Eq(6), anchgdtiats,;s;; = 0,
the tangential stress ratg becomes

b . . SijSkl .
Sij = Sirj + (Iijmn - Nirjmn Smn — 272 (Iklst - N;lst)sst (17)
. . SiiS, .
In the above equation, the ter(r]gmn — N{jmn)smn — ;’Tfl(lkm — Nyt )Ss: are of the same form as

the middle expressioaf Eq(6) with the substitutionf (Iijmn — N[jmn).émn for s;;. Therefore, Eq(1)7
can be further written as

$5 = 8T + Nijmn Umnit = Nimie) Sk (18)

This expression indicates that the tangential stressfgarezludes the rotational stress rafeand an

additional termV/;,,.., (Lynir — Nynit)Ske- TO clarify the meaning of this additional term, consider
again the simple case where the direction,df fixed. In this case]l,.x; — Ninri) Sk represents the
part ofs,, directed along the principal stress directions, he. doaxial part. Recalling the tangential
projecting effect owfjmn, the additional term in EQq(18) is therefore coaxial as aglangential to the
yield surface in the m-plane. In other words, it represents a stress ratkeishassociated with the
variation of the Lode angkat fixedp, T and principal stress directions. Referring back to Figchrit
be concluded that whilst the RL mechanism is succindtigtiated in Fig 1(b), the TL mechanism

actually includes both conditions illustrated in Figs 1¢a) &(b)

3. Numerical smulations

3.1.Numerical implementation

The constitutive models presented above are implementeddBAQUS finite element softwaras
user-defined material subroutind$e integration of soil models can be conducted by usiptjcé
and implicit schemes, and each of them has its chasiitte (Sloan, 1987, Abbo, 1997, Yang et al.
2011, Rezania et al., 2014#or the yield vertex TL model and principal str&smodel, the explicit
scheme has been employed throughout to integrate theme laythors, and it proves to be an effective
integration scheme (Yang and Yu, 2006, Yang and Yu, 20410g ¥t al., 2011, Yang and Yu, 2013). It
is characterized with automatic substepping and error cofdealing to robustness and unconditional
convergence. For example, it takes as few as two stegémulate the entire load-displacement



response by using this explicit scherf¥ang and Yu, 2010)Therefore, this explicit scheme is
employed to integrate these two models in the paper.ewkierence can be made to Yang and Yu
(2006)and Yang and Yu (2010) for detailed description of the exjtitggration, a brief introduction

is given below.

For a given strain incrememiz, at step n, the constitutive equations are firsthegratedover Aen
using the first-order Euler scheme to obtain the siresementAo;, followed by using the second-
order modified Euler schem® obtain the stress increment Ac,. A local truncation error Ris
determined by the difference between the results ofwbeschemes. If Ris larger than a prescribed
tolerance STOL, the computation restarts with a smallecrement size &, where
g=max[0.9/STOL/R,,0.1]. If R, is smaller than STOL, the stress state is updatex, too,_; +
(Ao, + Ag,)/2 and the size of the next incremend determined asAen+1=0Aen Where

g=min[0.9/STOL/R,;,1.1. Thus, the algorithm automatically divides the appliedirstiacrement
according to the prescribed error tolerance. The foregmiocedure repeats until all strain increments
are applied. In addition, the algorithm also consideesytbld surface intersection, the occurrence of
negative loading index and the yield surface drift cowectFurther details can be found in Sloan
(1987)and Abbo (1997).

In the following sections, analyses of the simple shedrsamnp footing problems are carried out to
assess thmodels’ performances. The soil used has an elastic moduted 0000 kPa, a Poisson’s ratio
v=0.3 and an initial static lateral earth pressure aoefftK,=0.5. The soil cohesionis set to 1 kPa,
and the friction angléep and dilation angle are both 30 The associated flow ruie selected in order
to avoid possible numerical problems in the strip faptinalysis

3.2.Simple shear

A soil element undergoing drained simple shear defoomas consideredA constant vertical stress
0,=100 kPa is applied throughout the shearing. Fig 2 presenttimalized shear stress-shear strain
responses using thieL andRL models with different values @f/G. The prediction by the Drucker-
Prager models also shown for reference. Fig 3 presents a compamécahe magnitudes of the
tangential and rotational plastic strain ra%é and éf’jr, normalized by the magnitude of the

conventional plastic strain rax‘%c. These figures indicate that, compared with the Druckaged?

model, the inclusion of either tHiEL or RL mechanism softens the soil responses. Neverthdéfess,
difference between the TL and RL model predictionalisost negligible. With a smalléy/G, this
difference becomes larger, and it can be seen thatlthmodel produces slightly more plastic strain
andasofter stress-strain relation than fRie model

To give a better quantitative comparison, the variatanse Lode angle 6 and the angle2a, during
simple shearing are shown in Fig 4r fhe convenience of comparison, 8 is defined to range between

0° and 60 with (° standing for triaxial compression and°6@@iaxial extension. The reason for
comparing 0 with 2« instead of withr, is because the principal stress rotation is signalledabying
2a,, nota,, over the range of 36@see Fig 1(b)). The impact &L is triggered by the variation of
2a,, whilst the impacbf TL is triggeredby the variation®f both2a, andé. It is shown in Fig 4 that

in the simple shear, the rotation of principal stmlissctions is predominant over the variation of the
Lode angle, making the difference betwé@rand&{j very small. In addition, it is interesting to note
that the curveof 2a, predicted by th&RL model coincides with that by tHEL model, however, the
curve of 0 predicted by theRL model coincides with that by the Drucker-Prager model. This
discrepancy is another indication to the different loggtiatterns in the RL and TL mechanisms

In Fig 5, the deviation of the direction of major principklstic strain rate;.» from that of the stress
a, is shown to assess thedels’ capability in reproducing non-coaxiality. Given the fewt slightly
more plastic strain imduced by the tangential stress et is less non-coaxial than the rotational
stress rat@]; owing to the coaxial term isf;, as discussed after Eq(18). Nevertheless, this diffeience
again almost negligible in the simple shear.

3.3. Strip footing



To further demonstrate the difference betweenTthand RL theories, a rigid, rough and strip footing
resting on weightless soil is analysed in this sectidre flnite element mesh is shown in Fig46.
surcharge load of g=100 kPa is applied on the top of theidparad a prescribed vertical downward
displacement is applied to the nodes immediately undertteafooting.

Fig 7 presents the computed footing load-displacement cusieg the Drucker-PragefL and RL
models. Two values df/G=0.5 and 0.2 are used. These two valugs lzdive already been used in the
simple shear analysis (see Fig 2), th& results are almost identical betwaba TL and RL model
predictions. However, in the strip footing probleansignificant differences observed, with th&L
model predictions being considerably softer than thostéRL model This is obviously due to the
different loading patterns in the simple shear and stripnfigofhe former is a simple monotonic type
of loading predominated by the change of shear stressgaséne latter is complicated case with
different locations exposed to different and varying loadiagierns consisting of changes in both
normal and shear stress

To demonstrate this, Figs 8 and 9 show the normalizeitalestress and the variatiofi 6 and 2¢,, at
four different locations marked in the enlarged diagramigfeF It is seen that the variation 2,
(contributes to the RL as well as TL) is as small°a&t location 1 and around 28t location 3but the
variation of 6 (contributes only to the TL) at these locations is as large a8 d6d therefore is
predominant oveRa,. As a result, the TL predictions are considerably sdftan that by the RL at
these two locations. On the other hand, at locatioiné2«, is rapidly increased to more than°65
whereashe variation of 6 is maintained at around %48 onsequently, the difference between the TL
and RL predictions is smaller at locationi2compared with that at location 1. This is also seen f
location 4 compared with locatioB. These results are consistent with the different lgpgiatterns
associated with the TL and RL mechanisiygparently, in shear dominated conditions, the TL Rhd
theories are almost identical and interchangeable. Howgvaon-shear dominated conditions where
the normal stress change plays an important role as mtich slsear stress change, they are not

With the foregoing comparisons being presented, itbeaconcluded that, since the TL theory includes
the RL, it is more versatile in applications. Howevbg respective contributions from the RL and the
Lode angle variation are not clear. If the researcudds the pure principal stress rotation, the RL
theory serves the purpose better since the Lode sagégion effect is eliminated.

4. Conclusion

The yield-vertexTL theory is a widely used approach in the constitutive tlingeof soil response
under principal stress rotational loading. However, the tatrajestress ratefj employed in this theory
is not solely designated to represent principal stretgion. The theory of isolating the rotational
stress ratg;; is the true representation of the pure rotation ofgypal stress axes.

This paper presents a comparative study between thewgelek TL and the true principal stress RL
theories. Mathematical derivation and numerical simuiatiare carried out. The following conclusions
are made:

1. The tangential stress rate includes the rotational staéssnd an additional coaxial term that
is associated with the variation of the Lode angle.

2. The TL theory can be more versatile, but the respedontributions from the RL and the
Lode angle variation are not clear in this theory. Rerdtudy of pure principal stress rotation,
the RL theory serves the purpose better since the &ogle variation effect is eliminated.

3. Inclusion of either theory can soften the soil ststgain response and therefore, ignoring
them would result in unsafe design in geotechnical problems.

4. In shear dominated problems, such as the simple shedwdhbeories give almost identical
results since the rotation of principal stress is predan over the variation of the Lode angle.

5. In non-shear dominated problems, such as the strip foothey, TL theory produces
considerably softer results than the RL theory becagsadimal stress change leading to the
variation of the Lode angle has a large impact as wdheprincipal stress rotation.
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Fig7. Predicted footing load-displacement curves
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Fig 8 Predicted results at locations 1 and 2: (a) normalizstical stress predicted by TL and RL
models with h/G=0.5nd (b) variations of 6 and 2.
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Fig 9. Predicted results at locations 3 and 4: (a) normalizstical stress predicted by TL and RL
models with h/&0.5, and (b) variations of 6 and 2«,,.



