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Appendix C from S. P. Ellner and M. Rees, “Integral Projection
Models for Species with Complex Demography”
(Am. Nat., vol. 167, no. 3, p. 000)

Stable Population Theory for Integral Projection Models by Stephen P. Ellner
and Michael R. Easterling
This appendix provides proofs for stable population properties of integral projection models (IPM) based on
chapter 5 of Easterling (1998) but reorganized to emphasize models with a compact domain. Our main
mathematical sources are Dunford and Schwartz (1988), Krasnosel’skij et al. (1989), and Zabreyko et al. (1975),
which we refer to as DS, KLS, and Z, respectively. The proofs require some familiarity with basic functional
analysis, but reading this appendix is not necessary for building and using IPMs—the conclusions are all stated
and explained in the main text.

First, we need to restate the model, filling in some technical details omitted in the main text. The space of
individual statesX consists of a finite (possibly empty) set of discrete points and a finiteD p {x , … , x }1 D

number of continuous domains , which are compact sets in Euclidean space of finiteC p {Q , Q , … , Q }D�1 D�2 D�C

dimension . These are called components and are denoted as , , . EachQj isd ≥ 1 Q j p 1, 2, … N p D � Cj

regarded as sitting in its own copy of Euclidean space.X is given the topology induced by the components (i.e.,
a set is open iff its intersection with each continuous component is open in the Euclidean metric topology). This
topology is metrizible by the Urysohn metrization theorem (or concretely by embedding the components as
widely separated subsets in a high-dimensional Euclidean space), so we can regardX as a compact metric space.
The measure onX is the sum of counting measure onD and Lebesgue measure on each component inC. The
integral of a function onX is therefore

D N

f (x)dx p f (x ) � f (x)dx. (C1)� �� j � j
jp1 jpD�1

x Qj

The state of the population is described by , the distribution of individual states at timet (L1 meansn(x, t) � L1

, with the measure stated above and similarly for other spaces). To be more general, we could letX be anyL (X)1

compact metric space equipped with a finite measure on the Borelj-field, and only minor changes are needed
below. The population dynamics are defined by a nonnegative projection kernel :K(y, x)

n(y, t � 1) p K(y, x)n(x, t)dx, (C2)�
X

and we useT to denote the operator defined by the right-hand side of equation (C2). We always assume thatK
is a continuous function on , which is equivalent to our assumption in the main text that all kernelX # X
components are continuous.

Operator Properties

The natural domain forT is L1, the space of state distributions for a population of finite total size, but it is
helpful to work inL2. The following properties make this possible: first,X is a finite measure space and
compact; therefore,K is bounded and square integrable on . Consequently,T is a compact operator fromX # X
L2 into itself (DS, p. 518; KLS, p. 85). Second, becauseX is a finite measure space and is compact,C O L O2

; the second inclusion follows from and the fact that on a finite measure space. Finally,2L FnF ! 1 � FnF 1 � L1 2
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becauseK is bounded,T mapsL1 into C (by the dominated convergence theorem) and therefore also mapsL1

into L2 andL2 andC into C.
In short,T maps into and is compact as an operator fromL2 into itself. MappingL ∪ L ∪ C L ∩ L ∩ C1 2 1 2

into L1 is important because it implies that any eigenvector ofT on L2 represents a finite population distribution.
Mapping intoC is important in sensitivity analysis because it implies that anyL2 eigenvector is well defined
pointwise.T also preserves the coneL of nonnegative functions inL2, which is reproducing and normal inL2

(KLS, pp. 9, 37).
As in the main text, we consider two different assumptions for stable population theory: first, uniform power

positivity (UPP), where some iteratem of the kernel satisfies , and second,u-boundedness of(m)K (y, x) ≥ c 1 0
some kernel iterate, where there is a probability distribution such that for any initial population distributionu(x)

, there are positive numbers depending onn0 such that .n(x, 0) p n (x) � L a, b a(n )u(x) ≤ n(m, t) ≤ b(n )u(x)0 1 0 0

With compact domains, UPP is the stronger assumption; for if , then for any(m)0 ! a ≤ K (x, y) ≤ A ! �

population state , we haven

(m)a n(x)dx ≤ K (x, y)n(x)dx ≤ A n(x)dx,� � �
X X X

so isu0-bounded with , , and . Also, ifT is u-bounded inL1
(m)K u (x) { 1 a(n) p a n(x)dx b(n) p A n(x)dx∫ ∫X X0

(as above), then the same also holds inL2; becauseT mapsL1 into L2, the inequality impliesa(n )u(x) ≤ n(m, t)0

that u is in L2, and if , then , so we have .n � L Tn � L a(Tn )u(x) ≤ n(m� 1, t) ≤ b(Tn )u(x)0 2 0 1 0 0

So, we can think ofT as an operator onL2, with the following properties implied by our assumptions onX
and the kernel:

P1. T and therefore its iterates are compact operators fromL2 into itself that preserve the coneL of
nonnegative functions inL2.

P2. Some iterateTm is u0-bounded with .u � L0

P3. T mapsL2 into .L ∩ L ∩ C1 2

Dominant Eigenvalue

We recall an important property of the spectral radius of an operatorA,

m mr(A ) p r(A) . (C3)

This follows from the Gel’fand formula ; then,n 1/n m mn 1/nr(A) p lim kA k r(A ) p lim kA k pnr� nr�

. Let l be the spectral radius ofT. Taking in P2, we have ,mn 1/mn m m m(lim kA k ) p r(A) n p u T u ≥ a(u )unr� 0 0 0 0

which implies that the spectral radius ofTm is at least (KLS, p. 89); hence, . BecauseT isa(u ) 1 0 l 1 00

compact and the coneL is reproducing, the fact that implies that it is an eigenvalue ofT (KLS, p. 85).l 1 0
P1 and P2 are exactly (but not coincidentally) the assumptions of theorem 11.5 in KLS for theu0-bounded

iterateTm. The conclusions are that (a) Tm has an eigenvalue equal to its spectral radiuslm, with corresponding
eigenvectorw in L; (b) lm is simple, andw is the unique (up to normalization) eigenvector ofTm in L; and (c)
all pointsr in the spectrum ofTm other thanlm satisfy for some .mFrF ≤ ql q ! 1

Theorem 1: Conclusions (a)–(c) also hold forT, with as the dominant eigenvalue and eigenvector.l, w
Proof: The arguments are very similar to those for power-positive matrices (e.g., Pullman 1976).
Proof of (a): We have already seen thatl is an eigenvalue ofT. Let y be an eigenvector ofT corresponding

to l. Then,y is an eigenvector ofTm corresponding to eigenvaluelm. Becauselm is a simple eigenvalue ofTm,
y must be a multiple ofw.

Proof of (b): Supposel is not a simple eigenvalue ofT. Then,T has linearly independent eigenvectors ,w , w1 2

both corresponding tol. Both of these therefore are eigenvectors ofTm corresponding tolm, which is impossible
becauselm is a simple eigenvector ofTm. Similarly, if T has two linearly independent eigenvectors inL, these
would also both be eigenvectors ofTm in L, contradicting (b).

Proof of (c): Let m be any eigenvalue ofT with magnitude greater than . Then,mm is an eigenvalue of1/mq l

Tm, and , so by (c), we must have . Thus, all eigenvaluesr of T other thanl satisfym m mFm F p FmF ≥ ql m p l

for some .mFrF ≤ Ql Q ! 1
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Thus,T has strictly dominant eigenvalue , which is simple and corresponds to a nonnegativel p r(T) 1 0
eigenvectorw, which is the unique nonnegative eigenvector ofT. BecauseT mapsL2 into , theL ∩ C1

eigenvector is necessarily a finite population distribution and is well defined pointwise.

Convergence to Stable Distribution

We now show that the long-term population behavior is described by the dominant eigenvaluel and its
associated eigenvectorw. Let P denote projection onto the space spanned byw, and .Q is also aQ p I � P
projection operator because . LetE0 andE1 denote the ranges ofP andQ, respectively. Becausel is a2Q p Q
nonzero point in the spectrum of the compact operatorT, the Riesz-Schauder theory for compact operators (e.g.,
theorem 3.2 of Z) implies that (d) E0 andE1 are mutually complementary, meaning that anyf in L2 can be
uniquely represented as , with ; (e) E0 andE1 are both invariant underT; (f ) the projectionf p f � f f � E0 1 i i

operatorsP andQ both commute withT; and (g) T has the representation , where andT p T � T T p TP0 1 0

. The spectrum ofT0 consists of the single pointl, and the spectrum ofT1 is the spectrum ofT withT p TQ1

the pointl deleted.
We need to note some properties ofw andu0; w is the dominant eigenvalue ofT considered as an operator on

L2, but by property P3,w is also inL1 because . BecauseTm is u0-bounded and , we have�1w p l Tw w ( 0
, with and, therefore,m ml w p T w ≥ a(w)u a(w) 1 00

w ≥ cu (C4)0

for some constant .c 1 0
Lemma 1: If n0 is a nonnegative initial population distribution, then .mAT n , wS 1 00

Proof: becauseTm is u0-bounded, somT n ≥ a(n )u0 0 0

m 2T n , w ≥ a(n )u , cu p ca(n ) u 1 0.G H G H k k0 0 0 0 0 0

This is the analogue of the fact that repeated multiplication of any nonnegative initial vector by a power-positive
matrix eventually results in a strictly positive vector, whose inner product with the (positive) dominant
eigenvector must be positive.

Theorem 2: Let n0 be any nonnegative initial population distribution, and let be the dominant eigenvalue/l, w
eigenvector. Then,

tT n0lim p Cw (C5)tltr�

for some constant depending on .C 1 0 n(x, 0)
Proof: This again is very similar to the matrix case. Note that as a result of property (f)T T p T T p 00 1 1 0

and the fact that . Therefore, . By the last lemma, fort t t t t mPQ p QP p 0 T p T � T p T P � T Q PT n p cw0 1 0

some . So,c 1 0

t t�m m t�m m t�m m kT n T T n T PT n T QT n c T Qx0 0 0 0
p p � p w � , (C6)t t t t m k( )l l l l l l

where and . BecauseT andQ commute, the last term in equation (C6) equals .m m k kk p t � m xp T n /l T x/l0 1

We know that , so by the Gel’fand formula, there exist such that for allk 1/kr(T ) ! r(T) p l �, N 1 0 kT k ! l � �1 1

. The last term in equation (C6) therefore has a norm less than fork large and thereforekk 1 N [(l � �)/l] kxk
converges to 0.

Theorem 2 proves convergence inL2, but this implies convergence inL1. Both sides of equation (C5) are in
for . Suppose inL2; then, because on a finite measure space, by Hölder’s inequality,L ∩ L t 1 0 x r x 1 � L1 2 k 2

.kx � xk ≤ kx � xk k1k r 0k 1 k 2 2
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Reproductive Value

Existence of a dominant left eigenvector (meaning an eigenvector of the adjoint operatorT∗) follows from thev

fact that any nonzero element in the spectrum of a compact operator has corresponding left and right
eigenvectors (DS, p. 578). A direct calculation shows that the adjoint operator corresponds to the transposed
kernel , which is also continuous, soT∗ also mapsL2 into , implying that has finite∗K (y, x) p K(x, y) L ∩ C v1

integral and is well defined pointwise.
As in the matrix model, the dominant left eigenvector can be interpreted as the state-dependent relative

reproductive value of individuals, that is, their long-term relative contributions to population growth. The
derivation of this property follows the matrix case. It is easy to see that the total reproductive valueV(t) p

grows geometrically at ratel, ; hence, . Let denote thetAv, n(x, t)S V(t � 1) p lV(t) V(t) p lV(0) V(x, t)
reproductive value that results if the initial populationn0 is a smooth approximated function centered atx so that

. On the other hand, by theorem 2, we have thatt tV(x, t)/l p V(x, 0) p Av, n S V(x, t)/l r Av, C(x)wS p0

, where is the constant in equation (C5). Equating these two expressions givesC(x) Av, wS C(x)

v, nG H0

C(x) p . (C7)
v, wG H

Then, lettingn0 converge to ad function atx, we get ; hence, the population at (large) timetC(x) p v(x)/ Av, wS
resulting from a typex founder is proportional to . More generally, equation (C7) says that the population atv(x)
time t from a mixed initial population is asymptotically proportional to the total reproductive value of the initial
population.

Sensitivity and Elasticity

We now show that the main results about sensitivity and elasticity for matrix models extend to the integral
model. In the physics literature, the sensitivity formula (C10) is well enough known to be used without a
literature citation, but for the sake of completeness, we give a derivation here based on the familiar one for
matrix models. Consider a smooth perturbation of the kernel, in particular to , whereK(y, x) � �f (y, xFy , x ) 0 ≤r 0 0

and fr is a smooth approximated function with support limited to a ball of radiusr centered at .� K 1 (y , x )0 0

Then, exactly as in section 9.1 of Caswell (2001), differentiating with respect to� and taking theTw p lw
inner product with givesv

v, Tdw � v, (dT)w p v, ldw � v, dlw . (C8)G H G H G H G H

Then, because , we can cancel terms and rearrange to obtain∗Av, TdwS p AT v, dwS p l Av, dwS p Av, ldwS dl p

, whereFr is the operator corresponding to the approximated functionAv, (dT)wS / Av, wS p d� Av, F wS / Av, wSr

kernel fr, so

v, F wG Hrdl
p . (C9)

d� v, wG H

When we let , the left-hand side of equation (C9) is (by definition) the sensitivity ofl to a change in ther r 0
kernel at , and the right-hand side converges to , so we have(y , x ) v(y )w(x )/ Av, wS0 0 0 0

v(y)w(x)
s(y, x) p . (C10)

v, wG H

In a matrix model, the approximated function is a unit perturbation of a single matrix entry, and the expressions
above collapse to the usual definition of sensitivity. In the integral model, the size of a kernel perturbation is
measured by its integral, and the sensitivity at a point is defined by shrinking the support of the perturbation to
that point.

The elasticity function is
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K(y, x)s(y, x)
e(y, x) p . (C11)

l

In a matrix model, the elasticities sum to 1; in an integral model, the elasticity function integrates to 1:
combining equations (C10) and (C11), we have

1
e(y, x)dydxp v(y) K(y, x)w(x)dxdy� � � �

l v, wG H

1 1
p v, Kw p v, lw p 1. (C12)G H G H

l v, w l v, wG H G H

Similarly,

v(z)w(z)
e(y, z)dy p e(z, x)dx p , (C13)� �

v, wG H

which is the analogue of the result for matrix models that corresponding row and column sums of the elasticity
matrix are equal.

The intuitive meaning of equation (C12) is that if the entire kernel is increased by 5%, thenl is increased by
5%. This property is also implied by the definition of elasticity as the proportional change inl for a proportional
change in the kernel. Consequently, the fact that equation (C12) can be derived from equation (C10) validates
our definition of sensitivity for the integral model—it leads to an elasticity function that corresponds to the
intuitive definition of elasticity.

Noncompact Domains

Bounded noncompact domains are no problem: replace each component by its closure and extend the kernel by
continuity. For any realistic model, this should give a continuous kernel and compact domains. But unbounded
components are more problematic for two reasons.

The first reason is that on an unbounded domain, a kernel mappingL1 into itself cannot be uniformly power
positive because would imply that for ally and, hence, an infinite total population(m)K ≥ c 1 0 n(y, m) ≥ ckn k0 1

at timem. Therefore, stable population theory has to depend on directly showingu-boundedness. In the main
text and appendix B, we gave some conditions implying P2 based on mixing at birth. Another condition,
suggested by Easterling (1998), is as follows: suppose that some kernel iterate satisfies

(m)a(x)u (y) ≤ K (y, x) ≤ b(x)u (y), (C14)0 0

with in L2 and everywhere positive onX; then, that iterate isu0-bounded.a, b
Proof: For any , equation (C14) implies thatn � L2

(m)u (y) a(x)n(x)dx ≤ K (x, y)n(x)dx ≤ u (y) b(x)n(x)dx.0 � � 0 �
X X X

The outer integrals areL2 inner products and therefore finite, so themth iterate isu0-bounded witha(n) p

.Aa, nS , b(n) p Ab, nS
The second problem is that the operator properties P1 and P3 no longer follow from continuity of the kernel.

If, in addition,

2K(y, x) dxdy≤ M, (C15)��
X X

thenT is a compact operator fromL2 into itself (DS, p. 518) andT clearly preserves the cone of nonnegative
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functions. Then, if P2 holds, we have stable population growth inL2 (existence ofl andw and theorem 2
above). However, for sensitivity analysis, the eigenfunctions must be inC and must be well defined pointwise,
and the stable distributionw needs to be inL1. Unfortunately, “there exists no simply formulated necessary and
sufficient conditions on the kernel … which ensure that the operator … maps fromLp into Lq” (Z, p. 92).

Why not work directly inL1? If the kernel satisfies the mild assumptions

K(y, x) ≤ M x, y � X
,∫ K(y, x)dy ≤ M x � XX

thenT mapsL1 into . The problem is compactness; our approach and the basic results in KLS require thatL ∩ C1

some iterate ofT is compact. Combining theorem 3.1.10 in Dunford and Pettis (1940) and theorem 8.21 in DS,
a necessary condition for compactness inL1 of an integral operator with kernelk on Euclidean space is that for
any , there is finite cube such that� 1 0 C(�)

k(y, x)dy ≥ 1 � � (C16)�
C(�)

for all x in X. That is, extreme individuals of a typex outside must either die or immediately shrink backC(�)
into with a probability of at least —it’s acceptable to create them in the model so long as most ofC(�) 1 � �

them go away before too long. In terms of biological generality, this is not really better than bounding the model
by “killing off” individuals outside some large cube before they come into being—which implies compactness in
L2 for a continuous kernel but not necessarily inL1 (see Eveson 1995, corollary 5.1).

As noted in the main text, these problems disappear if a change of variables transforms the model onto a
compact domain and leaves the kernel continuous. Whether this holds depends largely on how the model is
defined outside the range of the data. For example, consider a size-structured model where individual size at time

follows a Gaussian distribution with mean and variance , wherex is the size variable at timet.2t � 1 m(x) j (x)
Several empirical applications have used this model with linear growth and constant variance: ,m(x) p a � a x0 1

, wherex is the log of some linear size measurement. Suppose, in addition, that survival is an2 2j (x) { j

increasing function of size, reaching some asymptote as . Then, if the linear growth model is extended tox r �

all , then no bounded transformation exists that can give a bounded kernel (suppose the transform is�� ≤ x ≤ �

, monotonically taking and producing a transformed kernel on ;˜u p g(x) (��, �) r (a, b) K(v, u) [a, b] # [a, b]
then, as , the transformed kernel assigns 99% probability to smaller and smaller intervals of the formu r b

, so the transformed kernel is unbounded). On the other hand, if the linear model is extended as ab � � ≤ v ≤ b
sigmoid curve outside the range of the data, so that has finite limits as , then logistic transformationm(x) x r ��

results in a bounded continuous kernel via the change-of-variables formula for probabilityx xu p e /(1 � e )
densities.

Finally, we reiterate our advice that integral models be constructed on bounded domains. On an unbounded
domain, a biologically reasonable model has to be constrained so that it cannot produce individuals vastly
different from those actually observed, so you might as well impose a bounded domain from the outset.
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