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Abstract  32 

The stringent response is a conserved bacterial stress response mechanism that allows bacteria 33 

to respond to nutritional challenges. It is mediated by the alarmones pppGpp and ppGpp, 34 

nucleotides that are synthesised and hydrolysed by members of the RSH superfamily. Whilst 35 

there are key differences in the binding targets for (p)ppGpp between Gram-negative and 36 

Gram-positive bacterial species, the transient accumulation of (p)ppGpp caused by nutritional 37 

stresses results in a global change in gene expression in all species. The RSH superfamily of 38 

enzymes is ubiquitous throughout the bacterial kingdom, and can be split into three main 39 

groups: the long-RSH enzymes; the small alarmone synthetases (SAS); and the small alarmone 40 

hydrolases (SAH). Despite the prevalence of these enzymes, there are however, important 41 

differences in the way in which they are regulated on a transcriptional and post-translational 42 

level. Here we provide an overview of the diverse regulatory mechanisms that are involved in 43 

governing this crucial signalling network. Understanding how the RSH superfamily members 44 

are regulated gives insights to the varied important biological roles for this signalling pathway 45 

across the bacteria.   46 
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INTRODUCTION 47 

Bacteria have evolved numerous strategies to cope with environmental stress, including the use 48 

of nucleotide signalling pathways to ensure a rapid cellular response. The stringent response is 49 

one such signalling pathway, utilised by the vast majority of bacterial species to deal with 50 

nutritional deficiencies. The effectors of this signalling pathway are the alarmone nucleotides 51 

guanosine tetra- and pentaphosphate, collectively termed (p)ppGpp. (p)ppGpp is produced 52 

from ATP and either GTP (pppGpp) or GDP (ppGpp) by the action of synthetase enzymes 53 

containing a SYNTH domain (PF04607), and is degraded to GTP/GDP and pyrophosphate 54 

(PPi) by hydrolase domain (HD)-containing enzymes (PF13328). These enzymes are all 55 

members of the RSH superfamily (RelA/SpoT homologue), so named after the RelA and SpoT 56 

enzymes in Escherichia coli where these nucleotides were first discovered [1]. 57 

There are three main groups of enzymes in the RSH superfamily that are responsible 58 

for the controlling the cellular levels of these alarmones: long-RSH enzymes; small alarmone 59 

synthetases (SAS); and small alarmone hydrolases (SAH) (Fig. 1) [2]. Long-RSH proteins 60 

typically have a hydrolase and synthetase domain in their N-terminal domain (NTD), and a 61 

regulatory C-terminal domain (CTD) comprised of TGS (ThrRS, GTPase and SpoT: PF02824), 62 

helical, CC (conserved cysteine), and ACT (aspartate kinase, chorismate and TyrA: PF13291) 63 

domains. Recent cryo-electron microscopy images of RelA from E. coli (RelAEc) in complex 64 

with the ribosome however, suggest that the ACT domain fold is actually more similar to an 65 

RNA recognition motif (RRM), and also show an unpredicted zinc finger domain (ZFD) lying 66 

upstream of the ACT/RRM domain (Fig. 1a) [3-5]. 67 

Gram-negative bacteria, like E. coli, generally contain two long-RSH synthetases 68 

(RelAEc and SpoTEc), which are homologous enzymes believed to have arisen following a gene 69 

duplication event (Fig. 2) [6]. The hydrolysis domain of RelAEc is inactive due to the absence 70 

of a conserved HDXXED motif in the active site, making it monofunctional [7]. SpoTEc, on 71 

the other hand, is bifunctional containing both active synthetase and hydrolase domains. The 72 

presence of functional SAS or SAH proteins in Gram-negative bacteria is relatively rare, 73 

although there is a conserved SAS, RelV, in the Vibrio genus (Fig. 2) [8]. Gram-positive 74 

bacteria in the Firmicutes phylum, such as Streptococcus mutans [9], Bacillus subtilis [10, 11], 75 

and Staphylococcus aureus [12], typically contain one long bifunctional RSH protein, and two 76 

SAS proteins, RelP and RelQ, that contain synthetase domains only (Fig. 2). The long-RSH 77 

enzymes in the Firmicutes have been referred to as both Rel and Rsh in the literature, but we 78 

will stick with the Rel nomenclature for the purposes of this review. SAH proteins such as 79 

Mesh-1 have been identified in eukaryotes, including humans and fruit flies. The function of 80 
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these enzymes is ambiguous given the lack of synthetase enzymes in these organisms [2, 13]. 81 

SAH enzymes have also been predicted in many bacterial clades, such as the Firmicutes, but 82 

whether or not these are functional hydrolases has not been investigated [2]. The majority of 83 

bacterial species contain at least one protein from the RSH superfamily, with the exception of 84 

those in the PVC (Planctomycetes, Verrucomicrobia and Chlamydiae) superphylum, and those 85 

that inhabit stable microenvironments [2]. Whilst an analysis of 928 complete bacterial genome 86 

sequences revealed that 92% contain genes encoding for a long-RSH, only 44% of those encode 87 

for long-RSH proteins without additional SAS or SAH encoding genes [2]. This highlights that 88 

E. coli, which contains two long-RSH enzymes and no SAS/SAH proteins, should not be used 89 

as the sole model organism for characterising the stringent response in bacteria.  90 

Upon activation of the stringent response, characteristic changes occur within the cell, 91 

with an increase in the (p)ppGpp pool, and a concurrent decrease in GTP levels [14]. This leads 92 

to a decrease in the overall levels of cellular transcription, specifically of genes involved in the 93 

biosynthesis of macromolecules, such as phospholipids, ribosomes and amino acids, until 94 

conditions become more favourable [14]. Together these changes contribute to the slow growth 95 

phenotype associated with the stringent response, which has now been linked to many bacterial 96 

functions such as environmental adaptation, persister formation, virulence, motility, cell 97 

division, biofilm formation and development (reviewed by [15]). The mechanisms by which 98 

(p)ppGpp alter cellular physiology once synthesised has recently been reviewed and will not 99 

be covered here [15-17]. 100 

Bacteria inhabit a diverse range of niches and it follows that a diverse range of 101 

environmental cues should trigger the stringent response. As with most aspects of this 102 

signalling pathway, more is known about the conditions that trigger it in Gram-negatives than 103 

in Gram-positive species. Indeed, the ‘magic spots’ of (p)ppGpp themselves were discovered 104 

when investigating the effects of amino acid starvation on E. coli cells [1]. Since then it has 105 

become clear that different organisms encode various combinations of RSH superfamily 106 

proteins that are also regulated differently. When discussing induction of the stringent response 107 

it is important to remember that (p)ppGpp accumulation can occur through different routes 108 

upon detection of a stress: increased transcription from the synthetase genes; increased activity 109 

of the synthetase domains, and/or reduced activity of hydrolase domains. These regulation 110 

points of synthetase activity will often work in unison to ensure rapid adaptation when needed 111 

and are the focuses of this review. 112 

 113 

TRANSCRIPTIONAL REGULATION OF THE SYNTHETASE GENES 114 



5 
 

Long-RSH genes 115 

In E. coli the long-RSH gene relAEc is under the control of four promoters, two ı70-dependent 116 

promoters, relAP1 and relAP2, as well as the more recently discovered ı54-dependent P3 and 117 

P4 promoters (Fig. 3) [18-20]. Transcription from relAP1 is constitutive throughout growth, 118 

and activity depends on an UP-element located 40 bp upstream of the start site [19]. relAP2 is 119 

located distally to relAP1 and transcription is induced at the transition from exponential to 120 

stationary phases [19]. This induction is regulated by CRP, H-NS and RpoS, implicating 121 

RelAEc in responding to carbon, temperature and osmotic stresses [18, 19]. Transcription from 122 

relAP3 and relAP4 is activated by ı54 under nitrogen-starved conditions [20]. During nitrogen 123 

starvation, transcription of relAEc is induced in an NtrC-dependent manner with the sensor 124 

kinase NtrB phosphorylating the response regulator NtrC, allowing it to bind enhancer-like 125 

elements upstream of the transcription start site and activate transcription from the ı54-RNAP 126 

complex (Fig. 3) [20, 21]. Interestingly, RNAP binds to the promoter element of spoTEc less 127 

efficiently during nitrogen starvation, presumably allowing for quicker accumulation of 128 

(p)ppGpp without the hydrolase activity of SpoTEc [20]. NtrC is considered to be the master 129 

regulator of the nitrogen starvation response and its coupling with the stringent response 130 

highlights the intricacies of bacterial transcriptional regulation.  131 

Additional levels of transcriptional regulation of relAEc occur through HipB and 6S 132 

RNA. Transcription is negatively regulated by HipB, the anti-toxin component of the type II 133 

toxin-antitoxin module HipAB that is involved in persister formation in E. coli [22, 23]. HipB 134 

binds to a palindromic sequence upstream of the P3 promoter, binding that is potentiated by 135 

HipA (Fig. 3). 6S RNA is a small non-coding RNA that downregulates transcription by ı70-136 

RNAP through direct binding of the holoenzyme [24]. In cells without 6S RNA, transcription 137 

of relAEc is slightly increased compared to wildtype during early stationary phase, however this 138 

is enough to increase cellular ppGpp levels, leading to characteristic stringent response-related 139 

changes in transcriptional profile [25]. Neusser et al. also observe this ppGpp accumulation in 140 

strains lacking 6S RNA, but both in the presence and absence of RelAEc, suggesting SpoTEc 141 

involvement [26].  142 

Very little is known about the transcriptional regulation of the long-RSH genes outside 143 

of E. coli. The antibiotic mupirocin, which inhibits the isoleucyl t-RNA synthetase and mimics 144 

amino acid stress, induces relSa transcription in S. aureus (Fig. 4a) [27, 28]. However no effect 145 

was noted on the homologous transcript from S. mutans when grown in chemically-defined 146 

media depleted of amino acids [29]. In Mycobacterium tuberculosis, relMtb is part of the ıE 147 

regulon, which is indirectly activated by polyphosphate chains. Polyphosphate can act as a 148 
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phosphate donor for the sensor histidine kinase MprB, which in turn phosphorylates MrpA. 149 

MrpA~P can then activate transcription of sigE, which has a positive effect of the transcription 150 

of relMtb [30].  151 

 152 

SAS genes 153 

Since the discovery of SAS enzymes over a decade ago [9-11], researchers have been interested 154 

in elucidating the regulatory mechanisms and environmental cues to which these proteins 155 

respond. Under unstressed conditions the SAS genes from B. subtilis are differentially 156 

expressed during growth phases [10]. relQBs is mainly transcribed during exponential growth, 157 

with transcript levels dropping off as the cells enter stationary phase. This coincides with a 158 

massive induction of relPBs transcription in late exponential phase that completely disappears 159 

in stationary phase. This differential expression ties in with observations that these proteins 160 

may have biologically distinct functions requiring temporal regulation. For instance the 161 

overexpression of RelPBs, but not RelQBs, has been shown to result in increased 100S ribosome 162 

formation in B. subtilis [31].   163 

relPBs is part of the sigma factors ıM and ıW-induced regulons [32, 33]. Both of these 164 

ı factors are involved in response to a number of different cell wall stresses such as LL-37, 165 

vancomycin and alkaline shock, suggesting a role for SAS proteins in responding to cell wall 166 

stress (Fig. 4a) [34-36]. The homologous ı factor in S. aureus is ıS [37], but analysis of the 167 

relPSa and relQSa promoters indicates they are regulated by the housekeeping ı factor A [12]. 168 

However, transcription of relPSa and relQSa is induced upon cell wall stress caused by 169 

vancomycin, indicating that homologous SAS enzymes do have similar functions [12].  170 

Additional stresses such as exposure to ethanol or alkaline conditions have been shown 171 

to affect the transcription of SAS genes. During ethanol-induced stress the transcription of 172 

relPSa increases >20 fold. This over-expression leads to slower cell growth and allows cells to 173 

survive ethanol stress [38]. In the Firmicutes, alkaline shock also causes an accumulation of 174 

(p)ppGpp [10, 39, 40]. Whilst the mechanism behind this in S. aureus and Enterococcus 175 

faecalis is unclear, in B. subtilis it seems to be RelPBs-mediated [10]. The differences in 176 

synthetase gene transcription between different species highlighted here, again hint at a 177 

currently overlooked functional nuance to RSH superfamily members.  178 

 179 

LIGAND-MEDIATED REGULATION OF ENZYME ACTIVITY 180 

Substrate stimulation 181 
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Once produced, RSH superfamily enzymes use both GTP and GDP as substrates, however 182 

different enzymes display a preference for either substrate, resulting in differential production 183 

of pppGpp and ppGpp. RelAEc favours GDP in vitro, while SpoTEc, RelMtb and RelSeq prefer 184 

GTP [41-43]. These differences in specificity are due to a charge reversal in a conserved motif 185 

present in the substrate binding pocket, with EXDD and RXKD motifs conferring a preference 186 

for GDP and GTP respectively [41, 43]. There is evidence to suggest that pppGpp and ppGpp 187 

may have differing potencies as signalling nucleotides, with ppGpp acting as a stronger 188 

regulator of growth rate, RNA/DNA ratios, and transcription in E. coli [44], whereas 189 

experiments performed with the DNA primase from B. subtilis suggest that pppGpp is the more 190 

potent inhibitor of this enzyme [45]. These substrate preferences may explain the different 191 

ppGpp/pppGpp ratios seen across bacteria. It appears that in response to amino acid deprivation 192 

ppGpp is predominantly produced by the Gram-negative E. coli [46], whereas Gram-positive 193 

organisms favour pppGpp production [47-49]. However, the presence of a pppGpp 194 

pyrophosphatase termed GppA in E. coli that is capable of degrading pppGpp to ppGpp, blurs 195 

the relationship between intracellular alarmone ratio and synthetase preference [50]. It follows 196 

that nucleotide production and enzyme specificity may provide an interesting intricacy to the 197 

stringent response and its regulation [44, 45]. This is further complicated by the recent 198 

identification of an additional signalling molecule - pGpp. RelAEc was initially shown to be 199 

able to synthesise this alarmone through the hydrolysis of the ȕ phosphate of ppGpp, albeit in 200 

small quantities [41]. Subsequent reports have since demonstrated the ability of the SAS 201 

proteins RelQEf from E. faecalis and RelSCg from Corynebacterium glutamicum to efficiently 202 

utilise GMP as a substrate to produce pGpp in vitro, although the presence of this small 203 

alarmone has yet to be conclusively demonstrated in vivo [51, 52].  204 

 205 

Product-induced activation 206 

Positive regulation of an enzyme by its product is rare, but allows rapid amplification of a 207 

signal that is much quicker than a transcription-dependent feedback loop. In E. coli, RelAEc, in 208 

complex with 70S ribosomes, was demonstrated to be positively regulated by ppGpp at 209 

physiologically relevant levels (Fig. 4b) [53]. The mechanism of regulation has not yet been 210 

determined, but it is likely that ppGpp binds allosterically to RelAEc to increase activity. 211 

Presumably, the hydrolase activity of SpoTEc maintains ppGpp levels below a threshold level 212 

required for signal amplification during non-stringent conditions. Once amino acids become 213 

plentiful, the reduction in deacetylated tRNA levels reduces ppGpp accumulation and thus the 214 

stringent response.  215 
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Other members of the RSH superfamily are also regulated by the stringent alarmones. 216 

The B. subtilis SAS RelQBs is positively regulated by pppGpp but not ppGpp (Fig. 4b) [54]. 217 

Crystallisation studies in the presence of ATP and GTP revealed that RelQBs forms a tetramer, 218 

with two molecules of pppGpp bound to allosteric binding sites created by the association of 219 

the four monomers. This causes a 10-fold increase in synthesis of both ppGpp and pppGpp in 220 

vitro. An altered allosteric binding site is also present in RelPBs, however this negatively 221 

charged site would not promote the binding of pppGpp and may be regulated by an alternative 222 

effector. Unlike RelQBs, the homologous SAS enzyme from E. faecalis, RelQEf, is positively 223 

activated by ppGpp. However it is not affected by the recently discovered pGpp, which has 224 

been shown to positively affect the activity of RelAEc [51]. 225 

 226 

Induction by a heterologous nucleotide  227 

Unusually, RelQEf  is also regulated by another ligand, single-stranded RNA (ssRNA: Fig. 4b) 228 

[55]. When ssRNA, such as mRNA, binds to the tetrameric RelQEf, it severely inhibits 229 

(p)ppGpp synthesis, an effect that is mitigated in the presence of (p)ppGpp. This phenomenon 230 

appears to be specific for SAS enzymes as no inhibition was observed on the activity of RelAEc 231 

[55]. A provisional consensus binding sequence for RelQEf was determined as GGAGG, with 232 

consecutive GG motifs deemed important. The similarity to the core Shine-Dalgarno sequence 233 

is striking [56], however it is as yet unclear whether RelQ binds to the ribosome binding site 234 

of mRNA and what biological function this may have.  235 

The (p)ppGpp signalling pathway is also involved in cross-talk with other secondary 236 

messenger signalling molecules. For instance, high levels of the cyclic dinucleotide c-di-AMP 237 

have been shown to amplify the production of (p)ppGpp in S. aureus following mupirocin 238 

treatment [48]. This effect is RSH-dependent, but c-di-AMP does not directly bind to RelSa, 239 

nor is there an increase in relSa transcription when c-di-AMP levels are high, indicating some 240 

unknown mechanism of regulation. The cross-talk between these two nucleotide signalling 241 

systems is also bi-directional, with ppGpp inhibiting the hydrolysis of c-di-AMP by the 242 

phosphodiesterase enzyme GdpP, leading to an increase in c-di-AMP concentration [57]. 243 

Indeed, studies with Listeria monocytogenes have revealed that deletion of the c-di-AMP 244 

cyclase enzymes was only possible in strains lacking (p)ppGpp [58], suggesting that both 245 

systems are linked in responding to stress signals. 246 

Additional cross-talk occurs between the unusual nucleotide GDP-2ƍ:3ƍ-cyclic 247 

monophosphate (ppG2ƍ:3ƍp) and (p)ppGpp (Fig. 4b). In Streptococcus equisimilis, the crystal 248 

structure of the N-terminal catalytic fragment of the long-RSH, RelSeq, was solved, revealing 249 
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two differing enzyme conformations with opposite activities [59]. In the hydrolase-250 

ON/synthetase-OFF form, ppG2ƍ:3ƍp was found bound to the hydrolase domain, locking the 251 

conformation of the enzyme. However it is not currently known whether ppG2ƍ:3ƍp is 252 

synthesised in vivo, casting doubt on whether this is a physiologically relevant interaction. 253 

 254 

PROTEIN-PROTEIN INTERACTION AS A MECHANISM FOR REGULATION 255 

Intramolecular regulation 256 

In bifunctional long-RSH enzymes (e.g. SpoTEc) there must be careful regulation of competing 257 

(p)ppGpp synthesis and hydrolysis domains to avoid a futile production cycle. One way this is 258 

achieved is through self-regulation of enzyme activity by the CTD. This was nicely 259 

demonstrated using RelSeq, where the synthetase activity of a truncated RelSeq protein lacking 260 

the CTD was found to be 12-fold higher than the full-length protein, while conversely the 261 

hydrolase activity was 150-fold lower [42]. This intrinsic regulation makes the regulation of 262 

RelSeq more switch-like, allowing sharp (p)ppGpp accumulation when required. 263 

 264 

The impact of oligomerisation on (p)ppGpp production 265 

Oligomerisation of long-RSH enzymes is believed to have a regulatory effect on synthetase 266 

activity. In E. coli, RelAEc forms a dimer through interactions of amino acids 455-538 and 550-267 

682 in monomer CTDs [60] [61]. The usual increase in (p)ppGpp levels upon amino acid 268 

starvation is reduced when the CTD is overexpressed in relA+ strains, while the disruption of 269 

oligomerisation had a positive effect on (p)ppGpp synthesis, implicating oligomerisation as an 270 

important regulatory control point [61]. In M. tuberculosis, the full-length RelMtb forms trimers. 271 

An N-terminal fragment, RelMtb1-394, forms both monomers and trimers, and isolation of each 272 

fraction revealed that the trimer form is less catalytically active and dissociates when incubated 273 

with substrate (GTP and ATP) or product (pppGpp) [62]. Taken together these data suggest 274 

that oligomerisation is involved in regulating long-RSH enzyme activity, where the higher 275 

ordered state is less active or indeed inactive.  276 

It is becoming clear that the role oligomerisation plays in regulation of RSH family 277 

enzymes is important, and this is not solely confined to long-RSH proteins. Indeed as 278 

mentioned above, the positive and negative regulation of RelQ enzymes by (p)ppGpp and RNA 279 

respectively, is dependent on tetramerisation [54, 55]. The allosteric pppGpp binding sites of 280 

RelQBs are only present in the tetramer, and when oligomerisation is disrupted the enzymatic 281 

activity of RelQEf is lost [55]. Tetramerisation of RelQBs also leads to high positive 282 

cooperativity of (p)ppGpp synthesis [54]. 283 
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An additional SAS in M. smegmatis, termed MS_RHII-RSD, has been shown to contain 284 

both a (p)ppGpp synthesis domain and a RNase HII domain involved in the resolving of RNA-285 

DNA hybrid structures known as R-loops [63]. This enzyme is the only example to date of a 286 

(p)ppGpp synthetase domain fused to a functionally distinct enzyme. Alone each of the 287 

domains are inactive and a hexamer of full-length proteins is required for activity of either [63, 288 

64]. This coupling hints at a link between R-loop removal and the stringent response. The 289 

joining of these domains would allow for the production of (p)ppGpp near an RNA polymerase 290 

stalled at an R-loop, where (p)ppGpp may then help to destabilise the stalled polymerase [64]. 291 

 292 

Heterologous interaction partners 293 

Since the 1970s it has been understood that RelA-mediated synthesis of (p)ppGpp is activated 294 

by the presence of an uncharged tRNA in the acceptor site of the ribosome [65]. The synthetase 295 

activity of RelMtb was shown to be activated by a complex of uncharged tRNA, ribosomes and 296 

mRNA, now termed the ribosome activating complex (RAC: Fig. 4c) [66]. The RAC 297 

simultaneously decreases the activity of the RelMtb hydrolase domain, resulting in a switch-like 298 

mechanism of regulation. Recent work has provided a detailed insight into the interaction of 299 

RelA with the ribosome [3-5]. Cryo-electron microscopy images of RelAEc bound to a stalled 300 

ribosome show that the CTD wraps around the uncharged tRNA in the 30S A site [3-5]. The 301 

3’ -OH of the uncharged amino acid acceptor stem lies against the ȕ5 strand of the TGS/RRM 302 

domain. This prevents RelAEc interacting with charged tRNAs by steric exclusion. The 303 

hydrolase and synthetase domains of RelAEc have very few contacts with the ribosome, 304 

suggesting that RelA activation is not direct but could be through release of the auto-inhibitory 305 

effect of the CTD [3-5]. Another possible explanation is that binding to the ribosome prevents 306 

the auto-inhibitory effect of RelAEc homodimers [60, 61, 67]. 307 

In addition to the ribosome, a number of protein binding partners for the synthetases 308 

have now been identified. The Obg family GTPase ObgE (CgtA, YhbZ) binds to SpoTEc (Fig. 309 

4c) [68]. Deleting ObgE results in increased (p)ppGpp levels during exponential phase 310 

suggesting that ObgE ensures a low basal (p)ppGpp level during bacterial growth [69]. Whilst 311 

an ObgE deletion mutant has no effect on (p)ppGpp levels during amino acid starvation [69], 312 

it does result in a higher ratio of pppGpp to ppGpp [70]. Interestingly the GTPase activity of 313 

ObgE is inhibited by ppGpp at physiological levels but the biological function of this is unclear 314 

[70]. 315 

During fatty acid limitation, E. coli accumulates (p)ppGpp in a SpoTEc-dependent 316 

manner [71, 72]. SpoTEc directly interacts with a central cofactor of fatty acid synthesis, the 317 



11 
 

acyl carrier protein (ACP: Fig. 4c) [73, 74]. This interaction is between the TGS/RRM domain 318 

of SpoTEc and the holo form of ACP, and is required for (p)ppGpp accumulation during fatty 319 

acid starvation [75]. Later work by the authors suggests that this SpoTEc-ACP interaction is 320 

specific for the SpoTEc long-RSH, and is only found in bacteria with two long-RSH proteins 321 

(RelA and SpoT). Organisms with only one long-RSH, such as B. subtilis, have no ACP-322 

synthetase interaction, despite the presence of a TGS/RRM domain [76]. This could be due to 323 

the basic pI of SpoTEc compared to other long-RSH proteins, which allows binding to the acidic 324 

ACP. Whilst no mechanism of activation has been elucidated, the long-RSH-dependent 325 

stringent response is still important for fatty acid limitation survival in B. subtilis, however it 326 

may be dependent on (p)ppGpp regulation of intracellular GTP/ATP levels, as no (p)ppGpp 327 

accumulation was observed [77]. 328 

Whilst the long-RSH protein from B. subtilis does not bind ACP, it has been shown to 329 

interact with ComGA, a protein conserved in naturally competent bacteria (Fig. 4c) [78]. 330 

ComGA is involved in achieving a growth-arrested state known as the K state, partly by 331 

causing a decrease in transcription of the rRNA gene rrnB. In a mutant that cannot produce 332 

(p)ppGpp, overproduction of ComGA does not lead to the usual decrease in rrnB transcription, 333 

showing that this aspect of the K state is (p)ppGpp-dependent.  334 

 335 

CONCLUSION 336 

In conclusion, as we piece together a picture of the stringent response in Gram-positive 337 

bacteria, it becomes clear that there are major differences compared to this signalling pathway 338 

in Gram-negative organisms. The types of synthetase enzymes present are different, as is the 339 

way in which these enzymes are transcriptionally and post-transcriptionally regulated. 340 

Understanding the environmental signals that trigger the stringent response will allow us to 341 

comprehend how it is utilised by bacteria in order to survive. As the stringent response is 342 

important for the pathogenicity of bacteria [79, 80], understanding the regulation of (p)ppGpp 343 

synthetases, and other factors, could provide information on useful therapeutic targets.  344 

 345 

  346 
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FIGURE LEGENDS 571 

Fig. 1. Schematic representation of the RSH superfamily proteins. (a) Long-RSH proteins 572 
consist of an enzymatic N-terminal domain (NTD) and a regulatory C-terminal domain (CTD). 573 

The NTD comprises a hydrolase domain (HD; pink) that can degrade (p)ppGpp into GTP or 574 
GDP and PPi, and a synthetase domain (SYNTH; blue) that converts GTP/GDP and ATP in 575 

(p)ppGpp. The CTD regulatory region (green) contains a ThrRS, GTPase and SpoT domain 576 
(TGS), a conserved alpha helical domain (Į), a zinc finger or conserved cysteine domain 577 

(ZFD/CC), and an RNA recognition motif or aspartate kinase, chorismate and TyrA domain 578 
(RRM/ACT). (b) Small alarmone synthetase enzymes (SAS) contain a single SYNTH domain 579 

and a C-terminal alpha helix (Į5) which is required for SAS tetramerisation. (c) Small alarmone 580 
hydrolase proteins (SAH) contain a single HD domain. 581 

 582 
Fig. 2. Example of the distribution of RSH superfamily proteins in Gram-negative and Gram-583 
positive bacteria. The alignment scores between RSH superfamily proteins from E. coli, V. 584 

cholera, and S. aureus as determined by ClustalW are shown. Gram-negative bacteria can 585 
contain one or two long-RSH proteins but frequently do not express SAS proteins, with the 586 

exception of the Vibrio genus (RelVVc). Gram-positive bacteria typically contain a bifunctional 587 
long-RSH and one or two SAS proteins.  588 

 589 
Fig. 3. Regulation of the four known relAEc promoters. Transcription from P1 and P2 is ı70-590 

dependent, with P1 relying on an UP-element lying upstream. Transcription from P3 and P4 is 591 
activated by ı54 with the aid of NtrC during nitrogen starvation. Transcription from P2 is 592 

activated through CRP binding to the CRP/CAP site, as well as by H-NS. 6S RNA 593 
downregulates transcription from both P1 and P2, while HipB binding to the HipB palindromic 594 

sequence inhibits transcription of relAEc. Arrows and numbering represent the locations of the 595 
transcriptional start sites in relation to the start codon (solid – ı70, dotted – ı54). 596 

 597 
Fig. 4. Summary of the types of regulation involved in RSH superfamily protein activity. (a) 598 

Transcriptional regulation: relAEc is upregulated by NtrC, CRP and HNS and inhibited by 6S 599 
RNA, RpoS and HipB. The transcription of rel, relP or relQ is induced by various conditions 600 

as indicated. (b) Ligand-mediated regulation: (p)pGpp increases the synthetase activity of 601 
RelAEc, while RelQ is regulated by two ligands: (p)ppGpp which augments synthetase activity 602 

and ssRNA which inhibits synthetase activity. ppG2ƍ:3ƍp binds to Rel from S. equisimilis, 603 
causing a conformational change that favours (p)ppGpp hydrolysis. (c) Heterologous protein 604 
interactions: ACP and ObgE both bind to SpoTEc to increase or reduce (p)ppGpp synthesis 605 

respectively. RelAEc binding to a stalled ribosome increase (p)ppGpp production, while 606 
ComGA can bind to RelBs, although the effect on SYNTH or HD activity is unclear.  607 
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