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Introduction 29 

In current practice, men with potential prostate cancer are screened with serum prostate 30 

specific antigen (PSA); raised levels and/or a suspicious digital rectal exam (DRE), are 31 

investigated with prostatic biopsies and magnetic resonance imaging (MRI). The PSA test is 32 

not recommended as a population screening test, as it is deemed not to be sufficiently 33 

specific or sensitive for the detection of clinically significant prostate cancer. (1) However 34 

updated guidance by the US Preventative Service Task Force, which is based on level C 35 

evidence, recommends that men aged 55 to 69 years, can make an informed decision as to 36 

whether or not to undergo PSA-based screening.(2)  37 

Trans-rectal ultrasound (TRUS) biopsy has traditionally been the most widely used biopsy 38 

method but has a number of limitations including risk of infection and bleeding, and 39 

challenges in accessing the anterior gland particularly in large prostates. Prostate cancer can 40 

be defined as clinically significant when at least a single biopsy core of Gleason score 3+4 41 

(ISUP Grade 2) or greater is found; clinically insignificant cancer is defined as presence of 42 

only low volume Gleason 3+3 (ISUP Grade 1) (3, 4). TRUS biopsy has been shown to both 43 

miss clinically significant prostate cancer and detect clinically insignificant prostate cancer.(5, 
44 

6) 45 

Recent studies have shown the potential value of using pre-biopsy multi-parametric MRI 46 

(mpMRI) to improve detection and characterisation of clinically significant prostate cancer. 47 

Pre-biopsy mpMRI has been shown to increase the detection rate of clinically significant 48 

prostate cancer from 26% to 38% when compared to TRUS guided biopsies in the multi-49 

centre randomised PRECISION clinical trial.(4) The PROMIS study demonstrated the potential 50 

for mpMRI to be used as a triage test before prostate biopsy. The results from this UK multi-51 

centre study showed a quarter of men had normal mpMRI and could potentially avoid an 52 

unnecessary biopsy if mpMRI was performed first.(3) Around a third of UK centres have now 53 

adopted pre-biopsy mpMRI as a standard of care.  54 



3 

 

The prostate imaging reporting and data system (PI-RADSv2) produced through an 55 

international collaboration between the American College of Radiology and the European 56 

Society of Uroradiology (ESUR) has been developed to reduce variation in scan acquisition 57 

and to standardise interpretation of prostate mpMRI and is now in routine clinical use.(7) This 58 

has helped to further strengthen the case for mpMRI as a triage tool in routine care. This has 59 

partially resolved the previous unmet clinical need but there are some challenges remaining 60 

including MRI “missing” 10% of Gleason 3+4 tumours, detection of tumours at the prostatic 61 

apex and accurate risk stratification.(8) 62 

With clinical practice moving towards pre-biopsy mpMRI as a standard of care there is 63 

increasing interest in the potential to use radiomics to increase the overall accuracy of 64 

mpMRI and in an attempt to tackle some of the remaining issues mentioned above and/or 65 

resolving mismatches between MRI and biopsy. Radiomics refers to the extraction of large 66 

amounts of “invisible” quantitative imaging features from medical images which can be 67 

analysed to provide predictive and prognostic information about patients.(9) These 68 

quantitative metrics can provide important insights into prostate cancer phenotype and may 69 

potentially aid diagnosis, improve assessment of treatment response and better predict 70 

patient outcome.(10)  Textural analysis, a method of radiomics, assesses the structural 71 

heterogeneity and spatial organisation of different tissues.(11) By addressing challenges to the 72 

more widespread adoption of this technique, which include the need for standardisation of 73 

imaging protocols and segmentation methods, future work may provide additional information 74 

to guide the non-invasive characterisation of prostate cancer.(12) 75 

This review focuses on the potential value of using magnetic resonance textural analysis 76 

(MRTA) in the assessment of prostate cancer. Initially a brief overview of pathological 77 

grading and relevant aspects of mpMRI for current characterisation of prostate cancer will be 78 

provided. This will be followed by review of the evidence-base on MRTA in prostate cancers 79 

and a discussion of whether this emerging technique could be implemented into the clinical 80 

pathway as a standardised tool for use in prostate cancer assessment. 81 
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Current Diagnostic Methods 82 

Pathological grading 83 

The majority of textural analysis validation studies in prostate cancer have used the 84 

traditional Gleason system as a histological comparison. This system is based on five basic 85 

grade patterns of the histological arrangement of carcinoma cells and the uniformity of the 86 

glands on a prostatic tissue section.(13) The Gleason sum score (GS) is currently assigned by 87 

combining the highest-grade score with the most common grade.(14)  
88 

The International Society of Urological Pathology (ISUP) 2014 Gleason grading compresses 89 

the old Gleason system and simplifies it into more accurate prognostic groups (Table 1). The 90 

biggest changes being the compression of GS ≤6 to ISUP grade 1 and the split of GS 7 91 

cancers into two distinct prognostic groups: ISUP 2 and 3.(15) Future validation studies should 92 

compare textural results against pathology with ISUP grades. 93 

 94 

mpMRI 95 

Multiparametric MRI is becoming a more widely used non-invasive alternative to biopsy in 96 

the characterisation and diagnosis of prostate cancer. There are four main parameters used 97 

in detecting prostate cancer: T2-weighted MRI (T2w-MRI), diffusion weighted imaging (DW-98 

MRI), dynamic contrast enhanced imaging (DCE-MRI) and MRI spectroscopy (MRI-S).(16) 99 

MRI-S has fallen out of favour since it was first reported. 100 

 101 

T2w-MRI 102 

T2w-MRI provides a three dimensional (3D) map of prostatic anatomy and can indicate the 103 

size of a cancer and its aggressiveness.(17) It differentiates the internal zonal anatomy of the 104 

prostate. If the peripheral zone (PZ) contains cancerous tissue, it would be visualised as 105 

round or ill-defined and of low T2w signal intensity.(18) The main limitation for the detection of 106 
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PZ cancers with T2w-MRI, is that low signal intensity can also be seen in benign 107 

abnormalities such as prostatitis, fibrosis and post-biopsy haemorrhage (which can be 108 

assessed for on T1w imaging).(19) If significant haemorrhage is seen it is recommended to 109 

repeat the mpMRI three to four weeks later.  110 

The degree of decrease in signal intensity on T2w-MRI has been shown to correlate with an 111 

increase in GS of tumours within the PZ.(20) Using T2w-MRI to differentiate between benign 112 

and cancerous tissue in the transition zone (TZ) is unreliable.(18) TZ cancer is often seen as a 113 

homogenous signal mass with indistinct margins, this is referred to as the ‘erased charcoal 114 

sign’.(21) T2w-MRI is easier to acquire and less prone to artefacts compared to functional 115 

(non-anatomical) sequences.(22)  116 

 117 

DCE-MRI 118 

DCE-MRI uses T1 weighted (T1w) sequences with an intravenously administered gadolinium 119 

based contrast agent to assess tumour vascularity.(19) T1w-sequences are obtained before, 120 

during and after intravenous (IV) contrast administration. Neovascular vessels in cancerous 121 

tissues are more disordered and the vessel walls are more permeable. As a result there is 122 

greater extravasation of contrast through vessel walls in tumours.(18)  123 

Quantitative metrics can be extracted from DCE-MRI by using pharmacokinetics, which yield 124 

the volume transfer coefficient (Ktrans) and the extracellular volume ratio (Ve) values. Ktrans 125 

describes the microvascular permeability and blood flow, while Ve describes the leakage 126 

space.(19)  Ktrans is elevated in many prostate cancers, due to factors influenced by 127 

neoangiogenesis, combining to cause a significant increase in vascular permeability when 128 

compared to normal tissues.(23) Tumours demonstrate early and high amplitude 129 

enhancement and in some cases, this is followed by rapid contrast washout. 130 

Like T2w-MRI, there is an overlap with benign conditions (prostatitis, vascular nodules of 131 

benign prostatic hypertrophy), therefore DCE-MRI is used as an adjunct sequence for 132 
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assessment in prostate cancer. Studies have shown that these various kinetic parameters 133 

poorly correlate with GS. However it has been shown to be one of the more useful 134 

sequences used in detecting residual or recurrent tumour following radiotherapy or 135 

prostatectomy.(19) 136 

 137 

DW-MRI 138 

DW-MRI measures the thermally induced random molecular displacement of water 139 

molecules within tissues.(24) This measurement provides information about water diffusion 140 

within tissues as well as perfusion of blood in the capillary network. To combine these 141 

measurements an apparent diffusion coefficient (ADC) value is calculated.(25) To calculate an 142 

ADC, several acquisitions are needed with different magnetic field gradient durations and 143 

amplitudes (b values).(19)  Studies have shown a significant but inconsistent inverse 144 

relationship between ADC and GS in PZ prostate cancer.(26, 27) Prostate cancer shows low 145 

signal intensity on ADC maps and high signal intensity on high b-value DW-MRI images at 146 

high b-values. DW-MRI is considered to be an important parameter in mpMRI due to its 147 

superior accuracy in distinguishing between benign and malignant abnormalities in the PZ.(19, 
148 

28) Therefore, when performing prostate mpMRI for cancer detection both DW-MRI and T2w-149 

MRI should be the minimum dataset used. 150 

 151 

Value of mpMRI 152 

The PROMIS study showed that mpMRI was more sensitive for the detection of significant 153 

cancers than biopsy, but less specific.(3) One of the main limitations of prostate MRI is 154 

variations in imaging quality between centres. Although PI-RADSv2 has helped to 155 

standardise interpretation and reporting of mpMRI, it has been less successful in ensuring 156 

accuracy and reproducibility of data acquisition.(10, 12) This is similar to the problem that is 157 

faced with textural analysis software. 158 
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Textural analysis 159 

Radiomics is an emerging field which involves conversion of digital medical images into 160 

mineable high-dimensional data which can be used to extract quantitative image features on 161 

the basis of intensity, shape, volume and texture features.(29, 30) Radiomic textural analysis 162 

allows assessment of the spatial inter-relationships of pixel intensities and can be used to 163 

quantify lesion heterogeneity, consequently it has been an area of rapid growth in cancer 164 

imaging research recently because of the potential to extract additional quantitative data from 165 

standard-of-care medical imaging which could help improve diagnostic accuracy and clinical 166 

decision making.(31) The technique uses mathematical methods to evaluate the grey level 167 

intensity and position of pixels within an image.(32) The goal of radiomics is to convert images 168 

into mineable data, with high fidelity and high throughput which incorporates five processes: 169 

image acquisition and reconstruction; image segmentation and rendering; feature extraction 170 

and qualification; databases and case sharing; ad hoc informatics analysis.(33)  171 

First order texture analysis, otherwise known as histogram analysis, extracts pixel intensity 172 

values within a region of interest which are then displayed graphically.(32) The more simplistic 173 

textural analysis involves an initial filtration setup by applying fine, medium and coarse filters 174 

to imaging data which allow features within the image which are not perceptible to the naked 175 

eye to be extracted and quantified in terms of heterogeneity, irregularity and brightness. The 176 

fine filter enhances tissues while the medium and coarse filters enhance underlying 177 

vasculature and other discriminatory features.(34) An example histogram produced by first 178 

order textural analysis software is shown in Figure 3. As there is no comparison between 179 

pixel relationships in histogram analysis, it does not convey spatial information. Metrics are 180 

calculated from the histogram, including uniformity, spread, symmetry and randomness of 181 

pixel intensity values within the ROI.(11) The common histogram features quoted in the 182 

published literature are mean, standard deviation (SD), skewness, kurtosis, entropyHIST and 183 

energyHIST. Table 2a defines and indicates the impact of these histogram features.  184 
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More complex computation (radiomic) analysis of image features explores relationships 185 

between pixels within the ROI.(35)  Additional information can be extracted regarding local 186 

variability in pixel intensities with smoother or more homogeneous areas having smaller 187 

textural variability; rougher or more heterogeneous areas having greater textural variability. 188 

Second order statistics, also referred to as Haralick features, compare the relationship 189 

between two pixels whereas higher order textural analysis compare the relationship between 190 

more than two pixels. These forms of textural analysis are referred to as matrices. These 191 

more complex statistical analyses allow the conveyance of spatial information. Second order 192 

features provide information on a more localised level than histogram features and are based 193 

on grey-level dependence matrices (GLCM). Simplistically, they describe how often a grey 194 

tone in an image will appear in a spatial relationship to another grey tone. (36)  Higher order 195 

features are based on neighbourhood grey-tone difference matrices (NGTDM) or grey-level 196 

run-length matrices (GLRLM).(32)  197 

GLCM indicates the spatial relationship between 3D pixels (voxels) in a specific direction 198 

while also indicating the properties of homogeneity, randomness, uniformity and linear 199 

dependency of an image. The NGTDM is based on differences between voxels and 200 

neighbouring voxels. This can indicate coarseness and complexity within an image, similar to 201 

perception of images by the human eye.(37) There are thousands of features which can be 202 

extracted using second order analysis, the most commonly encountered in the published 203 

literature include energyGLCM, homogeneity, contrast, entropyGLCM and correlation.(11) These 204 

features are further defined in Table 2b.  205 

 206 

Machine learning  207 

Machine learning techniques have been integrated into the radiomic workflow in some more 208 

recent studies. Firstly, this technique can be used for tumour auto-segmentation into regions 209 

or volumes of interest which may reduce the likelihood of normal tissue inclusion. Another 210 
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use which requires further validation, is in the production of a classification model to stratify 211 

patients into various risk categories. In a cohort of 147 patients with prostate cancer, Fehr et 212 

al studied different classifiers which could be used to stratify patients with prostate cancer.(38)  213 

There is currently great interest in the use of artificial intelligence and machine learning in 214 

medical imaging.(39) At present there is a lack of evidence to support routine clinical use but 215 

these techniques have the potential to improve the translation of radiomic workflows into 216 

prostate cancer management pathways. The combination of textural analysis of mpMRI with 217 

machine learning classification may facilitate more informed clinical decision making in the 218 

future. 219 

 220 

Clinical implementation 221 

Figure 1 illustrates a simplified workflow demonstrating a pathway of how textural analysis 222 

could be implemented into clinical practice. This entails several key steps which explained 223 

are detailed below. 224 

 225 

Segmentation and co-registration  226 

Accurate tumour segmentation is a crucial initial workflow step. Features from histogram and 227 

matrices analyses have all been shown to be affected by segmentation method.(11) Inclusion 228 

of normal tissues within the segmented ROI can influence the results of textural analysis. 229 

Prostate cancer, like any other tumour can have poorly defined margins which may make 230 

manual segmentation challenging. Most of the published studies evaluating MR textural 231 

analysis in prostate can have used similar methodology with manual segmentation on a 232 

single axial image demonstrating the largest cross-sectional area of tumour. An improvement 233 

on this, would be to segment the whole tumour volume.(21) 234 
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Another important consideration is the methodology used for comparison of pathological and 235 

imaging data, which may be challenging if only using a single imaging slice for radiomic 236 

analysis. Retrospective studies have generally either employed cognitive co-registration 237 

using visual cues such as the prostatic urethra as indicated by Figure 2 or in a few studies 238 

digital co-registration. It is also important to ensure all the mpMRI sequences are co-239 

registered. 240 

A small study by Parmar et al in 20 patients with lung cancer compared semi-automated 241 

segmentation with manual segmentation, showing reduced inter-observer variability and 242 

delineation for radiomic analysis.(40) There is a paucity of evidence on the value of automated 243 

segmentation methods for whole tumour evaluation in prostate cancer and this warrants 244 

evaluation in future prospective studies to determine if it is beneficial. 245 

 246 

Software packages 247 

A variety of different software packages, both open-source and commercial based are 248 

available to be used for textural analysis of imaging data. A recent review by Larue et al, 249 

provides a detailed overview of various different software packages, including information 250 

regarding types of imaging modality supported, image pre-processing steps and features 251 

extraction.(37) Recently a new open-source software package (LIFEx, www.lifexsoft.org) has 252 

been developed and made freely available in an attempt to standardise further research.(41) 253 

This software permits multi-modality radiomic analysis of medical imaging. The two main 254 

commercial software packages, TexRAD and RADIOMICS use a Laplacian of Gaussian 255 

(LoG) filter as part of image and feature pre-processing. The Gaussian filter reduces image 256 

noise allowing the subsequent Laplacian filter to detect regions of rapid intensity change.(42) 257 

Pre-processing is essential as it allows the correction of magnetic field inhomogeneities and 258 

intensity normalisation across subject acquisition both in study and between studies.(37)  259 

Researchers should ensure any package used has adequate pre-processing before 260 
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commencing with their studies. Currently there is a paucity of data to recommend using one 261 

software package over any other.  262 

 263 

Texture analysis in the diagnosis of PZ cancer 264 

At the time of writing there are 10 articles in the published literature evaluating the potential 265 

role of MRTA in prostate cancer which are summarised in Table 3 and reviewed in more 266 

detail in subsequent sections.  267 

The largest patient cohort studied to date (n = 147) assessed the potential value of MRTA for 268 

differentiating clinically significant prostate cancer in the PZ from non-significant/benign 269 

prostatic tissue was evaluated in two separate papers. Fehr et al used the same set of 270 

patients as Wibmer et al but increased the proportion of TZ samples and the textural features 271 

extracted.(36, 38)  272 

EntropyGLCM and correlation extracted from T2w-MRI showed significant differences between 273 

benign and malignant cases in both studies. Fehr et al additionally found mean pixel intensity 274 

to be a useful discriminatory feature for differentiating clinically significant tissue. All features 275 

extracted from DW-MRI showed a high significance level leading to their recommendation to 276 

use first and second order features extracted primarily from DW-MRI for diagnosis of 277 

clinically significant PZ cancer.(36, 38) 278 

 279 

Texture analysis in the diagnosis of TZ cancer 280 

Conversely, multiple studies have reported conflicting results for MRTA use in the diagnosis 281 

of clinically significant TZ cancers. Wibmer et al showed no significant difference in textural 282 

features extracted from DW-MRI between PZ and TZ cancers. At T2w-MRI only correlation 283 

and contrast were significant features in both TZ and PZ textural analysis.(36) 284 
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Sidhu et al also evaluated the utility of textural features for detection of clinically significant 285 

TZ cancer in a study of 26 patients and found kurtosis and entropyHIST extracted from DW-286 

MRI and T1w sequences to be significant predictors.(43) Kurtosis became insignificant 287 

following removal of the tumour from the slice. Two small pilot studies (n = 8 and n = 18) also 288 

looked at the diagnostic accuracy of MRTA for TZ cancers but these studies were under-289 

powered, so the results are inconclusive.(44, 45) 290 

 291 

Texture analysis in the characterisation of clinically significant prostate cancer  292 

Few studies have explored the potential value of MRTA for non-invasive grading of prostate 293 

malignancy. A small number have reported that textural features accurately correlate with GS 294 

on pathological material obtained at TTMB or radical prostatectomy. The textural features of 295 

contrast and homogeneity showed most promise. Vignati et al found that second order 296 

features of contrast and homogeneity significantly correlated with GS in a study of 45 297 

patients.(46) Gnep et al corroborated these findings in a larger study of 74 patients and 298 

reported that contrast extracted from DW-MRI significantly correlated with GS.(47) Wibmer et 299 

al have conflicting results, reporting that contrast and homogeneity extracted from DW-MRI 300 

were not significant features in their larger patient cohort (n = 147). Fehr et al indicated that 301 

entropyGLCM and energyGLCM extracted from DW-MRI were useful but could only reliably 302 

differentiate GS 6 from GS 7 and not GS (4+3) from GS (3+4).(38) These initial results 303 

suggest that textural features may only be able to characterise broad groups of cancer 304 

grade, rather than more precise ones.  305 

Various groups have evaluated textural features extracted from T2w MRI, providing a 306 

general consensus that homogeneity correlates with GS.(22, 36, 46) Wibmer et al suggested that 307 

homogeneity may be plausible for differentiating GS 6 from GS>7 and in differentiating GS 308 

(4+3) from GS (3+4) but not between GS 6 and GS 7. In two of three studies, contrast 309 

extracted from T2w MRI also correlated with GS.(36, 46)  310 
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Texture analysis summary 311 

Evidence on the utility of MRTA in prostate imaging is limited, although initial studies are 312 

encouraging and indicate that radiomics might improve diagnostics and reduce the need for 313 

invasive procedures. A future role in differentiating significant from non-significant cancer in 314 

the PZ shows promise as does the ability to predict GS. Further work is required on the utility 315 

of TZ textural features. Many of the research studies have used 3T MRI and there is limited 316 

evidence on data acquired using 1.5T MRI scanners. This again highlights the gap between 317 

research potential and translation to clinical practice. More studies need to be conducted on 318 

1.5T systems with a minimum of 16 pelvic phased array coils as per ESUR guidelines, to 319 

determine whether the prevalent MRI hardware in the United Kingdom is suitable.  320 

The small cohort size and retrospective nature of most published studies makes it difficult to 321 

gauge how reliable and reproducible the reported findings are. Table 4 summarises the MR 322 

textural features which show most promise and warrant further evaluation in further well 323 

designed, prospective studies with larger patient cohorts. 324 

 325 

Current limitations 326 

Retrospective studies 327 

Retrospective studies are more prone to bias and confounding variables which can affect the 328 

significance of the results and introduce decision errors into the interpretation of the results, 329 

leading to wrongly drawn conclusions. Study heterogeneity makes it difficult to ensure 330 

reproducibility, hence large datasets are needed to help overcome this problem. Sala et al 331 

recommend using shared informatics databases across sites to ensure large sample 332 

sizes.(10) In practice, this can be a difficult to achieve due to data protection laws and 333 

infrastructure costs. Most of studies conducted so far are single centre pilot studies with 334 

small sample sizes and differing methodologies, this makes it hard to compare results and 335 

explains the lack of reproducibility.  336 
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Exclusion criteria 337 

Incomplete data is an example of an exclusion criterion used for some of the published 338 

studies listed in Table 3. Removing patients from a study detracts from the power of the 339 

study. If patients were selected using a randomised method, exclusion may also reduce how 340 

accurately the study represents the general population. Other common exclusion criteria 341 

used in these studies are: treatment prior to MRI, imaging artefacts making cancer 342 

segmentation impossible, small tumours (<0.5ml) and/or location precluding segmentation of 343 

benign prostatic tissue.(36) 
344 

 345 

Selection bias 346 

Most of the studies published so far suffer from selection bias. As a result, their findings may 347 

not be generalisable to the wider population of patients with prostate cancer. Some studies 348 

only investigated patients with clinically significant cancer of GS 7 or greater, providing no 349 

information on the utility of MRTA in less aggressive cancers. Other studies chose to focus 350 

on TZ cancers, due to the lack of data in other studies. Lastly, some studies focused on 351 

patients who had undergone radical prostatectomy allowing histopathologic comparison, 352 

thereby selectively choosing patients who have undergone surgery following a TRUS biopsy. 353 

The value of MRTA in diagnosing and characterising prostate cancers in those who are 354 

missed by TRUS biopsy remains uncertain. Some studies performed TRUS biopsy to avoid 355 

selection bias, but as mentioned before, this pathology is not as accurate.(44, 48) TTMB/TPM is 356 

defined by some studies as gold standard and the recommended pathological comparison 357 

tool as it is highly accurate.(43)  358 

 359 

 360 

 361 
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Over testing the data 362 

More significant issues common to some of the studies is potential bias due to oversampling 363 

i.e. extraction of more features than there are participants. Testing many features requires a 364 

statistical correction to remove Type 1 (false-discovery) error. The use of complex regression 365 

models to find significant features, increases the risk of overfitting the data.(48, 49) Regression 366 

models may show effective results in one study yet are unlikely to be reproducible in other 367 

studies. Using only one textural feature per 10 patients in a multiple regression model would 368 

reduce the risk of overfitting in future trial designs.  369 

 370 

Limitations of MRTA 371 

Textural feature extraction, like mpMRI, currently suffers from a lack of standardisation. Grey 372 

level discretization, isotropic resampling of the image, non-standardised nomenclature, 373 

directionality in texture matrices and multiple textural packages all affect feature 374 

computation.(11)  375 

Textural feature computation requires grey level discretisation into an appropriate number of 376 

bins to analyse an image. There are two methods which can be used to achieve this: using a 377 

fixed number of bins or a fixed bin width. Bins refer to class intervals which are used to divide 378 

up pixel intensity data. Using a fixed number of bins will result in dividing the image into 379 

equally spaced intervals with varying bin sizes. Using a fixed bin width based on units of 380 

image intensity, will result in a constant intensity resolution.(50) The literature recommends, if 381 

using a fixed number of bins, to have a minimum of 32 bins, although anything over 64 bins 382 

adds little prognostic value.(11, 51, 52) Due to limited work there is no definitive answer as to 383 

whether bin width or bin interval size is more important.  384 

The evidence available suggests that three dimensional (3D) textural analysis outperforms 385 

two dimensional (2D) textural analysis, with multiple prostate MRTA studies commenting on 386 
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2D textural analysis being a limitation.(22, 46, 49) An isotropic resampling of the image is 387 

recommended for 3D textural analysis, particularly in higher order statistics.(11) 388 

This review has used Hatt et al’s proposed nomenclature to differentiate between the two 389 

levels of entropy and energy by using subscripts.(11, 53) ‘HIST’ indicates histogram and first 390 

order textures (entropyHIST); ‘GLCM’ indicates the GLCM matrix and second order textures 391 

(entropyGLCM). There is a lack of clarity in some studies over which version is used, hence all 392 

future studies should include this or a similar method. 393 

There is no recommended directionality of textural matrices in second and higher order 394 

textures. Some studies have calculated GLCMs as an average of all directions or separately 395 

for each direction. This further contributes to MRTA heterogeneity between centres. Although 396 

undefined the most commonly used distance in a GLCM between voxels is one voxel. (11)  397 

It is also worth highlighting that to date there is a paucity of data on the role of MRTA in 398 

follow-up assessment of prostate carcinoma unlike with other tumour types (where margins 399 

are often easier to distinguish). The focus of research in prostate cancer due to clinical need 400 

is more to identify or stratify tumours and this is potentially more challenging. 401 

 402 

Future perspectives 403 

Radiomics is a relatively new field and is not yet ready for routine clinical implementation. 404 

MRTA is more complicated than radiomics using CT and PET datasets in part because 405 

standardisation and calibration of MRI is intrinsically more complex than techniques based 406 

on photon detection.(54) Other factors which increase the complexity of MRI textural analysis 407 

compared to CT and PET include variability in acquisition protocols and spatial resolution. It 408 

has been reported that the effects of different MRI scanning protocols can be negated by 409 

post-processing brain MR data acquired on different scanners to erase inter-patient 410 

differences in intensity range, and resampling to a uniform matrix size, but there is no 411 

comparable data for mpMRI of the prostate.(55) Initial studies have indicated its potential 412 
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value, but there are challenges ranging from image acquisition and textural feature 413 

estimation which need to be overcome. The problems posed by these challenges contribute 414 

to the heterogeneity of MRTA imaging quality between centres. 415 

There is a need for well-designed, prospective multi-centre studies to clarify more definitively 416 

whether MR textural analysis could have a valuable role in prostate cancer in the clinical 417 

routine. To maximise the validity of future research, it is important that all centres follow strict 418 

methodological guidelines similar to established standards for reporting of diagnostic 419 

accuracy studies (STARD) and standards for reporting of MRI-targeted biopsy studies 420 

(START) of the prostate.(56, 57) Currently there are is no consensus agreement on this aspect 421 

but recent work by Lambin et al introduces the concept of a radiomics quality scoring system, 422 

encompassing all aspects of trial design and workflow steps to try and improve the 423 

robustness of future textural analysis studies.(58)  424 

The value of second order and higher order texture needs to be determined before it can be 425 

used. Studies in the immediate future should concentrate on using histogram features, 426 

across all three mpMRI sequences on a prospective cohort of patients with suspected 427 

prostate cancer. Continuing work should also be performed on incorporating machine 428 

learning into methods, especially with regard to automatic segmentation and classification 429 

models. The use of regression models in future studies is not recommended until much 430 

larger datasets are used. MRTA can also be used as prognostic factor for determining 431 

recurrence of disease as shown by Gnep et al.(47) 
432 

 
433 

Conclusions 434 

Currently diagnosis of prostate cancer is based on a combination of histological and imaging 435 

findings. MRTA offers the potential for objective, non-invasive patient stratification in terms of 436 

potential treatment options. At present the evidence on the utility of MRTA in prostate 437 

imaging is limited. Roles in differentiating significant from non-significant cancer in the PZ 438 
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and prediction of GS show promise. Future larger prospective studies are required to validate 439 

textural features indicated to have potential in characterisation and/or diagnosis of prostate 440 

cancer before translation into routine clinical practice.  441 

 442 

  443 
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Table & Figure Legends 

 

Table 1: ISUP grade and Gleason Grade comparison. A table showing how the International Society of 
Urological Pathology (ISUP) 2014 Gleason grading compresses the old Gleason system and simplifies it 
into more accurate prognostic groups.(15) 

 

Figure 1: Simplified model of radiomics workflow. Model shows the steps that would be involved if 
suitable for clinical practice. This model is essentially used with a view to be able to replace the role of 
prostatic biopsies. If on active surveillance the model would perform a perfect circle, with new images 
acquired every couple of years. 

 

Figure 2: A picture demonstrating how the pathology is cognitively co-registered to a T2w image. 
Cognitive co-registration. A histopathological slice of a radical prostatectomy specimen (left picture) has 
been cognitively co-registered to a T2w image (right picture) of the same patient. The blue arrow points to 
the prostatic urethra. The prostatic urethra shape has been used to co-register the images in addition to the 
shape of the prostate. This allows the best match to the pathology. The tumour regions of interest (ROIs) 
have been outlined in black.  

 

Figure 3: Histogram of pixel intensities within a region of interest. Pixel intensities from a region of 
interest that was run through TexRAD was converted into a histogram. From the histogram statistical 
features would be calculated such as those in Table 2a. 

 

Table 2: Definitions and impacts of known textural features. Tables defining histogram and matrix 
features with impact of feature given for histogram features. a) Histogram (first order) texture definitions 
and impacts. b) Matrix (second order) texture definitions. The impact of matrix features has yet to be 
determined. EntropyHIST and energyHIST refer to the histogram version of this feature. EntropyGLCM and 
energyGLCM refer to the matrix version of this feature. This table has been adapted from Wibmer A et al 
2015 and Miles KA et al 2013.(36, 59) 

 

Table 3: A review table of prostate MRTA studies. A table summarising published literature that explores 
links between prostate cancer and MR textural analysis. The papers are shown as the first author with the 
year that the study was published and related reference number in this review. The sample size shown is 
the final patient number that took part, taking into account exclusion criteria and withdrawals. Textural 
features show the ones that the study tested. First order features refer to histogram analysis; second order 
features refer to the GLCM matrix. Entropy and energy are noted with subscripts to indicate if they are 
second (GLCM) or first order features (HIST), as they can be either. Where no subscript is given, it means 
that energy and/or entropy were not defined by the paper. MRI equipment is listed with scanner magnet 
strength first and then subsequent coils and arrays used. The textural segmentation and software column, 
indicates whether single slice or volume approaches were chosen for tumours and then which textural 
analysis software was used. The results data was then split up for each of the MRI sequences, to highlight 
how results differ between different sequences. In the results part, p values are given when present in the 
data with relevant statistical test. Some features were presented in multiple comparisons such as Gleason 
score 6 to 7 and Gleason score (3+4) to (4+3), hence it was further analysed to assess if it was significant 
at all levels. This explains why there are no p values for those results. The limitations refer to the 
weaknesses of the study, if one is not listed e.g. selection bias, it would indicate that there was none. 
Abbreviations: (SD: standard deviation, T2w: T2 weighted, DW: diffusion weighted, ADC: apparent diffusion 
coefficient, T1w: T1 weighted, TZ: transition zone, PZ: peripheral zone, TRUS: transrectal ultrasound, ROI: 
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region of interest, 2D: two dimensional, AUC: area under the curve, Ve: extracellular volume ratio, PSMA: 
Prostate specific membrane antigen, GS: Gleason score, MRI: magnetic resonance imaging), RLNU: Run 
length non-uniformity, ASM: angular second moment, MPP: mean of positive pixel 

 

Table 4: Potential features of interest warranting further study. Summary of potential textural features 
which may have some value in the diagnosis and/or characterisation of peripheral zone and transition zone 
cancers. These features are based on early data and are therefore not conclusive. Abbreviations: T2w: T2-
weighted, ADC: apparent diffusion coefficient, SD: standard deviation.
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