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Abstract 

The pyrolysis-catalysis of a simulated mixture of plastics representing the plastic mixture found 

in municipal solid waste has been carried out to determine the influence of process conditions 

on the production of upgraded fuel oils and chemicals and gases.  The catalysts used were spent 

zeolite from a fluid catalytic cracker (FCC), Y-zeolite and ZSM-5 zeolite. The addition of a 

catalyst to the process produced a marked increase in gas yield, with more gas (mainly C1 - C4 

hydrocarbons) being produced as the temperature of the catalyst was raised from 500 ºC to 600 

ºC.  The Si/Al ratio of the catalysts influenced the composition of other gases with the more 

basic catalysts producing more CO and the strongly acidic catalyst producing more H2. The 

yield of product oil decreased with the addition of the catalysts, but the oil was of significantly 

lower molecular weight range, containing a product slate of premium fuel range C5 – C15 

hydrocarbons. In addition, the content of aromatic compounds in the product oil was increased; 

for example, benzene and toluene accounted for more than 90% of the aromatic content of the 

oil from the strongly acidic Y-zeolite catalysts. A reaction scheme is proposed for the 

production of single-ring aromatic compounds via pyrolysis-catalysis of plastics.  
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1.0 Introduction 

The use of a cracking catalyst in the pyrolysis of waste plastics is driven by an overriding 

objective to transform an ever-growing global waste stream into useful and readily useable 

products. The subject of plastic pyrolysis has been well documented in literature [1-12] with 

some basic understanding of the pyrolysis process, and in particular the thermochemical 

reactions involved. Literature has shown that reactions such as C-C bond scission, 

dehydrogenation, hydrogenation, cyclization, aromatization and condensation are the most 

prevalent during pyrolysis [4]. The pyrolysis process thus appears to start as a random multi-

reaction process leading to the formation of a very wide range of products from simple 

molecules (e.g. hydrogen) to long-chain hydrocarbons (e.g. up to C40+ alkanes) and even char 

[2, 4-5, 12]. The distribution of pyrolysis products as gas, liquid and solid depends largely on 

the type of feedstock, the process conditions (especially temperature) and vapour residence 

times. These factors have different influence on the reactions that occur during pyrolysis and 

therefore determine which of the pyrolysis products are favoured. A readily useful product of 

plastic pyrolysis is the hydrocarbon-rich liquid, which can be used directly or minimally refined 

for use as fuel in internal combustion engines or as chemical feedstock.  This has been a major 

research interest in pyrolysis of waste plastics. Fast pyrolysis which is characterized by short 

vapour residence times favour the production of pyrolysis liquid [13].  However, the avoidance 

of secondary reactions, which occurs with prolonged residence times, results in a liquid product 

dominated by less useful long-chain hydrocarbons.  

Catalysts can play significant roles in the conversion of plastics to fuel-grade liquid products 

by promoting reactions which are relevant to their formation, albeit at the appropriate residence 

times. Several researchers have investigated the catalytic pyrolysis of plastics and literature 

shows that reactor design, catalyst type and reaction conditions can greatly influence the yields 

of products from catalytic pyrolysis. Fixed bed reactors offer a simple system for fundamental 

studies of the pyrolysis process and a number of researchers have used different configurations 

of fixed bed reactors for catalytic pyrolysis studies. For instance, some fixed-bed reactor studies 

involved contacting melted plastics with catalysts [8-10]. Others have involved heating a 

mixture of plastics and catalysts together in a single bed [11-12], while in another 

configuration, pyrolysis vapours are passed over a heated catalyst bed in a two-stage process 

[14-15]. Fixed bed reactors can however, suffer from poor heat transfer which can cause 

operational problems such as blockage, making commercial application difficult.  While 

fluidized-bed reactors can help overcome the operational problems of fixed bed reactors, the 

former, by design, retains ash present in feedstock in the bed material. The ash content of 

wastes have been reported to act as catalysts for the pyrolysis process, thereby influencing the 

composition of the pyrolysis oil [16]. A challenge is that real-world wastes have highly varied 

compositions and changes in ash contents would lead to changes in oil compositions making 
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the properties of oil products less predictable. In addition, real-world waste plastics are 

contaminated with other materials including stones and glass, which can build-up in the 

fluidized bed material over time to cause severe operational problems such as abrasion, wear 

and tear of reactor, contamination of catalysts and jamming of moving parts. Fine ash particles 

can become entrained in the gas/vapour stream leaving the fluidized bed reactor and cause 

downstream problems, including contamination of condensates. Alternatively, expensive 

feedstock preparation may be needed in order to make some real-world waste plastics suitable 

for fluidized bed reactor pyrolysis.  

Among the fixed bed configurations, the two-stage process has a better potential for scale-up. 

In this configuration, the waste plastic is pyrolyzed in a first-stage reactor with pyrolysis 

vapours swept with an inert gas (e.g. nitrogen) over a heated catalyst bed in a second – stage. 

This makes it easy to operate the catalyst bed at a different temperature to the pyrolysis reactor 

and also to recover spent catalysts for regeneration. Shen et al. [11], performed pyrolysis of 

waste tyres with commercial ultra-stable Y-type (USY) and ZSM-5 zeolite catalysts in a fixed-

bed two-stage pyrolysis-catalysis system. The pyrolysis temperature was 500 ºC while the 

catalyst bed was varied from 350 ºC to 500 ºC. They found that an increase catalyst bed 

temperature above 450 ºC enhanced gas yield at the expense of oil yield, while char yield 

remained fairly the same. Further, the authors reported that the oil products obtained during the 

catalytic process was dominated by single-ring aromatic hydrocarbons especially in the 

presence of USY zeolite. Williams and Brindle [14] also investigated the two-stage pyrolysis-

catalysis of tyres and considered the influence of catalyst temperature using zeolite Y and 

ZSM-5 catalysts. The catalyst was found to reduce the yield of oil with a consequent increase 

in gas yield and formation of coke on the catalyst [14]. Achilias et al. [12] carried out two-stage 

pyrolysis of model and waste polymers including high-density polyethylene (HDPE), low-

density polyethylene (LDPE) and polypropylene (PP), with the pyrolysis and catalyst bed at 

temperature of 450 ºC. Using acidic zeolite, the authors obtained low gas yield for catalytic 

pyrolysis of the model plastics (0.5 wt%) but much higher gas yields (8.5 wt%) from waste 

plastics. The oil products were however dominated by long-chain (C15+) alkanes, which was 

attributed to the low pyrolysis temperature but could also be due to poor catalytic activity of 

the acidic FCC. In the work of Uemichi et al. [17], HDPE was pyrolyzed in a two-stage system 

over silica-alumina and ZSM-5 catalysts at 400 ºC. The authors reported that pyrolysis over 

sequential layers of the two catalysts produced oils with improved fuel properties, however, 

the aromatic contents were low.  

Catalytic reactions during pyrolysis are considerably more important for the conversion of 

degradation products into fuel-range liquid products than for the initial polymer degradation 

process. In addition, catalytic activities can be influenced by the catalyst bed temperatures and 

catalyst types. Therefore, further research is needed to understand the influence of bed 
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temperatures and some properties of different cracking catalysts on pyrolysis reactions in a 

two-stage process for plastics conversion. The investigation with catalysts was centred on the 

effect of the silica/alumina ratios and surface areas of the catalysts on the yields and 

compositions of liquid products. Four different cracking catalysts, including spent FCC 

catalyst, two zeolite Y catalysts and one ZSM-5 catalyst have been used. The catalysts were 

selected so that two (FCC and one zeolite Y) have lower Si/Al ratio (more acidic) than the other 

two (another zeolite Y and ZSM-5). In addition, the catalysts have different surface areas. The 

application of spent FCC catalyst, which is classified as a problematic hazardous material, in a 

secondary process such as plastic pyrolysis has environmental and sustainability benefits. 

Otherwise, it is being discarded due increasing demand for light and high-quality transportation 

fuels as well as the changes in petroleum feedstock [13, 19]. To improve the relevance of this 

present study to real-world plastic waste streams, the sample of plastic used was modelled 

according to the composition of waste plastics in future municipal solid waste (MSW) 

generation in Europe reported by Delgado et al. [18].  

 

2.0 Experimental 

2.1 Materials 

The five plastics samples used to prepared the mixture in this work are as follows; high-density 

polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene 

(PS), polyethylene terephthalate (PET). These plastics are the main components of household  

waste plastic mix and their proportions are based on the work reported by Delgado et al. [18].  

The proportion of each was as follows; PE 62.0% (HDPE 19.0% and LDPE 43.0%), PP (8.0%), 

PS (15.0%) and PET (15.0%).  The simulated plastic is hereby denoted as SMP waste. Each 

batch of 2 g feed was directly prepared from the stated proportions of each plastic to ensure 

uniformity. In addition, commercially available zeolite-based cracking catalysts were obtained 

from Sigma-Aldrich UK, while the spent FCC was obtained from MOL - a multinational 

petroleum refinery in Hungary. Table 1 shows some characteristics of the fresh catalysts. The 

two Y- zeolite catalysts have different silica-alumina ratio and surface area, but ZY-2 has the 

same silica-alumina ratio (80:1) with the ZSM-5 catalyst. 

 

 The pyrolysis-catalysis experiments were carried out in a reactor system consisting of a two-

stage fixed bed reactor with oil condensers and gas collection sample bag (Figure 1). The 

pyrolysis reactor was a stainless steel fixed bed reactor of 480 mm length with an internal 

diameter of 40 mm and was electrically heated by two separately controlled 1.5 kW tube 

furnaces [20]. High purity dichloromethane (DCM), also purchased from Sigma-Aldrich was 

used to prepare the pyrolysis liquid products for further analysis by gas chromatography.  
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2.2 Methods 

For each experiment, the 2 g of plastic was loaded on to the top reactor bed, while the catalysts 

were loaded on the bottom bed, supported by glass wool. Each 2 g of catalyst was thoroughly 

mixed with 2 g of pre-cleaned and calcined quartz sand as support. In the absence of catalyst, 

4 g of quartz sand was loaded on the catalyst reactor as control (thermal) experiment. The entire 

reactor system was continuously flushed with nitrogen gas (1 barg , ≈ 20 ºC) at a flow rate of 

20 ml min-1 to provide an inert environment and serve as carrier for pyrolysis vapours. To begin 

the process, the catalyst bed was first heated to the desired temperature. Thereafter, the top 

reactor holding the plastics was heated at 10 ºC min−1 from room temperature to 500 ºC; the 

sample was held at 500 ºC for 30 min. The evolved pyrolysis volatiles passed directly to the 

pre-heated catalyst bed held at 500 ºC or 600 ºC to investigate the influence of catalyst bed 

temperatures on pyrolysis yields and composition. The vapour exiting the catalyst bed passed 

through a condenser system consisting of three dry-ice-cooled condensers. The last condenser 

was connected to a pre-weighed Tedlar gas sample bag for collection of non-condensable 

gases. After 30 min of pyrolysis at 500 ºC, heating of both reactors were turned off but gas 

collection continued for another 30 min. At the end of the experiment, the condensers were 

immediately sealed to prevent evaporation of highly volatile products and weighed.  

 

2.3. Analysis of products 

The Tedlar bag was sealed and re-weighed to determine the total mass of gas collected. Then 

the gas content of the bag was analysed off-line with a system of Varian CP-330 gas 

chromatographs [20-21]. Briefly, the gas samples were analysed using three packed column 

gas chromatographs using standard gas mixtures as external standards. The permanent gases, 

hydrogen, nitrogen and carbon monoxide were separated on a 2m length by 2 mm diameter 60 

– 80 mesh molecular sieve column, feeding into a thermal conductivity detector (TCD) for 

quantification. Hydrocarbon gases (C1 to C4) were analysed using a 2 m length by 2 mm 

diameter Haysep 80 – 100  mesh column and quantified with a flame ionization detector (FID), 

while carbon dioxide was analysed using a similar Haysep column fitted to a TCD. Details of 

the chromatographic conditions have been published earlier [21]. Sample injection volumes 

were adjusted accordingly for analysis within the linear working range of the gas 

chromatographs. GC results gas volume percentages of the gas components, and assuming 

ideal gas behaviour, these were equated to mole percentages. The mole percentage of each gas 

was used to multiply its molecular weight to get a mass value. The mass values were used to 

compute mass fractions of the gas components (including the N2 carrier gas). Finally, the mass 

fractions were used to multiply the total mass of gas collected in the Tedlar bag to determine 
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the mass of each component. The weight percentage of each product gas was then calculated 

in relation to the plastic feed using Equation 1 (see section 3.1).  

 

2.4. Oil product analysis 

In order to carry out quantitative analysis of the oil, each oil product was recovered from the 

condensers using DCM solvent. After the oil recovery, the volume of the each sampled oil was 

made up to 10 mL with more DCM in a glass vial, sealed and quickly stored in a freezer to 

minimize volatile losses. Using the same volume of oil solution made it easy to compare oil 

yields via peak area percentages. Each oil sample was analysed on the day of the pyrolysis 

experiment as a standard procedure to ensure consistency and the integrity of the oils. The first 

oil produced was qualitatively analysed to identify the major compounds present, using a 

GC/MS system consisting of a Varian 3800-GC coupled to a Varian Saturn 2200 ion trap 

MS/MS equipment. The column used was a 30 m x 0.25 mm inner diameter Varian VF-5ms 

(DB-5 equivalent), while the carrier gas was helium, at a constant flow rate of 1 ml min-1 [19]. 

The identified compounds were used as basis for the analytical standards used for quantitation 

by external standard method on a different GC. Standard mixtures of aromatic, polycyclic 

aromatic compounds and aliphatic hydrocarbons (C5 –C40) were obtained from Sigma 

Aldrich, UK. Thereafter, each oil sample was quantitatively analysed by liquid injection into a 

Varian 430 GC with flame ionization detector (FID), equipped with a split/split less injection 

port. The analysis was carried out on a ZB-1 capillary column (30 m × 0.53 mm i.d., 0.5 ȝm), 
with 100% dimethyl siloxane as liquid stationary phase. Nitrogen was used as carrier gas with 

a constant flow of 1.0 mL min-1. The sample injection volume was 2.0 ȝL. The column was 
temperature programmed from 40 to 310 ºC at 5 ºC min–1 heating rate.  

 

3.0. Results and Discussions 

The results of the pyrolysis-catalysis of the simulated mixed plastic (SMP) waste are presented 

in this section with relation to catalyst bed temperatures of 500 ºC and 600 ºC. An initial work 

with catalyst bed temperature of 400 ºC led to deposition of melted plastic on the catalyst bed 

with no real improvements in the fuel-range compounds in the liquid products. So based on the 

preliminary work, higher catalyst bed temperatures are reported in this present study.   

 

3.1. Product Yields 

Figure 1 shows the product yields from the pyrolysis and pyrolysis-catalysis of the simulated 

mixed plastic at different catalyst bed temperatures of 500 ºC and 600 ºC, while the pyrolysis 

temperature was 500 ºC.  
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The product yields were calculated from equations 1 – 3 as follows; 

Ψሻ ݐݓሺ ݈݀݁݅ݕ ݏܽܩ  ൌ σ௠௔௦௦ ௢௙ ௚௔௦ ௖௢௠௣௢௡௘௡௧௦ ௣௥௢ௗ௨௖௘ௗ ௫ ଵ଴଴௠௔௦௦ ௢௙ ௣௟௔௦௧௜௖ ௙௘௘ௗ ௨௦௘ௗ   ……………………. Eq. 1. 

Ψሻ ݐݓሺ ݈݀݁݅ݕ ݈ܱ݅  ൌ ௠௔௦௦ ௢௙ ௢௜௟ ௣௥௢ௗ௨௖௘ௗ ௫ ଵ଴଴௠௔௦௦ ௢௙ ௣௟௔௦௧௜௖ ௙௘௘ௗ ௨௦௘ௗ  …………………………………….. Eq. 2. 

Ψሻ ݐݓሺ ݈݀݁݅ݕ ݎ݄ܽܥ  ൌ ௠௔௦௦ ௢௙ ௖௛௔௥ ௣௥௢ௗ௨௖௘ௗ ௫ ଵ଴଴௠௔௦௦ ௢௙ ௣௟௔௦௧௜௖ ௙௘௘ௗ ௨௦௘ௗ  ………………………………… Eq. 3. 

 

The results termed ‘thermal’ refer to when only the quartz sand was the bed material i.e. no 

added zeolite catalyst. For all the tests, increase in catalyst bed temperature led to increase in 

gas yields while oil yields decreased as shown in Figure 2. Char yields decreased only slightly 

from about 3.5 wt% to about 3 wt% for all catalysts, indicating that the main transformations 

observed were due to the catalytic reactions of the oil fractions. For example, in the experiment 

with quartz sand alone, gas yield increased 3-fold from 10.3 wt% to 29.8 wt% as the quartz 

bed temperature was increased from 500 ºC to 600 ºC. With the spent FCC catalyst, it could be 

seen that  that the catalyst led to a 60% increase in gas yield only at 500 ºC compared to the 

quartz sand experiment, but at 600 ºC gas yields from both the tests were similar at 

approximately 30 wt%. This may indicate that for both tests, temperature has the higher 

influence on gas production than the presence of FCC catalyst. In essence, both the quartz sand 

and the spent FCC catalyst gave a similar influence on gas yields. With the fresh catalysts, gas 

yields increased by at least 80% compared to the test with quartz sand alone at 500 ºC, with 

gas yield increasing by 150% with the ZY-1 catalyst. 

On increasing the bed temperature to 600 ºC, gas yields increased significantly by 1.5 and 1.8 

times with the ZY-1 and ZS-1 catalysts, respectively. The gas yield from using ZY-2 catalyst 

was very similar to those from both the spent FCC catalyst and the quartz sand tests at 600 ºC. 

The increase in gas yield with an increase in catalyst bed temperature has been reported in 

literature [11, 14] and it is clear the main factor for the observed changes was the bed 

temperature more than the bed materials. With bed temperature of 500 ºC, oil yields were 

greater than 70 wt% for all experiments, with the highest oil yield of 79 wt% obtained from the 

quartz sand test. 

However, at 600 ºC, oil yields ranged from 45 wt% to nearly 70 wt%. Again, the quartz sand 

test and catalytic tests with spent FCC and the ZY-2 catalysts gave the highest oil yields with 

similar values of  68 – 69 wt%. The yields of oil from the quartz sand test and with the ZY-2 

catalyst decreased similarly by nearly 13%, while oil yield obtained from the use of spent FCC 
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catalyst only decreased by 3.5 wt% when  compared to the corresponding oil yields at 500 ºC. 

The ZY-1 and ZS-1 catalysts led to more dramatic reduction in oil yields by 24% and 37%, 

respectively compared to yields obtained at 500 ºC. Indeed, with the ZY-1 catalyst nearly equal 

wt% yields of gas and oil products where obtained but in the presence of ZS-1 catalyst, gas 

yields surpassed oil yield by 8 wt%. These results show that under the same temperature 

conditions, the catalysts have varied activities towards the reforming of the pyrolysis vapours 

via catalytic reactions. Detailed analysis of the gas and oils products would help clarify how 

the catalysts influenced the relevant reactions.  

 

3.2 Gas composition 

Table 2 shows the volume percentage (nitrogen-free) of components in the gas products from 

the pyrolysis and pyrolysis-catalysis of SMP using different catalysts at 500 and 600 ºC bed 

temperatures. All the gas products obtained from these tests consisted of hydrogen, light 

hydrocarbon gases, carbon monoxide and carbon dioxide. Clearly, the formation of carbon 

dioxide and carbon monoxide must have originated from the pyrolysis of PET in the SMP. 

In all cases, the volume percent of carbon dioxide in the gas products decreased with increasing 

catalyst bed temperatures, which may indicate that decarboxylation of PET occurred much 

more readily at 500 ºC bed temperature than the formation of hydrocarbon gases. Therefore, at 

600 ºC, when more hydrogen and hydrocarbon gases was favoured, the volume percent of CO2 

decreased in the product gases.  In general, the gas products contained higher percentage 

volumes of alkenes compared to alkanes at both bed temperatures; the only exception being 

ZY-1 catalyst at 600 ºC, where the total volume percent of alkane gases was higher. Although, 

catalytic cracking of long-chain hydrocarbons are known to result in more alkanes than alkenes, 

however, with polyolefin-rich feedstock, alkene gases are known to dominate the gas products, 

with cracking of primary pyrolysis products occuring alongside dehydrogenation [22]. The ZY-

1 catalyst, at this temperature also produced the highest volume percent of hydrogen gas 

compared to other catalysts or reaction conditions, which may indicate the promotion of 

dehydrogenation. This inference may become clearer when the composition of the oil products 

are examined in section 3.3.  

Thus, the gas yield were further enhanced with the introduction of the catalyst so that at 500 

ºC bed temperature, the FCC catalyst (Si/Al = 16.4) with strong acidic sites but lowest surface 

area produced the highest yield of C2-C4 hydrocarbons (89.8 vol.%). The two Y-zeolite 

catalysts with high surface areas but very different Si/Al ratios produced the lowest yields of 

C2-C4 (72.4 vol.% and 74.4 vol%, respectively) and the highest hydrogen yields. However, ZS-

1 with similar basic strength as ZY-2 produced a higher yield of C2-C4 hydrocarbons and lower 

H2 and CH4 compared to the Y-zeolite catalysts.  Lin and  Yang [13], reported C1-C4 
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hydrocarbon distribution from spent FCC catalyzed the conversion of commingled polymer 

over a temperature range of 340 - 460 °C. The authors observed an increase in C2-C4 

hydrocarbon of 18.2% to 28.7%, with the rise in pyrolysis temperature but methane and ethane 

were detected only at the higher temperatures. Huang et al. [6] also observed a similar change 

in the hydrocarbon yield with temperature for different catalysts.  

Table 2 also shows that the calorific values (in MJ m-3) of the gas products increased generally 

with the introduction of the catalysts at both bed tempeartures.  

The higher heating values (HHV) of the gas products which was calculated by equation 4; ܸܪܪ ሺMJ ݉ିଷሻ ൌ σ ሺݔ௜Ǥ ܪܪ ௜ܸሻ௡௜ୀଵ  ………………………………………………..Eq. 4. 

where;  
i …n = each combustible component in the gas product 

x = volume fraction of combustible component in gas product ܪܪ ௜ܸ= calorific value of combustible gas component in MJ m-3 

However, the increase in calorific values became more drammatic with the catalysts at a bed 

tempearture of 600 ºC, with the strongly acidic and high surface area ZY-1 giving a gas with 

the highest calorific value of 48.8 MJ m-3, which is more than twice the calorific values of the 

gas products from the thermal, spent FCC and ZY-2 experiments at the same tempearture.  This 

can be explained from the composition of the gas products, which shows that the ZY-1 

produced the highest vol% of hydrogen (a high CV gas). Indeed, ZY-1 produced nearly three 

times the vol% of hydrogen compared to the other conditions at 600 ºC.  

 

Figure 3 shows the wt% yield of the gas components in relation to catalysts and different bed 

temperatures. The wt.% results in Figure 3 correspond to the vol.% results in Table 2, however 

they give a clearer picture of the gas yields in relation to the mass of plastic feed. Clearly, the 

C3 and C4 hydrocarbons, along with carbon dioxide (from pyrolysis of PET) were the dominant 

gases at the catalyst bed temperature of 500 ºC, with propene giving the highest yield.  

As catalyst bed temperature was increased to 600 °C, there was a corresponding increase in the 

yields of all gases. The profiles of the carbon oxides show that, in the presence of the fresh 

zeolite catalysts, more CO was obtained at 600 ºC compared to 500 ºC; the experiments with 

quartz and spent FCC however, produced more CO2 at the higher temperature. The quartz bed 

and strongly acidic catalysts seemed to favour the production of hydrocarbon gases at this 

temperature, while the basic catalysts (ZY-2 and ZS-1) favoured increased yields of CO and 

CO2 gases. For the basic catalysts, the CO yields increased by a factor of about ten at 600 ºC 

while CO2 yields reduced slightly at the higher temperature, compared to the results with the 
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same catalysts at 500 ºC. This could be explained by the reduction of CO2 on the catalysts 

surface via Boudouard reaction. Figure 3 also confirms that ZY-1 produced the highest yield 

of hydrogen (1.19 wt.%) compared to the other experiments.  

 

3.3. Composition of oil products 

The oil products were categorized using data from GC/FID analysis into fuel range (C5 – C15) 

and high molecular weight (C16+) compounds. The distribution of the fuel range and high 

molecular weight compounds for SMP pyrolyzed using different catalysts at 500˚C or 600˚C 
catalyst bed temperature is shown in Figure 4. The data were evaluated on the basis of 

percentage peak area of the major components observed from the GC chromatograms. This 

was possible because the oil products were prepared in the same volume of solvent 

(dichloromethane) prior to analysis and the same injection volume used each time. The 

compounds were identified by comparing their retention times to those of compounds in the 

standards.  

Production of fuel range hydrocarbons increased with catalysts introduction from 62.9 to 85.1 

% at 500 ºC, with the spent FCC giving similar yields as the fresh zeolite catalysts. The more 

basic ZY-2 catalyst gave the highest fuel range hydrocarbons yield (85.1%) compared ZS-1 

with the same Si/Al ratio (80). The difference between the yields from the two basic catalysts 

may be their different surface areas and pore structures. Thus, comparatively a general trend 

was observed that showed that fuel range hydrocarbons increased in the presence of the 

catalysts at 500 ºC catalyst bed temperatures. Apart from the spent FCC, fuel range 

hydrocarbons increased at 600 ºC for all the zeolite catalysts and for the thermal run. Although, 

the overall oil yields decreased at the higher temperature compared to 500 ºC, the fuel 

properties improved with the content of fuel range compounds. 

Figure 5 shows the distribution (based on GC analysis) of the hydrocarbons into aliphatic and 

aromatic compounds in the oil products from the pyrolysis process of SMP at the two catalyst 

bed temperatures. In general, the aliphatic compounds dominated the oils at 500 ºC and much 

of 600 ºC, except for the strongly acidic ZY-1, which produced much higher aromatics content. 

The relative contents of the aliphatic and aromatic compounds in the oil product was clearly 

influenced by both the catalyst type and bed temperature. At 500 ºC, the spent FCC with 

medium acidic property (due to its low silica and alumina ratio), appears to compete favourably 

with other fresh zeolite catalysts recording higher (36.2%) aromatic yield than ZY-2 (33.7%) 

with higher Si/Al ratio and low acid catalytic sites. Apart from ZY-1, a change in temperature 

from 500 ºC to 600 ºC appeared to be responsible for the change in the distribution of the total 

aliphatic and hydrocarbon compounds in the oil products.  ZY-1 with the strongest acidic 

catalytic site gave highest aromatic yields at both bed temperatures (47.1% and 61.4%, 
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respectively for 500 °C and 600 °C). For instance, the yield of aromatics from ZY-1 could be 

linked to the composition of the gas products obtained from the same catalysts. As presented 

in Figure 3, ZY-1 produced the highest yields of hydrogen gas in the gas product at both catalyst 

bed temperatures, which indicates that the catalyst promoted higher rates of dehydrogenation. 

Clearly, dehydrogenation would have led to aromatization and therefore the formation of 

aromatic compounds.  

At higher bed temperature 600 °C, spent FCC recorded similar aromatic yield (38.8%) as the 

zeolite ZY-2 (39.8%) and the ZS-1 (41.1%) but these yields were marginally higher for these 

catalysts compared to the those at 500 ºC.  The results showed that temperature was more 

effective than the catalyst type to alter the composition of the oil products for the other four 

experiments except for the ZY-1 catalyst. Therefore, irrespective of the large difference in 

Si/Al ratio between the FCC, ZY-2 and ZS, they gave aromatic yields similar to the quartz bed. 

It has been suggested that during the pyrolysis of polyolefins, ZSM-5 catalysts lead the 

reactions through an end-chain scission pathway, yielding light hydrocarbons as primary 

products, instead of the typical polyolefin random scission pathway that takes place in thermal 

pyrolysis [22-25]. 

 

3.4. Composition of light aromatic compounds in oil products 

Due to the higher yields of aromatic compounds observed in these experiments, it became 

important to present a detailed compositional analysis of the components. Figure 6 shows the 

chromatograms of the oils products from pyrolysis of the SMP sample with quartz sand alone 

and in the presence of the strongly acidic ZY-1 catalyst at 500 ºC. The chromatograms have 

been obtained from a GC programme developed for the analysis of aromatic hydrocarbons 

(hence no aliphatic compounds are labelled but their peaks can be seen). Clearly, the size of 

the peaks indicate the changes in the yields of, especially the low molecular weight aromatic 

compound such as benzene, toluene and xylenes (BTX) range of hydrocarbons, in relation to 

the different catalyst bed materials.  BTX aromatic hydrocarbons are important components of 

gasoline fuel and are high-value chemical feedstock for the manufacture of medicines and 

household items. The composition of BTX chemicals in pyrolysis oils from polyolefin plastics 

have been shown to be promoted by the presence of zeolite catalyst with strong acidic sites 

[26]. 

Figure 7 shows the peak area percent of some aromatic hydrocarbons (BTX, styrene and 

naphthalenes) in the oil products in relation to catalyst type and bed temperature. With quartz 

alone, styrene was the dominant aromatic compound in the oil products obtained at both bed 

temperatures. However, its yield appeared to decrease from 21% at 500 ºC to 17% for 600 ºC 

catalyst/sand cracking temperature. The presence of styrene is often due to the polystyrene 
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content in the plastic feed. During the non-catalytic pyrolysis of polystyrene, Williams et al. 

[22] reported a high mass yield for styrene of 53% at 500 ºC, which decreased to 34% at a 

higher upgrading temperature of 700 ºC. The authors explained the reduction of styrene as well 

as styrene dimer and trimer to be via the intermolecular transfer followed by ȕ-scission leading 

to the production of new radical and alkene. 

Literature shows that the pyrolysis of polyolefins can obtain oils with high aromatic 

concentration; and a large number of researchers have proposed formation mechanism to be 

based on Diels-Alder reaction of alkenes [22, 26-28]. In addition, other authors suggested that 

the Diels-Alder reactions are accompanied by dehydrogenation and unimolecular cyclization 

followed by dehydrogenation [23-25], which is facilitated by the higher alkene content in the 

catalytic pyrolysis products of polyolefins [27].  

 

In this work, the influence of the various catalysts used can be better evaluated from the yields 

and composition of aromatic compounds in the oil product. In the test with quartz sand, styrene 

remained the dominant aromatic compound at both bed temperatures. However, the yields of 

toluene, benzene, ethylbenzene and naphthalene increased marginally while xylenes almost 

completely disappeared as the bed temperature was increased from 500 to 600 ºC. For the FCC 

catalyst, ethylbenzene formation was promoted over the other aromatic compounds at 500 ºC, 

including styrene; but at 600 ºC, the production of both benzene and toluene increased 

considerably. Other catalysts also showed modest increases in benzene and toluene yield, 

however the strongly acidic ZY-1 was the optimum catalyst for the production of low 

molecular weight aromatic compounds. ZY-1 gave nearly equal yields of benzene and toluene 

(about 12 peak area %) as the dominant aromatics produced at a temperature of 500 ºC. The 

total yield of these two compounds was more than 90% of all the aromatic compounds at 600 

ºC with the strongly acidic catalyst.  These results for ZY-1, which shows the near complete 

disappearance of styrene, suggest that a significant percentage of the other aromatic compounds 

may have originated from styrene.  

 

  

 

However, for this ZY-1 catalyst, the yields of aromatic hydrocarbons were consistently higher 

than those of the other catalysts and the quartz sand. This may indicate that the formation of 

BTX aromatic compounds was not entirely due to the conversion of styrene via hydrogenation, 

demethylation and dealkylation. Therefore, the formation of BTX hydrocarbons would have 

resulted mainly from both the styrene and alkene routes as depicted in Figure 8. This agrees 
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with the work of other authors [21, 26, 28, 29], who suggested formation of aromatic 

compounds via Diels-Alder reactions of the alkenes produced during the pyrolysis of 

polyolefins, followed by aromatization via dehydrogenation, promoted by the catalysts 

(especially ZY-1) and delocalization stability of aromatic rings.  

 

4.0. Conclusions 

The influence of catalyst bed temperature and type of zeolite catalysts (based Si/Al ratio and 

surface area) on pyrolysis of a simulated mixed plastic (SMP) sample have been investigated 

for the production of valuable liquid fuels and chemical feedstock. Higher catalyst bed 

temperature led to increased gas production, particularly C2-C4 hydrocarbons, while ZY-1 

produced the highest hydrogen gas yield (from dehydrogenation). All the catalysts caused a 

reduction in oil yields and an increase in gas yields, particularly more so at 600 ºC bed 

temperature.  The contents of low molecular weight aromatic compounds in the oil products 

increased with temperature, an indication of improved gasoline-type fuel quality. ZY-1 

produced the highest yields of the aromatic compounds at both pyrolysis temperatures; indeed 

at 600 ºC, the benzene and toluene accounted for more than 90% of the aromatic content of the 

oil from the experiment involving ZY-1 catalyst.  Hence, results showed that ZY-1 could be 

used to obtain high yields of valuable aromatic chemical feedstocks from polyolefin plastic 

wastes. The formation of the aromatic compounds involved Diels-Alder reactions but arguably, 

there was a major contribution from styrene, which appeared to be a primary aromatic 

compound during the pyrolysis process (mainly from the polystyrene fraction of SMP). Styrene 

conversion to other aromatics could be via hydrogenation, dealkylation and methylation.    
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  Table 1: Some characteristics of catalysts used in this work 

Catalyst properties FCC ZY-1 ZY-2 ZS-1 

Zeolite Structure 
FCC-

Zeolite 
Y-Zeolite Y-Zeolite ZSM-5 

Surface area (m 2 g-1) 148 935 888 467 

Si/Al ratio 16.4:1 5.2:1 80:1 80:1 

Cation - NH4+ H+ NH4+ 

Na2O (%) 0.14 2.93 0.02 0.00 

Micropore volume (cm 3 g-

1) 
0.032 0.340 0.315 0.204 

Mesopore volume (cm 3 g-

1) 
- 0.040 0.221 0.117 

Pore radius (Å) - 7.62 7.047 7.50 
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Table 2. Volume of gas components in gas product from thermal and catalytic pyrolysis 

of SMP with different catalyst type and at different bed temperatures 

  Quartz Sand 
Quartz Sand  
+ FCC 

Quartz Sand  
+ ZY-1 

Quartz Sand  
+ ZY-2 

Quartz Sand 
+ ZS-1 

 Catalyst bed temperature (°C)  

Gas (vol %) 500  600  500  600 500 600  500  600  500  600  

H2 4.55 10.6 5.47 9.91 22.2 31.8 15.7 12.6 14.3 9.46 

CH4 8.72 15.4 4.72 14.6 9.97 16.7 5.27 10.7 6.38 7.44 

C2H4 12.8 23.1 9.08 17.7 9.96 8.80 9.81 8.98 11.9 21.7 

C2H6 6.14 6.82 2.94 5.88 4.82 6.41 3.06 3.63 3.00 3.40 

C3H6  11.4 11.8 20.3 14.3 17.9 10.7 16.1 18.5 19.3 17.1 

C3H8 5.70 5.91 10.2 7.13 8.93 5.36 8.06 9.26 9.71 8.53 

C4H8 6.21 4.55 13.1 5.72 12.6 5.56 7.35 4.15 9.37 4.64 

C4H10 4.18 3.74 7.09 4.64 4.67 7.65 5.01 2.61 6.73 4.51 

CO 14.8 8.92 10.9 7.75 5.82 4.49 7.80 23.6 6.32 19.7 

CO2 25.5 9.17 16.2 12.5 9.66 2.49 15.2 5.93 12.9 3.55 

∑ alkanes 24.7 31.9 24.9 32.3 28.4 36.1 21.4 26.2 25.8 23.9 

∑ alkenes 30.4 39.5 42.5 37.7 40.4 25.1 33.3 31.7 40.7 43.4 

HHV (MJ m-3) 5.18 21.9 10.1 21.8 20.9 48.8 16.5 22.6 13.7 36.7 

 

 

 

 


