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JASA/Bayesian porous media

In many acoustical applications, porous materials may be stratified or physically1

anisotropic along their depth direction. In order to better understand the sound2

absorbing mechanisms of these porous media, the depth-dependent anisotropy can3

be approximated as a multilayer combination of finite-thickness porous materials,4

with each layer being considered as isotropic. The novelty of this work is that it5

applies Bayesian probabilistic inference to determine the number of constituent lay-6

ers in a multilayer porous specimen and macroscopic properties of their pores. This7

is achieved through measurement of the acoustic surface impedance and subsequent8

transfer-matrix analysis based on an valid theoretical model for the acoustical proper-9

ties of porous media. The number of layers considered in the transfer-matrix analysis10

is varied and Bayesian model selection is applied to identify individual layers present11

in the porous specimen and to infer the parameters of their microstructure. Nested12

sampling is employed in this process to solve the computationally intensive inversion13

problem.14

a)xiangn@rpi.edu
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I. INTRODUCTION15

Modelling of the acoustical properties of porous materials is used extensively in a range16

of engineering and science applications. In outdoor sound propagation and seismic studies,17

soil and sediment may be represented as multilayered porous media (Sabatier et al., 1986;18

Sabatier and Xiang, 2001). Similarly, marine sediments may be considered as porous media,19

with pores saturated with water rather than air (Buckingham, 2000; Leurer and Brown,20

2008). In architectural acoustics and noise control engineering, porous materials are tra-21

ditionally used to absorb an excess or unwanted acoustic energy. In performance venues,22

the reverberant sound field may be controlled with porous absorbers to optimize the space23

for various types of musical performances (Beranek, 2004). In industrial spaces and office24

buildings, porous materials control the level of noise to enhance speech intelligibility and25

provide privacy, to ensure a reasonable office environment (Jeong et al., 2017; Long, 2014).26

In all cases, the microscopic properties of a material’s pores govern the material’s acoustic27

behavior (Chevillotte et al., 2015), and it is of importance to understand this relation.28

Estimating these macroscopic properties from the acoustical data is of interest in the physical29

study of soils (Sabatier et al., 1986) and ground coverings (Attenborough, 1985; Horoshenkov30

et al., 2013) and underwater sediments (Buckingham, 2000; Leurer and Brown, 2008). From31

the architectural acoustics and noise control standpoint, these parameters can be used to32

predict and design new types of porous media with a higher acoustic absorption performance33

than existing commercial absorbers (Mahasaranon et al., 2012). An understanding of these34

parameters’ interdependence may lead to the development of new sound absorbing materials35

3
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or new applications of acoustics to measure non-invasively the microstructure of new types36

of porous media.37

This paper applies Bayesian probabilistic inference to the analysis of multilayered porous38

media to invert the macroscopic material properties from acoustic impedance data, whereas39

direct measurement (see, for example, Allard and Atalla, 2009) of these parameters is often40

time-consuming or impossible. The proposed inversion method efficiently determines all the41

microscopic parameters from a single acoustical measurement on a small material specimen.42

Given a theoretical model for the acoustic response of a porous material, an inverse problem43

may be solved probabilistically to determine the material physics from a measurement of44

the material’s acoustic response. This approach is an efficient alternative to other inversion45

methods which are based on direct optimization (e.g. Atalla and Panneton, 2005; Ogam46

et al., 2010) or asymptotic limits (e.g. Allard et al., 1994).47

Recent studies have applied Bayesian parameter estimation approaches for the charac-48

terization of single-layered porous materials Chazot et al. (2012); Niskanen et al. (2017). In49

both cases, a Bayesian method is used to determine inversely the physical parameters of a50

porous material, from an acoustical measurement of the porous specimen in an impedance51

tube. The present work represents an enhancement to these methods, because the Bayesian52

framework investigated in the current work includes a model selection component to deter-53

mine the number of layers present in a material specimen under test in addition to porous54

parameter estimation. Thus the method is not limited to the characterization of single-55

layer specimens. Additionally, the prior probabilities for inverted parameters are assigned56

4
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to be broad, uninformative distributions, so that the inverted parameter values are based57

predominantly on the measured acoustic data.58

In addition to the parameter estimation problems discussed above, Bayesian model selec-59

tion has found recent applications throughout acoustics. Xiang (2015); Xiang and Goggans60

(2003) apply model selection to determine the number of coupled spaces present in an acous-61

tic space by analyzing sound energy decay functions. In the context of acoustic localization,62

Bush and Xiang (2018); Escolano et al. (2012, 2014) determine the number of simultaneous63

sound sources present with an application Bayesian model selection. Battle et al. (2004);64

Dettmer et al. (2009, 2010) apply Bayesian model selection to geoacoustic inversion, to the65

study of water-saturated sediment layers on the seabed. Bayesian model selection has also66

been applied to room-acoustic modal analysis (Beaton and Xiang, 2017) and to the design of67

digital filters for signal processing (Botts et al., 2013; Chan and Goggans, 2012). However,68

to the best of the author’s knowledge, the tool of Bayesian model selection has not yet been69

applied to the study of multilayer air-saturated acoustic porous materials.70

The remainder of this paper is organized as follows. Section II discusses the theory71

of modeling and measuring the acoustic properties of multilayer porous materials. The72

generalized Miki model for porous media is presented, along with a transfer-matrix multilayer73

modeling framework. Next, Section III develops the Bayesian probabilistic framework used74

to perform the inverse analysis. Section IV presents the results obtained from analyzing75

realistic multilayer porous material samples, and Section V concludes the paper.76
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II. POROUS MEDIA MODEL77

Sound wave propagation in the porous layers can be described by a set of physical pa-78

rameters. Stacking multiple distinct layers with each layer having different sets of porous79

parameters can be collectively described by the transfer matrix method. This Section in-80

troduces a multi-layered model of porous media, which is used in the model-based Bayesian81

analysis in Sec. III.82

A. Miki Generalized Model83

This work applies the semi-empirical model by Miki (1990) to relate the acoustical and84

microscopic properties of porous media. This model is attractive because it is robust. It85

represents an improvement to the well-known Delany and Bazley (1970) model in terms of86

its causality and behavior in the low-frequency limit. Miki (1990) developed the theoretical87

expressions for the flow resistivity σf , porosity φ, and tortuosity α∞ of a porous material88

comprising cylindrical tubes oriented at an arbitrary angle to the surface normal. From these89

expressions, the propagation coefficient (also known as propagation constant or complex90

wavenumber) and characteristic impedance for materials with tortuous pores and porosities91

less than unity were derived. According to the Miki (1990) generalized empirical model, the92

propagation coefficient, γ, and characteristic impedance, Zc, are given as:93

γ(f) =
2 π f

√
α∞

c0

(

0.160

(

f

σe

)−0.618

+ i

[

1 + 0.109

(

f

σe

)−0.618
])

, (1)
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and94

Zc(f) = ρ0c0

√
α∞

φ

(

1 + 0.070

(

f

σe

)−0.632

− i0.107

(

f

σe

)−0.632
)

, (2)

respectively, with95

σe =
φ

α∞

σf (3)

being the effective flow resistivity of the porous material. ρ0 and c0 are respectively the96

density and sound speed of the pore-saturating fluid, and i =
√
−1.97

B. Multilayer Model: Transfer Matrix Method98

When combining multiple distinct layers into a multilayered material, the transfer matrix99

method may be used to model the overall behavior of the material. The transfer matrix100

method represents each homogeneous layer of a multilayer material with a transfer matrix,101

which relates the acoustic field quantities at the front and rear interfaces of each layer. The102

following is a summary of the transfer matrix method for modeling multilayer equivalent-103

fluid materials, as in Allard and Atalla (2009).104

For the materials discussed in this work, each layer may be modeled as an equivalent105

fluid whose properties are predicted by the Miki (1990) generalized model. In this case, a106

two-by-two transfer matrix relates the acoustic pressure and normal component of particle107

velocity between the two sides of each layer. As modeled in this work, the transfer matrix108
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for an equivalent fluid layer of thickness d is given as:109

Teq =













cosh(γd) sinh(γd) · Zc

sinh(γd)/Zc cosh(γd)













, (4)

where γ is the propagation coefficient of the equivalent fluid as given in Equation (1) and110

Zc is the characteristic impedance as given in Equation (2). In general, these quantities are111

complex valued functions of frequency for an equivalent fluid layer.112

For a rigid-backed equivalent-fluid layer, oriented normal to the x-direction with the113

sound propagation being along the x-direction, the transfer matrix is applied to model the114

acoustic quantities at the front surface of the layer as:115













p

vx













x=0

= Teq













1

0













, (5)

where p is the acoustic pressure, vx is the normal component of the acoustic particle velocity,116

and the subscript x = 0 indicates the front material surface.117

In case of a material composed of Q equivalent-fluid layers, the single transfer matrix is118

replaced by a chain of two-by-two transfer matrices, with one matrix in Equation (4) for119

each distinct layer. Equation (5) is modified, resulting in:120













p

vx













= T(1)
eq ×T(2)

eq × · · · ×T(N)
eq ×













1

0













, (6)

where the superscript (n) denotes the transfer matrix for the n-th equivalent fluid layer121

computed using Equation (4), and × is the matrix product. The material layers (and122

corresponding transfer matrices) are arranged with layer 1 being the front and layer N being123
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adjacent to the rigid backing. Here, p and vx are the acoustic pressure and surface-normal124

acoustic particle velocity at the front surface of the multilayer structure. Consequently, the125

normal-incidence surface impedance for the multilayer material is modeled as:126

Zs =
p

vx
. (7)

This multi-layered porous material model is used in the Bayesian model-based inversion127

in the following, involving the normal-incidence acoustic surface impedance of potentially128

multilayered materials experimentally measured with the standard impedance tube method129

(Chung and Blaser, 1980; International Standards Organization, 1998).130

III. BAYESIAN INFERENCE FRAMEWORK131

In the Bayesian interpretation of probability theory, probabilities represent and quantify132

states of knowledge or degrees of belief (Xiang and Fackler, 2015). Bayesian inference is133

a framework for drawing conclusions from measured data, where probabilities quantify the134

knowledge gained. In Bayesian inference, Bayes’ theorem is used to update knowledge about135

quantities of interest, given relevant data or observations.136

A. Bayes’ theorem137

At the heart of Bayesian inference is Bayes’ theorem, which in its most general form138

relates the probabilities for two general propositions A andB. In the Bayesian interpretation,139

the probability of a proposition quantifies the state of knowledge about that proposition.140

Examples could include the likelihood of a given result from all potential event outcomes141

9
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or the particular value of a parameter within a set or range of possible values. With Pr(•)142

denoting a probability distribution, Bayes’ theorem is written as:143

Pr(A |B) =
Pr(A) Pr(B |A)

Pr(B)
, (8)

where Pr(A) and Pr(B) describe the probabilities of propositions A and B, respectively.144

Probabilities of the form Pr(A |B) are conditional probabilities, in this case of proposition145

A given that proposition B is fixed at a given outcome or value. Bayes’ theorem is easily146

derived from the product rule of conditional probability. Expanding Pr(A,B), the joint147

probability of A and B, which quantifies the full state of knowledge of both propositions,148

including any ways in which they influence each other, yields:149

Pr(A,B) = Pr(A |B) Pr(B) = Pr(B |A) Pr(A), (9)

leading to Equation (8) after a simple rearrangement.150

In the context of the Bayesian data analysis and model-based inference reported in this151

work, Bayes’ theorem is often written as:152

Pr(H |D, I) =
Pr(H | I) Pr(D |H, I)

Pr(D | I) , (10)

where H represents a conjecture or hypothesis, D represents experimental observations or153

data, and I represents available relevant, testable background information. The hypothesis154

H may represent either a model or a set of parameters, depending on the problem at hand,155

as discussed in the following sections. Each Pr(•) term in Bayes’ theorem is a probability,156

each serving a different function and commonly referred to by a different name representative157

of its function.158

10
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The term Pr(H | I) represents the state of knowledge about the hypothesis H at the159

beginning of the analysis. This prior distribution is conditioned on any knowledge or in-160

formation available before experimental data are incorporated into the analysis. The prob-161

ability Pr(D |H, I) is known as the likelihood function and indicates the plausibility that162

the measured data D would have been generated, given that the hypothesis H is true. This163

likelihood function serves to update the prior knowledge once the experimental data have164

been measured or observed. When applying the Bayesian framework to solve an inference165

problem, the prior and likelihood serve as inputs to the computation and are assigned before166

any data are observed (Xiang and Fackler, 2015).167

The posterior distribution, Pr(H |D, I), encodes the state of knowledge that results from168

updating the prior knowledge with measured data via the likelihood function. In order for169

the posterior to be a proper probability density function, its volume must be normalized170

to unity. The term Pr(D | I) is called the (Bayesian) evidence and serves as the posterior171

normalization constant. As demonstrated in Section III B 1, the evidence is also important172

for applications of Bayesian model selection.173

B. Two Levels of Bayesian Inference174

Bayesian probabilistic inference encompasses both parameter estimation and model se-175

lection problems. Bayesian inference applied to solving parameter estimation problems is176

referred to as the first (low) level of inference, while application of Bayes’ theorem to solving177

model selection problems is referred to as the second (high) level of inference (e.g. (Jefferys178

and Berger, 1992; Xiang, 2015)). Using a top-down approach, the following discussion begins179

11
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with the so-called second level of inference, model selection, before proceeding to parameter180

estimation. The discussion proceeds under the basis that one should determine which of a181

set of competing models is appropriate before the relevant model parameters are inferred182

using that model.183

1. Model Selection: Second Level of Inference184

In the context of model-based inference, an appropriate model is required to predict the185

data at hand. However, given a set of competing models, the model that best fits the data186

is not necessarily the best choice for inference. More complex models (in the present work,187

for example, multilayer models with increasing numbers of material layers) are capable of188

fitting the data as well as or better than simpler models, but often generalize poorly, leading189

to overfitting or modeling noise inherent to the data (Jefferys and Berger, 1992; MacKay,190

2003).191

The Bayesian model selection process applies Bayes’ theorem to the task of choosing192

a model for use in drawing further inferences, with the model to be selected serving as193

the hypothesis of Equation (10). The model is selected from a finite set of N models,194

M = {M1, . . . ,MN}, each of which is a function of a corresponding parameter set and is195

known to be a candidate to describe the data D well. In the present context of multilayer196

porous media analysis, each of the N models in M comprises a different number of material197

layers, from 1 to N . The parameter set for each layer consists of the physical parameters of198

flow resistivity σf , porosity φ, tortuosity α∞, and layer thickness d. Each model Mn is the199

12
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multilayer transfer matrix formulation of the generalized Miki model (as described above in200

Section II) with n equivalent-fluid layers and is a function of 4n physical parameters.201

Bayes’ theorem applied to each model Mn in the finite set of N competing models, M,202

is written as:203

Pr(Mn |D, I) =
Pr(Mn | I) Pr(D |Mn, I)

Pr(D | I) , (11)

In the form of Equation (11), Bayes’ theorem represents how one’s prior knowledge about204

the model Mn, expressed by prior probability Pr(Mn | I), is updated in the presence of data205

D, given the background information I. The likelihood of the data having been generated,206

given a particular model Mn, is notated Pr(D |Mn, I), while Pr(Mn |D, I) is the posterior207

probability of the model Mn given the data.208

The model comparison between two different models Mi and Mj evaluates the so-called209

Bayes’ factor Ki,j (Kass and Raftery, 1995):210

Ki,j =
Pr(Mi |D, I)

Pr(Mj |D, I)

=
Pr(D |Mi, I)

Pr(D |Mj, I)

Pr(Mi | I)
Pr(Mj | I)

, (12)

where 1 ≤ i, j ≤ N ; i 6= j. In the right-hand side of the Bayes’ factor, the second fraction,211

termed the prior ratio, represents how much model Mi is preferred over Mj before con-212

sidering the data D. If one wants to incorporate no prior preference assigning equal prior213

probability:214

Pr(Mn | I) =
1

N
, 1 ≤ n ≤ N (13)

to each of N models, then no subjective preference is encoded for any of these models. In215

this case, the Bayes’ factor for the model comparison between two different models Mi and216

13
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Mj relies solely on the posterior ratio between models:217

Ki,j =
Pr(D |Mi, I)

Pr(D |Mj, I)
, 1 ≤ i, j ≤ N ; i 6= j, (14)

which is equal to the likelihood ratio when the model prior probabilities are uniform. This218

indicates that the likelihood Pr(D |Mn, I) plays a central role in Bayesian model selection.219

In the following section, it will be shown that this likelihood term in the context of model220

selection is identical to the evidence term in the context of parameter estimation.221

Since the Bayes factor is a ratio of likelihoods, it may be expressed in log odds and222

quantified using units of information or entropy. In particular, using base-10 logarithms,223

the Bayes factor may be expressed in decibans (unit dBans, also called decihartleys) as224

10 · log10(Ki,j). The second level of Bayesian inference intrinsically embodies Occam’s razor225

(Jefferys and Berger, 1992) in a quantitative way. Complicated models are penalized and226

assigned large probabilities only if the complexity of the data justifies the additional model227

complexity (Jefferys and Berger, 1992; MacKay, 2003).228

2. Parameter Estimation: First Level of Inference229

Once a model Mn has been chosen via the model selection, it may be used to infer the230

values of the parameters that describe the measured data. For the purpose of parameter231

estimation, Bayes’ theorem is applied with the parameters θn serving as the hypothesis. In232

this context, the background information I includes that a specific model Mn is given or233

selected via the model selection, and the model describes the data D well. The subscript n234

emphasizes that the model, Mn(θn), is a function of the particular parameter set. Bayes’235

14
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theorem for this parameter estimation problem is written as:236

Pr(θ |D,M) =
Pr(θ |M) Pr(D |θ,M)

Pr(D |M)
, (15)

where the subscript n and background information I have been dropped for simplicity.237

Bayes’ theorem used in this problem represents how one’s prior knowledge about parameters238

θ, given the specific model M(θ), is updated in the presence of data D.239

The prior Pr(θ |M) encodes all that is known about the parameters before incorporating240

the data and is notated as Π(θ) ≡ Pr(θ |M) for simplicity. Once the data have been241

observed or measured, the likelihood Pr(D |θ,M) incorporates the data to update the242

prior knowledge of the parameters. To emphasize that the data are fixed once observed243

and that the likelihood is therefore a function of the parameter values, it is notated as244

L(θ) ≡ Pr(D |θ,M).245

The posterior Pr(θ |D,M) quantifies the updated knowledge of the parameters; as a246

proper probability density function, it must integrate to unity over the entire parameter247

space. With the notational changes of the previous paragraph, this normalization constraint248

is enforced by integrating both sides of Equation (15) over the entire parameter space,249

yielding250

1 =

∫

θ

Pr(θ |D,M) dθ =

∫

θ

L(θ) Π(θ)
Pr(D |M)

dθ. (16)

Lacking any dependence on the parameter values, the denominator of the right hand side251

may be taken out of the integral, leading to the posterior normalization condition being252

specified as:253

Pr(D |M) ≡ Z =

∫

θ

L(θ) Π(θ) dθ, (17)

15
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where Z ≡ Pr(D |M) is the Bayesian evidence for model M (MacKay, 2003). Referring to254

the previous section, the evidence is exactly the same as the likelihood in Equations (11)255

and (14). In addition to its function as the parameter estimation posterior normalization256

constant, this evidence also plays a central role in model selection (MacKay, 2003; Xiang,257

2015).258

Rearranging the term of Equation (15) yields (Skilling, 2006):259

Pr(θ |D,M) × Z = Π(θ) × L(θ),

posterior × evidence = prior × likelihood,

(18)

which states the logical relationship among the quantities of Bayesian inference. The prior260

probability Π(θ) and the likelihood function L(θ) are the inputs, while the posterior proba-261

bility Pr(θ |D,M) and the evidence Z are the outputs of Bayesian inference. Particularly,262

the posterior probability is the output for the first level of inference, parameter estima-263

tion, while the evidence Z is the output for the second level of inference, model selection.264

Bayesian evidence automatically encapsulates the principle of parsimony and quantitatively265

embodies Occam’s razor (Jefferys and Berger, 1992; MacKay, 2003). When two competing266

theories explain the data equally, the simpler one is preferred.267

C. Parameter priors268

Before any data have been observed, limited knowledge is available about the parameters269

under study. To begin a Bayesian analysis, this limited knowledge must be encoded into the270

prior probability distribution for each parameter.271
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For realistic porous materials, the physical parameters describing the pore structure fall272

into broad ranges of physically realistic values. Following the principle of maximum en-273

tropy and applying the transformation-group arguments of Jaynes (1968), a uniform prior274

distribution is assigned to each of the physical porous material parameters. Using realistic275

parameter value ranges, the following priors are assigned, encoding a lack of specific prior276

knowledge:277

Pr(flow resist.σf ) = Uniform(0.1, 1000 kNs/m4), (19)

Pr(porosity φ) = Uniform(0.1, 1), (20)

Pr(tortuosity α∞) = Uniform(1, 7). (21)

For the materials used in this work, the material layers considered are on the order of a few278

centimeters thick. To remain impartial when considering the layer thickness as an unknown279

parameter, a broad range is considered for the thickness. Thus, when the thickness is a280

parameter to be estimated, it is assigned the following prior,281

Pr(layer thickness d) = Uniform(0.1 mm, 10 cm); (22)

otherwise, it is fixed at the physically-measured value. If the present methods were to282

be applied to conditions in which the layer thicknesses are truly unknown, an even more283

conservative (larger) prior range may be warranted.284

17



JASA/Bayesian porous media

D. Likelihood function285

The squared error between measured (Zs,meas) and modeled (Zs,mod) complex surface286

impedance data is given as:287

E2
b = Re(Zs,meas,b − Zs,mod,b)

2

+ Im(Zs,meas,b − Zs,mod,b)
2, (23)

at each measured frequency point b, where the real and imaginary parts of the complex288

surface impedance are considered separately. For use in the Bayesian inference framework,289

this error must be assigned a probability. As stated previously for Equation (15) in Sec-290

tion III B 2, the background information includes the model being chosen to predict the291

measured data sufficiently well, which implies that the mean error across data points should292

be around 0, while the variance in error values must be finite. Applying the principle of293

maximum entropy given these constraints, the likelihood function is assigned as a Student’s294

t-distribution (Jasa and Xiang, 2009)295

L(θ) = Pr(D |θ,M) =
Γ(B/2)

2

(

π
B
∑

b=1

E2
b

)−B/2

, (24)

where the squared errors E2
b given in Equation (23) have been summed across all B measured296

frequency points, and Γ(•) is the Gamma function.297

E. Nested sampling298

The evidence Z in Equation (17) and Equation (18) is the most important quantity for299

the two levels of Bayesian inference (MacKay, 2003). Nested sampling (Skilling, 2004, 2006)300
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is a numerical algorithm for estimating the evidence in a Bayesian inference problem, using301

the prior and likelihood as inputs and generating samples from the posterior as a secondary302

output. Recent applications of the nested sampling in Bayesian analysis in acoustics can303

also be found in Beaton and Xiang (2017); Bush and Xiang (2018); Escolano et al. (2014).304

Nested sampling exploits the close relationship between the likelihood function L(θ) and305

the constrained prior mass ε(λ), defined as:306

ε(λ) =

∫∫

· · ·
∫

L(θ)>λ

Π(θ) dθ, (25)

which is the amount (mass) of the prior density Π(θ) contained in the parameter space307

where the value of the likelihood function L(θ) is greater than a constraining value λ. With308

this definition, the evidence, which is a multidimensional integral over the entire parameter309

space, is mapped to a single-dimensional integral over the constrained prior mass:310

Z =

∫∫

· · ·
∫

L(θ) Π(θ) dθ =

∫ 1

0

L(ε) dε, (26)

where L(ε) is the likelihood value bounding the region of the parameter space within which311

ε prior mass is constrained. In other words, when considering the constrained prior mass as312

defined in Equation (25), the constraining likelihood value is λ = L(ε). Note that L(ε) is the313

likelihood value bounding a region of the parameter space, whereas L(θ) is the likelihood314

function evaluated at a given set of parameter values θ.315

As a further point of clarification, consider the two limits of integration in the right hand316

side of Equation (26). At ε = 1 the entire prior mass is constrained, corresponding to317

the entire parameter space, and thus the constraining likelihood is the minimum likelihood318
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value: L(ε = 1) = Lmin ≥ 0. At the other limit, ε = 0 corresponds to no constrained prior319

mass, which occurs at the single point of maximum likelihood value: L(ε = 0) = Lmax.320

The nested sampling procedure starts with a population of Q sample objects, which321

are sampled according to the prior density (see Equations (19)–(22)). Since the initial322

samples are distributed across the entire parameter space, initially the entire prior density323

is considered to be constrained yielding324

ε0 ≈ 1 (27)

and the initial constraining likelihood value is325

L0 ≈ 0. (28)

At the k-th step of the iterative procedure, the sample (corresponding to parameter326

values θk) in the population of Q corresponding to the lowest likelihood value (stored as327

Lk) is first recorded then discarded. A constraint is created by this likelihood; specifically,328

the likelihood values of the surviving Q − 1 samples that are greater than that of the329

discarded sample. The discarded sample is then replaced by a new sample, constrained to330

have a likelihood value greater than that of the discarded sample. The new sample may331

be generated by evolving an existing sample that already satisfies the likelihood constraint,332

such as with a random-walk Metropolis-Hastings procedure (Skilling, 2006), a constrained333

Hamiltonian Monte Carlo method (Betancourt, 2011), or others. After generation of a334

replacement sample, a population of Q samples exists which are distributed uniformly over335

the prior mass constrained by the limiting likelihood value Lk of the discarded sample. For336

a population of Q samples, the constrained prior mass will tend to shrink exponentially by337
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1 part in Q at each iteration, leading to:338

εk ≈ exp

(

− k

Q

)

. (29)

After each iteration, the parameter values θk of the discarded sample and the values of Lk339

and εk are accumulated. The nested sampling process may be thought of as accumulating340

the evidence across the parameter space, iteratively estimating the integral of Equation (26)341

as the population of samples approaches the region of maximum likelihood. At any iteration342

k, the population of live samples contains an amount of ”live” evidence that has yet to be343

accumulated (Keeton, 2011). By averaging the constrained prior over the remaining samples,344

this live evidence may be estimated by:345

Zk =
1

Q

Q
∑

q=1

Lq εk, (30)

where Lq is the likelihood value of the q-th live sample and the sum is over the Q samples346

in the population.347

The nested sampling procedure terminates after K iterations. This termination may be348

based on any of various criteria (e.g. Sivia and Skilling, 2006; Skilling, 2006), such as the349

difference in accumulated evidence between successive iterations, difference in the likelihood350

value between discarded samples, or the amount of remaining live evidence. Following the351

termination, the K stored samples are used to estimate the evidence via:352

Z =
K
∑

k=1

Lk ∆εk, (31)

with353

∆εk = εk−1 − εk. (32)
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Additionally, the sequence of discarded samples may be considered as a Monte Carlo354

sequence from the posterior. By weighting each sample according to its area of contribution355

to Z with weight:356

wk =
Lk ∆εk

Z , (33)

Monte Carlo estimates of posterior properties can be readily obtained. For instance, the357

parameter mean values may be calculated as358

µ(θ) =
K
∑

k=1

wk θk (34)

and the parameter standard deviations as359

σ(θ) =

[

K
∑

k=1

wk (θk − µ(θ))2
]1/2

. (35)

IV. BAYESIAN ANALYSIS RESULTS360

To ensure accurate and efficient computation, the nested sampling procedure must be361

tuned to the specific needs of each application. More specifically to this work, the multi-362

layer porous material inversion task involves a moderately-high dimensional parameter space363

(four parameters per layer with the generalized Miki (1990) model) over a broad range of364

parameter values. Additionally, as will be demonstrated in the remainder of this section,365

the parameter space may be multimodal, particularly for material layers beyond the surface366

layer. To ensure an adequate coverage of the parameter space and to reduce the potential for367

fluctuations in the evidence and posterior estimates due to the multimodality, a population368

of Q = 500 live samples is used in the results reported here.369
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At each iteration of the nested sampling implementation, replacement samples are gen-370

erated by evolving a random survivor sample via a random walk Metropolis-Hastings pro-371

cedure (Skilling, 2006). Steps are accepted if they result in a likelihood value greater than372

the constraint and rejected otherwise. For each replacement sample, 25 accepted steps are373

required, with the step size adjusted as in Skilling (2006).374

Since likelihood function and evidence values can become quite large, the nested sampling375

procedure is implemented on a logarithmic scale to avoid the potential for numerical over-376

flow errors. Sampling iterations are terminated when the current iteration’s live evidence377

(Keeton, 2011) can contribute no more than 0.05 to the currently accumulated evidence and378

when the maximum difference in log likelihood between any two live population samples is379

less than 0.5.380

A. Measured surface impedance381

For the results reported in the remainder of this paper, the material under test consists of382

single-layer and two-layer combinations of melamine foam and Armafoam Sound (AFS) 240383

foam. The dataD used for studying the porous materials consisted of normal-incidence com-384

plex acoustic surface impedance, measured in a 29 mm diameter impedance tube using the385

transfer-function method (Chung and Blaser, 1980; International Standards Organization,386

1998).387

To study the applicability of the method under varying material compositions, the two-388

layer sample was measured in two orientations, with both the melamine foam and the AFS389
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foam forming the top layer in turn. Figure 1 illustrates the measured surface impedance for390

both orientations.391

FIG. 1. (Color online) Experimentally measured, specific normal incident surface impedance of

two layers of porous materials as function of frequency. Solid-line: Armafoam sound 204 foam

behind Melamine foam with the later being exposed to the incident sound. Dotted-line: Melamine

foam behind Armafoam sound 204 foam with the later being exposed to the incident sound.

B. Determination of layers present392

Bayes factors were employed to determine the number of layers present in the porous393

sample under test. In the present work, a simpler model (one with fewer porous layers) is394

always preferred if it yields a positive Bayes factor (higher evidence value) when compared395

to a more complex model. Additionally, if the Bayes factor comparing two models is less396

than 20 dBans, the simpler model is preferred.397

Given the measured surface impedance data for the orientation with the melamine foam398

layer on top and considering the layer thickness as a free parameter, the Bayesian evidence399
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TABLE I. Evidence values and Bayes factors for combinations of melamine foam and AFS foam

varying the number of layers present in a multilayer formulation. Evidence values Zi for the model

with i layers presented logarithmically, as the mean ± standard deviation from four nested sampling

runs. Bayes factors Ki,i−1 comparing the model with i layers to that with i − 1 layers calculated

from the mean log evidence and presented to the nearest decibans.

# Layers (Melamine on AFS) Log Evidence ± deviations (dBans) Ki,i−1 (dBans)

1 -2902.8 ± 1.3 –

2 2137.2 ± 13.0 5040

3 2152.8 ± 26.5 16

4 2106.8 ± 23.5 -46

# Layers (AFS on Melamine) Log Evidence ± deviations (dBans) Ki,i−1 (dBans)

1 -2491.1 ± 0.9 –

2 -1237.7 ± 2.6 1253

3 -1191.7 ± 45.2 46

4 -1193.9 ± 43.0 -2

is computed for models considering various numbers of layers (1-4), including two different400

layer orientations. In addition to the models of 1- and 2-layers, overparameterized models,401

namely 3- and 4-layers are intentionally tested to evaluate how the Bayesian evidence behaves402

for these models.403
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Table I lists these evidence values given by Equation (31) estimated using the nested404

sampling. With increasing number of layers, from 2-layers no significant increase of the405

logarithmic evidence can be observed. These lead to the selection of a two-layer model, con-406

sistent with what is physically expected, knowing a two-layer sample provided the measured407

data. Since fixing the thickness of the individual layers led to non-realistic thicknesses of408

the overall material sample for any combination other than the two layers actually present,409

a two-layer model is used and the evidence are not tabulated for the fixed-thickness case.410

In the case when the AFS 240 foam layer is on the top of melamine foam, the effect411

of the first layer becomes dominant. The evidence values listed in Table I indicates that412

any of these (4) models with the intended orientation does not physically agree with the413

measured two-layer material setting. For this reason, no further results are reported for this414

particular case. Moreover, considering the parameter value reported in Table II, the AFS415

240 foam layer has a flow resistivity greater than 10 times of that for the melamine foam.416

It indicates that the porous material layer with significantly higher flow resistivity as the417

surface layer seems to overshadow the layers of lower flow resistivity behind it. A potential418

for future work would be to study this situation in further detail, in an attempt to discern419

the limitations of the diverse porous parameters for those multilayer materials in which the420

pore stratification is particularly pronounced.421

C. Parameter estimation for two-layer material422

In addition to the evidence used to determine the number of material layers present in423

the sample, the nested sampling procedure implemented according to Section III E pro-424
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duces samples from the posterior probability distribution. This distribution quantifies the425

knowledge gained about the parameters describing the macroscopic pore structure.426

Focusing on the two-layer model (as selected by the evidence described in Section IVB),427

the posterior distribution has eight dimensions: for each of the two layers, three dimensions428

correspond to the physical parameters of the Miki generalized model, with an additional429

dimension for the layer thickness. For the sake of visualization in this paper, the posterior430

distribution samples are plotted as marginalized views along each possible combination of431

two dimensions.432

Figures 2 plots the posterior distribution samples while focusing on the dimensions rele-433

vant for the melamine foam and AFS foam layers, respectively. Figure 3 shows the dimen-434

sions of the posterior distribution describing both layers simultaneously. In each of these435

figures, the samples output from the nested sampling process are plotted with color indicat-436

ing the logarithmic posterior probability density. Regions of highest posterior probability437

indicate the most likely parameter values, in light of the experimentally-measured surface438

impedance data.439

Each subplot within the figures concentrates on the relationship between two parameters.440

For example, Figure 2 (a) shows the posterior dimensions of flow resistivity (abscissa) and441

thickness (ordinate) of the melamine foam layer. The top-right subplot of Figure 3 shows442

the covariance between the tortuosity of the AFS foam layer (abscissa) and the thickness of443

the melamine foam layer (ordinate).444

The posterior distribution samples are also used to estimate the mean value and standard445

deviation of each parameter, via Equations (34) and (35). Table II lists these estimates, as446
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FIG. 2. (Color online) Marginal logarithmic posterior samples for melamine foam layer (a) and

AFS foam layer (b). Every fifth sample from the nested sampling procedure is plotted with color

proportional to logarithmic posterior probability density. Parameters shown include layer thickness

d, flow resistivity σf , porosity φ, and tortuosity α∞. (a) Layer 1 (melamine foam). (b) Layer 2

(AFS 240 foam).
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FIG. 3. (Color online) Marginal logarithmic posterior samples, showing the interaction between the

melamine and AFS foam layers. As in Figure 2, each sample from the nested sampling procedure

is plotted with color proportional to logarithmic posterior probability density. The parameters

shown include layer thickness d, flow resistivity σf , porosity φ, and tortuosity α∞.

estimated from the posterior samples plotted in Figures 2 (a), 2 (b) through Figure 3 for447

the two-layer case of melamine foam on AFS foam.448

To study the ability of the Bayesian analysis to determine the thickness of the constituent449

layers, two posterior distributions are determined. In the first, the layer thickness is con-450

sidered as an unknown free parameter and estimated from the data along with the other451

physical parameters. In the second case, only the Miki model parameters are estimated from452

the data, while the layer thickness is measured physically and fixed at its known value. While453

only the posterior distribution with layer thickness as a free parameter is plotted, Table II454

also includes the posterior parameter estimates from the case where the layer thickness is455

fixed at its actual value.456
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TABLE II. Estimated parameter values (mean ± standard deviation) based on measured data for

the acoustic surface impedance for the combination of melamine foam on AFS 240 foam. Two-

layer fit is obtained using the 3-parameter Miki generalized model. The layer thickness is estimated

from measured acoustic data (top) and fixed at the known value (bottom). Directly measured flow

resistivity, σf , and porosity, φ, from a Round Robin Test (Horoshenkov et al., 2007) are also listed

for ease of comparison.

Layer (Sampled Thickness) Melamine AFS 240

Layer Thickness, d (cm) 2.60 ± 0.01 2.39 ± 0.26

Flow Resistivity, σf (Ns/m4) 7,360 ± 140 108,200 ± 8,380

(Directly measured), σf (Ns/m4) 9,900 ± 800 141,400 ± 44,000

Porosity, φ 1.00 ± 0.00 0.96 ± 0.07

(Directly measured), φ 0.98 ± 0.01 0.80 ± 0.02

Tortuosity, α∞ 1.00 ± 0.00 5.07 ± 0.62

Layer (Fixed Thickness) Melamine AFS 240

Layer Thickness (cm) 2.50 2.50

Flow Resistivity, σf (Ns/m4) 8,050 ± 160 108,260 ± 2,420

(Directly measured), σf (Ns/m4) 9,900 ± 800 141,400 ± 44,000

Porosity, φ 1.00 ± 0.00 0.93 ± 0.01

(Directly measured), φ 0.98 ± 0.01 0.80 ± 0.02

Tortuosity, α∞ 1.01 ± 0.01 4.16 ± 0.1030
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Table II indicates, the parameter standard deviations for layer 2 are larger than those for457

layer 1. This agrees with what might be physically expected, since the acoustic waves used458

to measure the material’s surface impedance must propagate through the first layer before459

encountering the second layer. In addition to the larger standard deviation estimates, the460

larger uncertainty in the layer 2 parameter values is seen in the plotted posterior distribution.461

The effect is particularly evident in Figure 3, where the distribution is much broader along462

the dimensions corresponding to the second layer than along the dimensions for the first463

layer.464

Note that the material samples used in this work are the same as those tested in the Round465

Robin experiments (Horoshenkov et al., 2007; Pompoli et al., 2017). The non-acoustically466

measured values of the porosity and flow resistivity (Horoshenkov et al., 2007) for melamine467

foam are 9.9 ± 0.8 kPa sm−2 and 0.98 ± 0.01, respectively. For AFS 240 foam, these values468

are 141.4 ± 44.0 kPa s m−2 and 0.80 ± 0.02, respectively. Table II also lists these values469

for ease of comparison. In Table II, the porosity being close to 1.0 actually indicates a high470

enough value, as high as 0.98. It is straightforward to demonstrate that for a material such471

as melamine foam the porosity is high enough and it does not control the measured acoustic472

behavior. This may be the reason why models such as the Delany and Bazley (1970) and473

the original model by Miki (1990) neglect the porosity and tortuosity.474

To validate the physical parameter values obtained from the Bayesian inversion procedure,475

these estimated parameter values are used to model the surface impedance of the two-layer476

material. This model is then compared to the experimentally-measured surface impedance477

data. Figure 4 shows the measured complex surface impedance data and two-layer Miki478
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(1990) generalized model fit obtained with the estimated parameter values. The agreement479

between the measured and modeled results becomes evident. These are achieved using the480

estimated parameter values.481

FIG. 4. (Color online) Measured and modeled surface impedances of two layered porous forms

with Melamine on on top of AFS 204 foam. In the Bayesian model-based estimation, the layer

thickness is kept either as a fixed known value (2.5 cm), or as an unknown parameter.

V. CONCLUSIONS482

A Bayesian model-based acoustic method for inversely determining the pore microstruc-483

ture of multilayer porous media from the acoustic impedance data has been presented. This484

work shows that the method simultaneously determines the number of layers present in a485

two-layer sample, as well as the physical properties of each constituent layer. The nested486

sampling algorithm is used to perform the numerical calculations and to provide estimates of487

the Bayesian evidence and samples from the posterior distribution. The obtained evidence488
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provides a quantitative method of model selection for determining the number of layers in a489

material under test, while the posterior distribution quantifies the knowledge gained about490

the layers’ physical properties. The method is demonstrated with the analysis of a two-layer491

combination of melamine foam and Armafoam Sound 240 foam. The method requires fur-492

ther development to extend it to those materials which consist of porous layer with strong493

functional gradient. Specifically, it is impossible to determine accurately the layer composi-494

tion of the sample which consisted of the low permeability AFS 240 foam layer installed on495

the specimen’s top.496
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Caption609

Figure 1. (Color online) Experimentally measured, specific normal incident surface impedance610

of two layers of porous materials as function of frequency. Solid-line: Armafoam sound 204611

foam behind Melamine foam with the later being exposed to the incident sound. Dotted-612

line: Melamine foam behind Armafoam sound 204 foam with the later being exposed to the613

incident sound.614

Figure 2. (Color online) Marginal logarithmic posterior samples for melamine foam layer615

in (a) and AFS foam layer in (b). Every fifth sample from the nested sampling procedure616

is plotted with color proportional to logarithmic posterior probability density. Parameters617

shown include layer thickness d, flow resistivity σf , porosity φ, and tortuosity α∞. (a) Layer618

1 (melamine foam). (b) Layer 2 (AFS 240 foam).619

Figure 3. (Color online) Marginal logarithmic posterior samples, showing the interaction620

between the melamine and AFS foam layers.621

Figure 4. (Color online) Measured and modeled surface impedances of two layered porous622

forms with Melamine on on top of AFS 204 foam. In the Bayesian model-based estima-623

tion, the layer thickness is kept either as a fixed known value (2.5 cm), or as an unknown624

parameter.625
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TABLE I. Evidence values and Bayes factors for combinations of melamine foam and AFS626

foam varying the number of layers present in a multilayer formulation. Evidence values Zi627

for the model with i layers presented logarithmically, as the mean ± standard deviation628

from four nested sampling runs. Bayes factors Ki,i−1 comparing the model with i layers to629

that with i − 1 layers calculated from the mean log evidence and presented to the nearest630

decibans.631

TABLE II. Estimated parameter values (mean ± standard deviation) based on measured632

data for the acoustic surface impedance for the combination of melamine foam on AFS 240633

foam. Two-layer fit is obtained using the 3-parameter Miki generalized model. The layer634

thickness is estimated from measured acoustic data (top) and fixed at the known value635

(bottom). Directly measured flow resistivity, σf , and porosity, φ, from a Round Robin636

Test (Horoshenkov et al., 2007) are also listed for ease of comparison.637
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