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Abstract  

The yield-vertex tangential loading theory is a constitutive approach that accounts for the plastic 
straining induced by the part of a stress rate directed tangential to the yield surface. One of the 
important applications of this theory is in the study of geotechnical problems involving significant 
rotation of principal stress directions. However, it is inaccurate to simply regard the tangential loading 
as an equivalence to the principal stress rotation. For future reference, this paper presents an 
investigation into the difference between the tangential loading theory and a true purely principal stress 
rotational loading theory. Mathematical derivation shows that the tangential stress rate includes the 
rotational stress rate and an additional coaxial term that is associated with the variation of the Lode 
angle. Numerical applications of these two theories indicate that in shear dominated problems, such as 
simple shear, the two theories are almost identical and interchangeable, but in non-shear dominated 
circumstances, such as footing, the tangential loading theory produces considerably softer results than 
the rotational loading theory.  
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1. Introduction 

The yield-vertex tangential loading (TL) theory, firstly introduced by Rudnicki and Rice (1975), is a 
complementary framework to the conventional plasticity theory. It assumes that, in addition to the 
plastic loading along the ‘straight ahead’ stressing, the part of a stress rate directed tangential to the 
yield surface also induces plastic straining. This theory has strong influences on the predicted stress-
strain responses of soil and is found to be of importance in some geotechnical applications such as 
bifurcation (Yatomi et al., 1989, Papamichos and Vardoulakis, 1995). Extensive investigations, 
implementations, and some pertinent improvements regarding this theory can be found in the literature 
(Hashiguchi and Tsutsumi, 2001, Yang and Yu, 2006, Qian et al., 2008). In particular, it has been 
successfully applied to consider the responses of soil subjected to principal stress rotational loading 
(RL) (e.g. Tsutsumi and Hashiguchi (2005)), which refers to the condition of continuously rotated 
principal stress axes but fixed principal stress magnitudes.  

However, the TL theory is not designated solely for the study of RL. It can also be triggered by a 
circular stress path in the ʌ-plane with centre at the origin, which is characterised by a continuous 
change of principal stress magnitudes but fixed principal stress directions. Given that the rotation of 
principal stress directions is of great academic and practical importance, experimental and numerical 
studies where principal stress axes rotated with other parameters remaining constant have drawn 
serious attention in the last three decades (Miura et al., 1986, Tong et al., 2010, Qian et al., 2017, Li 
and Dafalias, 2004, Tian and Yao, 2018, Li and Yu, 2010). In the literature, there exists a technique of 
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isolating the part of a stress rate that is responsible for the rotation of principal stress directions (see for 
example Yu and Yuan (2006), Yang and Yu (2013) and Yuan et al. (2018)). Computation shows that 
the inclusion of the plastic loading associated with this rotational stress rate significantly improves the 
accuracy of numerical prediction (Yang and Yu, 2013).  

Considering that the TL theory has been frequently used in geotechnical applications involving 
significant principal stress rotation, its difference from the true purely principal stress RL should be 
investigated. Thus, this paper presents a comparative analysis between the TL and RL theories. Their 
mathematical differences are discussed, and their performances in the simple shear and strip footing 
problems are compared.  

 

2. Tangential loading and rotational loading 

Within the elastoplasticity framework, the total strain rate is decomposed into ߝሶ௜௝ ൌ ሶ௜௝௘ߝ ൅ ሶ௜௝௣ߝ          (1) 

where the superscripts ݁ and ݌ denote elastic and plastic components, respectively. The elastic relation 
is assumed to be isotropic, which gives ߪሶ௜௝ ൌ ሶ௞௟௘ߝ௜௝௞௟ܧ          (2) 
where  ܧ௜௝௞௟ ൌ ௞௟ߜ௜௝ߜܭ ൅ ௝௟ߜ௜௞ߜሺܩ ൅ ௝௞ߜ௜௟ߜ െ ଶଷ  ௞௟ሻ     (3)ߜ௜௝ߜ

with ߜ௜௝ being the Kronecker delta, and ܭ and ܩ the elastic bulk and shear moduli, respectively. To 

facilitate later presentation, the plastic strain rate ߝሶ௜௝௣  is further decomposed into two components. The 

first component, denoted by ߝሶ௜௝௣௖, is associated with the conventional plasticity theory (superscript ܿ), 

characterized with a modified Drucker-Prager yield surface given as ݂ ൌ ඥሺܽ sin߶ሻଶ ൅ ߬ଶ െ ݌ sin߶ െ ܿ cos߶      (4) 

where ߬ ൌ ඥሺݏ௜௝ݏ௜௝ሻ ʹΤ  and ݏ௜௝ is the deviatoric stress tensor; ݌ is the mean normal stress; ܿ is the soil 
cohesion and ߶  is the friction angle. Both ܿ  and ߶  are constant in this work, utilizing a perfect 
plasticity framework. The term ሺܽ sin߶ሻଶ inside the radical sign represents a hyperbolic approximation 
in the meridional (constant Lode angle) plane. When ܽ ൑ ͲǤͷܿ ή cot ߶, Eq(4) closely represents the 
original Drucker-Prager yield surface. The plastic potential is then obtained by replacing the friction 
angle ߶ with a dilatation angle ߰ in Eq(4).  

The second component of ߝሶ௜௝௣ , is either ߝሶ௜௝௣௧  when the TL mechanism is used, or ߝሶ௜௝௣௥  when the RL 

mechanism is used. The meanings of superscripts ݐ and ݎ are self-evident. The development of ߝሶ௜௝௣௧ and ߝሶ௜௝௣௥  is addressed in the following. 

2.1. TL model  

Rudnicki and Rice (1975) proposed that the tangential plastic strain rate ߝሶ௜௝௣௧ is given by ߝሶ௜௝௣௧ ൌ ଵ௛ ሶ௜௝௧ݏ          (5) 

where ݄  is a plastic modulus governing the additional loading mechanism; and ݏሶ௜௝௧  is the part of ݏሶ௜௝ 
directed tangential to the yield surface, defined as ݏሶ௜௝௧ ൌ ሶ௜௝ݏ െ ௦೔ೕ௦ೖ೗ଶఛమ ሶ௞௟ݏ ൌ ௜ܰ௝௞௟௧  ሶ௞௟       (6)ߪ

where  

௜ܰ௝௞௟௧ ൌ ଵଶ ሺߜ௜௞ߜ௝௟ ൅ ௝௞ߜ௜௟ߜ െ ଶଷ ௞௟ߜ௜௝ߜ െ ௦೔ೕ௦ೖ೗ఛమ ሻ      (7)  



Substituting Eq(6) into Eq(5), one has  ߝሶ௜௝௣௧ ൌ ଵ௛ ௜ܰ௝௞௟௧   ሶ௞௟         (8)ߪ

The fourth-order tensor ܰ௜௝௞௟௧  is known as the deviatoric tangential projection as it projects an arbitrary 
second-order tensor into its deviatoric part tangential to the yield surface (Hashiguchi, 2014). In Fig 
1(a), a schematic illustration of the tangential plastic strain rate is shown. It should be emphasized that 
the principal (deviatoric) stress presentation in Fig 1(a) illustrates only part of the TL mechanism since 
Eqs(5~8) are defined in the general stress space.  

Using Eq(8), the overall elastoplastic stress rate-strain rate relation becomes ߪሶ௜௝ ൌ ሾܧ௜௝௞௟ െ ൫ா೔ೕೌ್ோೌ್൯ሺ௟೎೏ா೎೏ೖ೗ሻ൫௄೛ା௟೘೙ா೘೙ೞ೟ோೞ೟൯ െ ସீమ௛ାଶீ ௜ܰ௝௞௟௧ ሿߝሶ௞௟      (9) 

where ݈௜௝ and ܴ ௜௝  are the normals to the yield and plastic potential surfaces, respectively; ܭ௣  is the 
plastic modulus governing the conventional plastic loading and is zero in this paper as a result of the 
perfect plasticity setting.  

2.2. RL model 

For the purpose of comparison, the rotational plastic strain rate ߝሶ௜௝௣௥  is given similar to Eq(5), written as  ߝሶ௜௝௣௥ ൌ ଵ௛ ሶ௜௝௥ߪ          (10) 

where ݄  is the same parameter as in Eq(5); ߪሶ௜௝௥  is the part of ߪሶ௜௝ that triggers the RL at fixed principal 

stress magnitudes. This rotational rate ߪሶ௜௝௥  is taken as purely deviatoric since the RL occurs at constant 

mean normal stress ݌. It is firstly assumed that the direction of ߪ௭ is fixed such that the RL takes place 

in the plane of ሺ஢ೣି஢೤ଶ ǡ ߬௫௬ሻ shown in Fig 1(b). Then, the ߪሶ௜௝௥  must satisfy the following condition 

ቈሺߪሶ௫௥ െ ሶ௬௥ሻߪ ʹΤሶ߬௫௬௥ ቉ ൌ ቈሺߪሶ௫ െ ሶ௬ሻߪ ʹΤሶ߬௫௬ ቉ െ భర൫ఙೣିఙ೤൯൫ఙሶೣିఙሶ೤൯ାఛೣ೤ఛሶೣ೤భరሺఙೣିఙ೤ሻమାఛೣ೤మ ൤ሺߪ௫ െ ௬ሻߪ ʹΤ߬௫௬ ൨  (11) 

Using Eq(11) and noting that ߪሶ௫௥ ൅ ሶ௬௥ߪ ൌ Ͳ, the following expression for the components of ߪሶ௜௝௥  is 
obtained 

቎ߪሶ௫௥ߪሶ௬௥ሶ߬௫௬௥ ቏ ൌ ێێێۏ
ۍ ଵଶ sinଶʹߙఙ െ ଵଶ sinଶʹߙఙ െcosʹߙఙ sin ఙെߙʹ ଵଶ sinଶʹߙఙ ଵଶ sinଶʹߙఙ cosʹߙఙ sin ఙെߙʹ ଵଶ cosʹߙఙ sin ఙߙʹ ଵଶ cosʹߙఙ sin ఙߙʹ cosଶʹߙఙ ۑۑۑے

ې ቎  ሶ௬ሶ߬௫௬቏   (12)ߪሶ௫ߪ

where ߙఙ is the direction of major principal stress with reference to the ݕ-axis. Geometrical relation in 

Fig 1(b) indicates that sin ఙߙʹ ൌ ఛೣ೤ටሺఙೣିఙ೤ሻమ ସΤ ାఛೣ೤మ  and cos ఙߙʹ ൌ ൫ఙೣିఙ೤൯ ଶΤටሺఙೣିఙ೤ሻమ ସΤ ାఛೣ೤మ . In the same way, the 

rotational stress rates in the planes of ሺ஢೤ି஢೥ଶ ǡ ߬௬௭ሻ and of ሺ஢೥ି஢ೣଶ ǡ ߬௭௫ሻ can also be obtained. Combining 

them altogether, a tensor expression for ߪሶ௜௝௥  can be written as ߪሶ௜௝௥ ൌ ௜ܰ௝௞௟௥  ሶ௞௟         (13)ߪ

For detailed expression of the fourth-order tensor ௜ܰ௝௞௟௥ , readers are referred to Yang and Yu (2013). 

Compared with the ܰ௜௝௞௟௧  in Eq(6), it is found that the role of ௜ܰ௝௞௟௥  is to project an arbitrary second-
order tensor to its deviatoric part directed along the direction of principal stress rotation. In this sense, it 
can be called the deviatoric rotational projection. By substituting Eq(13) into Eq(10), one has ߝሶ௜௝௣௥ ൌ ଵ௛ ௜ܰ௝௞௟௥  ሶ௞௟         (14)ߪ

Obviously, Eq(14) is a counterpart to Eq(8) when the RL mechanism is used. Finally, the overall 
elastoplastic stress rate-strain rate relation in the RL model is given by  



ሶ௜௝ߪ ൌ ሾܧ௜௝௞௟ െ ൫ா೔ೕೌ್ோೌ್൯ሺ௟೎೏ா೎೏ೖ೗ሻ൫௄೛ା௟೘೙ா೘೙ೞ೟ோೞ೟൯ െ ସீమ௛ାଶீ ௜ܰ௝௞௟௥ ሿߝሶ௞௟     (15) 

Inspection of the foregoing equations indicates that the TL and RL models in this paper are constructed 
in a very similar way to serve the purpose of comparison. The only difference between the two sets of 
model formulations is associated with the difference between ܰ ௜௝௞௟௧  and ܰ ௜௝௞௟௥  . 

It should be noted that the presentation given here implies circular yield surfaces in the ʌ-plane and in 

the plane of ሺ஢ೣି஢೤ଶ ǡ ߬௫௬ሻ or any other relevant planes. Nevertheless, non-circular shapes can be easily 

accounted for along the line of Hashiguchi and Tsutsumi (2001).  

2.3. Comparison of TL and RL 

Yu (2006) commented that, under two-dimensional plane strain conditions, the tangential stress rate ݏሶ௜௝௧  

will downgrade to the rotational stress rate ߪሶ௜௝௥  using the definition of ݏ௫ ൌ ஢ೣି஢೤ଶ ௬ݏ , ൌ ஢೤ି஢ೣଶ ௫௬ݏ , ൌ߬௫௬ and ɒ ൌ ඥሺߪ௫ െ ௬ሻଶߪ ͶΤ ൅ ߬௫௬ଶ . However, under general three-dimensional conditions, they are not 
identical.  

Noting the deviatoric nature of ߪሶ௜௝௥  and ܰ ௜௝௞௟௥ , Eq(13) can be reformulated as ݏሶ௜௝௥ ൌ ሶ௜௝௥ߪ ൌ ௜ܰ௝௞௟௥ ሺݏሶ௞௟ ൅ଵଷ ௞௟ሻߜሶ௠௠ߪ ൌ ௜ܰ௝௞௟௥ ሶ௜௝ݏ ሶ௜௝ can be decomposed intoݏ ሶ௞௟. Thus, the deviatoric stress rateݏ ൌ ሶ௜௝௥ݏ ൅ ሺI௜௝௞௟ െ ௜ܰ௝௞௟௥ ሻݏሶ௞௟       (16) 

where I௜௝௞௟ is the fourth-order identity tensor. Substituting Eq(16) into Eq(6), and noting that ݏ௞௟ݏሶ௞௟௥ ൌ Ͳ, 

the tangential stress rate ݏሶ௜௝௧  becomes ݏሶ௜௝௧ ൌ ሶ௜௝௥ݏ ൅ ൫I௜௝௠௡ െ ௜ܰ௝௠௡௥ ൯ݏሶ௠௡ െ ௦೔ೕ௦ೖ೗ଶఛమ ሺI௞௟௦௧ െ ௞ܰ௟௦௧௥ ሻݏሶ௦௧    (17) 

In the above equation, the terms ൫I௜௝௠௡ െ ௜ܰ௝௠௡௥ ൯ݏሶ௠௡ െ ௦೔ೕ௦ೖ೗ଶఛమ ሺI௞௟௦௧ െ ௞ܰ௟௦௧௥ ሻݏሶ௦௧ are of the same form as 

the middle expression of Eq(6) with the substitution of ൫I௜௝௠௡ െ ௜ܰ௝௠௡௥ ൯ݏሶ௠௡ for ݏሶ௜௝. Therefore, Eq(17) 

can be further written as ݏሶ௜௝௧ ൌ ሶ௜௝௥ݏ ൅ ௜ܰ௝௠௡௧ ሺI௠௡௞௟ െ ܰ௠௡௞௟௥ ሻݏሶ௞௟      (18) 

This expression indicates that the tangential stress rate ݏሶ௜௝௧  includes the rotational stress rate ݏሶ௜௝௥  and an 

additional term ܰ ௜௝௠௡௧ ሺI௠௡௞௟ െ ܰ௠௡௞௟௥ ሻݏሶ௞௟ . To clarify the meaning of this additional term, consider 

again the simple case where the direction of ߪ௭ is fixed. In this case, ሺI௠௡௞௟ െ ܰ௠௡௞௟௥ ሻݏሶ௞௟ represents the 
part of ݏሶ௞௟ directed along the principal stress directions, i.e. the coaxial part. Recalling the tangential 
projecting effect of ܰ ௜௝௠௡௧ , the additional term in Eq(18) is therefore coaxial as well as tangential to the 
yield surface in the ʌ-plane. In other words, it represents a stress rate that is associated with the 
variation of the Lode angle Ʌ at fixed ݌, ߬  and principal stress directions. Referring back to Fig 1, it can 
be concluded that whilst the RL mechanism is succinctly illustrated in Fig 1(b), the TL mechanism 
actually includes both conditions illustrated in Figs 1(a) and 1(b).  

 

3. Numerical simulations 
 

3.1. Numerical implementation 

The constitutive models presented above are implemented into ABAQUS finite element software as 
user-defined material subroutines. The integration of soil models can be conducted by using explicit 
and implicit schemes, and each of them has its characteristics (Sloan, 1987, Abbo, 1997, Yang et al., 
2011, Rezania et al., 2014). For the yield vertex TL model and principal stress RL model, the explicit 
scheme has been employed throughout to integrate them by the authors, and it proves to be an effective 
integration scheme (Yang and Yu, 2006, Yang and Yu, 2010, Yang et al., 2011, Yang and Yu, 2013). It 
is characterized with automatic substepping and error control, leading to robustness and unconditional 
convergence. For example, it takes as few as two steps to simulate the entire load-displacement 



response by using this explicit scheme (Yang and Yu, 2010). Therefore, this explicit scheme is 
employed to integrate these two models in the paper. While reference can be made to Yang and Yu 
(2006) and Yang and Yu (2010) for detailed description of the explicit integration, a brief introduction 
is given below.  

For a given strain increment ǻİn at step n, the constitutive equations are firstly integrated over ǻİn 
using the first-order Euler scheme to obtain the stress increment ǻʍ1, followed by using the second-
order modified Euler scheme to obtain the stress increment ǻʍ2. A local truncation error Rn is 
determined by the difference between the results of the two schemes. If Rn is larger than a prescribed 
tolerance STOL, the computation restarts with a smaller increment size qǻİn where 

q=max[0.9ඥܱܵܶܮȀܴ௡,0.1]. If Rn is smaller than STOL, the stress state is updated to ߪ௡ ൌ ௡ିଵߪ ൅ሺοߪଵ ൅ οߪଶሻȀʹ  and the size of the next increment is determined as ǻİn+1=qǻİn where 

q=min[0.9ඥܱܵܶܮȀܴ௡ ,1.1]. Thus, the algorithm automatically divides the applied strain increment 
according to the prescribed error tolerance. The foregoing procedure repeats until all strain increments 
are applied. In addition, the algorithm also considers the yield surface intersection, the occurrence of 
negative loading index and the yield surface drift correction. Further details can be found in Sloan 
(1987) and Abbo (1997). 

In the following sections, analyses of the simple shear and strip footing problems are carried out to 
assess the models’ performances. The soil used has an elastic modulus 10000=ܧ kPa, a Poisson’s ratio 0.3=ߥ and an initial static lateral earth pressure coefficient ܭ଴=0.5. The soil cohesion ܿ is set to 1 kPa, 
and the friction angle ߶ and dilation angle ߰ are both 30o. The associated flow rule is selected in order 
to avoid possible numerical problems in the strip footing analysis.  

3.2. Simple shear 

A soil element undergoing drained simple shear deformation is considered. A constant vertical stress ߪ௬=100 kPa is applied throughout the shearing. Fig 2 presents the normalized shear stress-shear strain 
responses using the TL and RL models with different values of ݄Ȁܩ. The prediction by the Drucker-
Prager model is also shown for reference. Fig 3 presents a comparison of the magnitudes of the 
tangential and rotational plastic strain rates ߝሶ௜௝௣௧  and ߝሶ௜௝௣௥ , normalized by the magnitude of the 

conventional plastic strain rate ߝሶ௜௝௣௖ . These figures indicate that, compared with the Drucker-Prager 

model, the inclusion of either the TL or RL mechanism softens the soil responses. Nevertheless, the 
difference between the TL and RL model predictions is almost negligible. With a smaller ݄Ȁܩ, this 
difference becomes larger, and it can be seen that the TL model produces slightly more plastic strain 
and a softer stress-strain relation than the RL model.  

To give a better quantitative comparison, the variations of the Lode angle ș and the angle ʹ  ఙ duringߙ
simple shearing are shown in Fig 4. For the convenience of comparison, ș is defined to range between 
0o and 60o with 0o standing for triaxial compression and 60o triaxial extension. The reason for 
comparing ș with ʹߙఙ instead of with ߙఙ is because the principal stress rotation is signalled by varying ʹߙఙ, not ߙఙ, over the range of 360o (see Fig 1(b)). The impact of RL is triggered by the variation of ʹߙఙ, whilst the impact of TL is triggered by the variations of both ʹ  ,ఙ and ș. It is shown in Fig 4 thatߙ
in the simple shear, the rotation of principal stress directions is predominant over the variation of the 
Lode angle, making the difference between ݏሶ௜௝௧  and ݏሶ௜௝௥  very small. In addition, it is interesting to note 

that the curve of ʹߙఙ predicted by the RL model coincides with that by the TL model, however, the 
curve of ș predicted by the RL model coincides with that by the Drucker-Prager model. This 
discrepancy is another indication to the different loading patterns in the RL and TL mechanisms.  

In Fig 5, the deviation of the direction of major principal plastic strain rate ߙఌሶ ೛ from that of the stress ߙఙ is shown to assess the models’ capability in reproducing non-coaxiality. Given the fact that slightly 
more plastic strain is induced by the tangential stress rate ݏሶ௜௝௧ , it is less non-coaxial than the rotational 

stress rate ݏሶ௜௝௥  owing to the coaxial term in ݏሶ௜௝௧ , as discussed after Eq(18). Nevertheless, this difference is 
again almost negligible in the simple shear. 

3.3. Strip footing 



To further demonstrate the difference between the TL and RL theories, a rigid, rough and strip footing 
resting on weightless soil is analysed in this section. The finite element mesh is shown in Fig 6. A 
surcharge load of q=100 kPa is applied on the top of the domain, and a prescribed vertical downward 
displacement is applied to the nodes immediately underneath the footing. 

Fig 7 presents the computed footing load-displacement curves using the Drucker-Prager, TL and RL 
models. Two values of ݄Ȁ0.5=ܩ and 0.2 are used. These two values of ݄ have already been used in the 
simple shear analysis (see Fig 2), but the results are almost identical between the TL and RL model 
predictions. However, in the strip footing problem, a significant difference is observed, with the TL 
model predictions being considerably softer than those by the RL model. This is obviously due to the 
different loading patterns in the simple shear and strip footing. The former is a simple monotonic type 
of loading predominated by the change of shear stress, whereas the latter is a complicated case with 
different locations exposed to different and varying loading patterns consisting of changes in both 
normal and shear stresses.  

To demonstrate this, Figs 8 and 9 show the normalized vertical stress and the variation of ș and ʹߙఙ at 
four different locations marked in the enlarged diagram of Fig 6. It is seen that the variation of ʹߙఙ 
(contributes to the RL as well as TL) is as small as 7o at location 1 and around 20o at location 3, but the 
variation of ș (contributes only to the TL) at these locations is as large as 46o and therefore is 
predominant over ʹߙఙ. As a result, the TL predictions are considerably softer than that by the RL at 
these two locations. On the other hand, at location 2, the ʹ  ,ఙ is rapidly increased to more than 65oߙ
whereas the variation of ș is maintained at around 46o. Consequently, the difference between the TL 
and RL predictions is smaller at location 2, if  compared with that at location 1. This is also seen for 
location 4 compared with location 3. These results are consistent with the different loading patterns 
associated with the TL and RL mechanisms. Apparently, in shear dominated conditions, the TL and RL 
theories are almost identical and interchangeable. However, in non-shear dominated conditions where 
the normal stress change plays an important role as much as the shear stress change, they are not.  

With the foregoing comparisons being presented, it can be concluded that, since the TL theory includes 
the RL, it is more versatile in applications. However, the respective contributions from the RL and the 
Lode angle variation are not clear. If the research focus is the pure principal stress rotation, the RL 
theory serves the purpose better since the Lode angle variation effect is eliminated.  

 

4. Conclusion 

The yield-vertex TL theory is a widely used approach in the constitutive modelling of soil response 
under principal stress rotational loading. However, the tangential stress rate ݏሶ௜௝௧  employed in this theory 
is not solely designated to represent principal stress rotation. The theory of isolating the rotational 
stress rate ݏሶ௜௝௥  is the true representation of the pure rotation of principal stress axes. 

This paper presents a comparative study between the yield-vertex TL and the true principal stress RL 
theories. Mathematical derivation and numerical simulations are carried out. The following conclusions 
are made: 

1. The tangential stress rate includes the rotational stress rate and an additional coaxial term that 
is associated with the variation of the Lode angle. 

2. The TL theory can be more versatile, but the respective contributions from the RL and the 
Lode angle variation are not clear in this theory. For the study of pure principal stress rotation, 
the RL theory serves the purpose better since the Lode angle variation effect is eliminated.  

3. Inclusion of either theory can soften the soil stress-strain response and therefore, ignoring 
them would result in unsafe design in geotechnical problems. 

4. In shear dominated problems, such as the simple shear, the two theories give almost identical 
results since the rotation of principal stress is predominant over the variation of the Lode angle. 

5. In non-shear dominated problems, such as the strip footing, the TL theory produces 
considerably softer results than the RL theory because the normal stress change leading to the 
variation of the Lode angle has a large impact as well as the principal stress rotation. 
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Fig 1. Schematic illustration of the (a) tangential plastic strain rate ߝሶ௜௝௣௧ in the ʌ-plane and (b) rotational 

plastic strain rate ߝሶ௜௝௣௥  in the plane of ሺ஢ೣି஢೤ଶ ǡ ɐ௫௬ሻ.  
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Fig 2. Normalized shear stress-shear strain responses during simple shear.  
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Fig 3. Normalized plastic strain rate magnitudes. 
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Fig 4. Variations of ʹߙఙ and Lode angle ș.  
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Fig 5. Degree of non-coaxiality, ߙఌሶ ೛ െ    .ఙߙ

 

Fig 6. Finite element mesh for strop footing problem.  
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Fig7. Predicted footing load-displacement curves.  
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Fig 8. Predicted results at locations 1 and 2: (a) normalized vertical stress predicted by TL and RL 
models with h/G=0.5, and (b) variations of ș and ʹߙఙ. 
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Fig 9. Predicted results at locations 3 and 4: (a) normalized vertical stress predicted by TL and RL 
models with h/G=0.5, and (b) variations of ș and ʹߙఙ. 

 

 

 

 

 


