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Appendix C from S. P. Ellner and M. Rees, “Integral Projection
Models for Species with Complex Demography”
(Am. Nat., vol. 167, no. 3, p. 000)

Stable Population Theory for Integral Projection Models by Stephen P. Eliner
and Michael R. Easterling

This appendix provides proofs for stable population properties of integral projection models (IPM) based on
chapter 5 of Easterling (1998) but reorganized to emphasize models with a compact domain. Our main
mathematical sources are Dunford and Schwartz (1988), Krasnosel'skij et al. (1989), and Zabreyko et al. (1975),
which we refer to as DS, KLS, and Z, respectively. The proofs require some familiarity with basic functional
analysis, but reading this appendix is not necessary for building and using IPMs—the conclusions are all stated
and explained in the main text.

First, we need to restate the model, filling in some technical details omitted in the main text. The space of

individual statesX consists of a finite (possibly empty) set of discrete pots: {x,, ..., X} and a finite
number of continuous domair® = {Q.,, Q.0 ..., Doead , Which are compact sets in Euclidean space of finite
dimensiond > 1 . These are called components and are deno®djas 1,2,... N=D+C QHach

regarded as sitting in its own copy of Euclidean spacés given the topology induced by the components (i.e.,

a set is open iff its intersection with each continuous component is open in the Euclidean metric topology). This
topology is metrizible by the Urysohn metrization theorem (or concretely by embedding the components as
widely separated subsets in a high-dimensional Euclidean space), so we canXeggmedcompact metric space.

The measure oX is the sum of counting measure @hand Lebesgue measure on each componeft ihe

integral of a function orX is therefore

ff(x)dx = Zf(xj) + > ffj(x)dx (C1)

X Q

The state of the population is describedix,t) € L, , the distribution of individual states at {imeneans
L,(X), with the measure stated above and similarly for other spaces). To be more general, we csube lahy
compact metric space equipped with a finite measure on the Bdield, and only minor changes are needed
below. The population dynamics are defined by a nonnegative projection k&iyel :

nly,t+1) = fK(y, x)n(x, t)dx, (C2)

X

and we usel to denote the operator defined by the right-hand side of equation (C2). We always assukie that
is a continuous function oX x X , which is equivalent to our assumption in the main text that all kernel
components are continuous.

Operator Properties

The natural domain fofl is L,, the space of state distributions for a population of finite total size, but it is
helpful to work inL,. The following properties make this possible: firkt,is a finite measure space and

compact; thereforeK is bounded and square integrableXnx X . Consequehtiyg,a compact operator from

L, into itself (DS, p. 518; KLS, p. 85). Second, becaksés a finite measure space and is compéct; L, C

L,; the second inclusion follows fromn| <1+ |n|* and the fact that L,  on a finite measure space. Finally,
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because is bounded,T mapsL, into C (by the dominated convergence theorem) and therefore also Imaps
into L, andL, andC into C.

In short, T mapsL, 0L,0C intoL,nL,n C and is compact as an operator floninto itself. Mapping
into L, is important because it implies that any eigenvectol ain L, represents a finite population distribution.
Mapping intoC is important in sensitivity analysis because it implies that Bpgigenvector is well defined
pointwise.T also preserves the coneof nonnegative functions ih,, which is reproducing and normal i,
(KLS, pp. 9, 37).

As in the main text, we consider two different assumptions for stable population theory: first, uniform power
positivity (UPP), where some iterate of the kernel satisfieK™(y,x) > ¢>0 , and seconghoundedness of
some kernel iterate, where there is a probability distributi¢x) such that for any initial population distribution
n(x, 0) = ny(x) € L, there are positive numbees 3 dependingmrsuch thata(ny)u(x) < n(m, t) < B(nHu(x) .
With compact domains, UPP is the stronger assumption; fOrdifa < KM(x,y) < A< © , then for any
population staten , we have

af n(x)deJK(”‘)(x, yn(x)dx < AJ n(x)dx,

so K™ isu,-bounded withu,(x) = 1 «(n) = afx n(x)dx , an@(n) = Afx n(x)dx . Also, iT is u-bounded inL,
(as above), then the same also hold$.jnbecausel mapsL, into L,, the inequalityo(ny)u(x) < n(m,t) implies
thatuisinL, and ifn, e L,, thenTn, e L,, so we have(Tnju(x) < n(m+ 1,t) < B(ThJu(x).

So, we can think ofl as an operator oh,, with the following properties implied by our assumptionsXn
and the kernel:

P1.T and therefore its iterates are compact operators ftginto itself that preserve the corte of
nonnegative functions ih.,.

P2. Some iteratd™ is u,-bounded withu, € A .

P3.T mapsL,intoL,nL,n C.

Dominant Eigenvalue

We recall an important property of the spectral radius of an operator
r(A™) = r(A)™ (C3)

This follows from the Gel'fand formula(A) = lim . ||A"|*" ; them(A™) = lim . |A™|*" =

(lim .. |A™*™ ™ = r(A) ™ Let \ be the spectral radius df. Takingn = u, in P2, we havd "u, > a(uy)u, ,
which implies that the spectral radius ©f is at leasta(u,) >0 (KLS, p. 89); henca,>0 . Becaukés
compact and the con& is reproducing, the fact that>0 implies that it is an eigenvalud@ ¢KLS, p. 85).

P1 and P2 are exactly (but not coincidentally) the assumptions of theorem 11.5 in KLS igflibended
iterate T™. The conclusions are thaa)(T™ has an eigenvalue equal to its spectral raditiswith corresponding
eigenvectow in A; (b) A™is simple, andw is the unique (up to normalization) eigenvectorTdfin A; and €)
all pointsp in the spectrum off™ other than\™ satisfy |p| < g\™ for somegg< 1 .

Theorem 1 Conclusions §)—(c) also hold forT, with A\, w as the dominant eigenvalue and eigenvector.

Proof: The arguments are very similar to those for power-positive matrices (e.g., Pullman 1976).

Proof of @): We have already seen thitis an eigenvalue of . Lety be an eigenvector of corresponding
to A. Then,y is an eigenvector of ™ corresponding to eigenvall€". Because\™ is a simple eigenvalue of™,

y must be a multiple ofv.

Proof of ©): Suppose\ is not a simple eigenvalue df. Then,T has linearly independent eigenvectarsw,
both corresponding ta. Both of these therefore are eigenvectorsTgfcorresponding to\™, which is impossible
because\" is a simple eigenvector of". Similarly, if T has two linearly independent eigenvectorsAinthese
would also both be eigenvectors ©f' in A, contradicting ).

Proof of ): Let u be any eigenvalue of with magnitude greater thagi™\ . Theul? is an eigenvalue of
T™, and |p™| = |u|™>g\™, so by €, we must have: = A . Thus, all eigenvalyesf T other than\ satisfy
|o] < QN for someQ< 1.
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Thus, T has strictly dominant eigenvalde= r(T) >0 , which is simple and corresponds to a nonnegative
eigenvectonw, which is the unique nonnegative eigenvectofofBecausel mapsL, into L, n C, the
eigenvector is necessarily a finite population distribution and is well defined pointwise.

Convergence to Stable Distribution

We now show that the long-term population behavior is described by the dominant eigenatdeits
associated eigenvector. Let P denote projection onto the space spannedvhbandQ =1 — P .Q is also a
projection operator becau§g’ = Q . Lt andE, denote the ranges & andQ, respectively. Becauseis a
nonzero point in the spectrum of the compact operatothe Riesz-Schauder theory for compact operators (e.g.,
theorem 3.2 of Z) implies thadj E, and E, are mutually complementary, meaning that dng L, can be
uniquely represented ds= f, + f, , withe E €)(E, andE, are both invariant undeF; (f) the projection
operatorsP? and Q both commute withT; and @) T has the representation= T,+ T, , whéfg = TP and
T, = TQ. The spectrum off, consists of the single poirk, and the spectrum of, is the spectrum of with
the pointA deleted.

We need to note some propertiesvofand u,; w is the dominant eigenvalue df considered as an operator on
L,, but by property P3w is also inL, becausav = X*Tw . Becau§g" is u,-bounded andv # 0 , we have
AN"w = T"™w > a(w)u,, with a(w) >0 and, therefore,

w > cu, (C4)

for some constant >0 .
Lemma 1 If n, is a nonnegative initial population distribution, théh™n,, w) > 0
Proof: T™n, > a(ny)u, becausel™ is u,-bounded, so

(T™Ng, W) > (e(No)Ug, Clg) = Cox(No) || Uo||2> O

This is the analogue of the fact that repeated multiplication of any nonnegative initial vector by a power-positive
matrix eventually results in a strictly positive vector, whose inner product with the (positive) dominant
eigenvector must be positive.

Theorem 2 Let n, be any nonnegative initial population distribution, andNetv be the dominant eigenvalue/
eigenvector. Then,

T
lim —-2
e N

= Cw (C5)

for some constan€ >0 depending afx, 0)

Proof: This again is very similar to the matrix case. Note thgf, = T,T,= 0 as a result of progd@rty (
and the fact thaPQ = QP = 0 . Thereforg@,' = T, + T{ = T'P+ T'Q . By the last lemfA&,™n, = cw for
somec>0 . So,

T 'Qx
Ak

W +

1, t—mT m, 1 m, t=m m
Ty _ T""T™M, _ T"PT™,  T"QT no=(£ (C6)

N N N N AT

wherek = t— m andx = T™n,/A\" . Becausk andQ commute, the last term in equation (C6) equBEJ®/\*
We know thatr(T,) <r(T) = X\, so by the Gel'fand formula, there exisN>0  such {fiaf|"*<\ — ¢ for all
k> N. The last term in equation (C6) therefore has a norm less [(han &)/N* ||| k lamge and therefore
converges to 0.

Theorem 2 proves convergencelip but this implies convergence In. Both sides of equation (C5) are in
L, n L, fort>0. Supposex,— x irL, then, becaus& € L, on a finite measure space, by Hélder’s inequality,
1% = Xl < % — ] |1],~ .
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Reproductive Value

Existence of a dominant left eigenvector (meaning an eigenvector of the adjoint opefafoHows from the
fact that any nonzero element in the spectrum of a compact operator has corresponding left and right
eigenvectors (DS, p. 578). A direct calculation shows that the adjoint operator corresponds to the transposed
kernelK*(y,x) = K(x,y), which is also continuous, §6 also mapd., into L, n C, implying thaty has finite
integral and is well defined pointwise.

As in the matrix model, the dominant left eigenvector can be interpreted as the state-dependent relative
reproductive value of individuals, that is, their long-term relative contributions to population growth. The
derivation of this property follows the matrix case. It is easy to see that the total reproductive/ilue
(v, n(x, t)) grows geometrically at ratk, V(t + 1) = AV(t); hence V(t) = NV(0) . LeV(x,t) denote the
reproductive value that results if the initial populationis a smooth approximat& function centered at so that
V(x, t)/N = V(x, 0) = (v,n,). On the other hand, by theorem 2, we have Mg t)/\ — (v, C(x)w) =
C(x) (v, w), whereC(x) is the constant in equation (C5). Equating these two expressions gives

v, Ny)

C(x) =

. c7
<1), W> ( )

Then, lettingn, converge to & function atx, we getC(x) = v(x)/ (v, w) ; hence, the population at (large) titne
resulting from a typex founder is proportional t@(x) . More generally, equation (C7) says that the population at
time t from a mixed initial population is asymptotically proportional to the total reproductive value of the initial
population.

Sensitivity and Elasticity

We now show that the main results about sensitivity and elasticity for matrix models extend to the integral
model. In the physics literature, the sensitivity formula (C10) is well enough known to be used without a
literature citation, but for the sake of completeness, we give a derivation here based on the familiar one for
matrix models. Consider a smooth perturbation of the kernel, in particuldtyto<) + &f, (Y, X| Yo, Xo) , \Ohere
e < 1 andf, is a smooth approximat& function with support limited to a ball of radiuscentered afy,, X,) -
Then, exactly as in section 9.1 of Caswell (2001), differentiafimg= Aw with respectaind taking the

inner product withw gives

(v, TdW) + (v, (dT)W) = (v, N\dW) + (v, dAW). (C8)
Then, becaus&, Tdw) = (T*», dw) = A (v, dw) = (v, A\dw), we can cancel terms and rearrange to obtiin=

@, dT)W)/ (v, W) = de (v, Fw)/ (v, W), whereF, is the operator corresponding to the approxintafanction
kernelf,, so

(v, Fw)
dh = . (C9)
de (v, W)
When we letr — 0, the left-hand side of equation (C9) is (by definition) the sensitivily tof a change in the
kernel at(y,, X,) , and the right-hand side converges(tg)w(x,)/ (v, w) , SO we have
sy, X) = sz)w(;) : (C10)

In a matrix model, the approximatefunction is a unit perturbation of a single matrix entry, and the expressions
above collapse to the usual definition of sensitivity. In the integral model, the size of a kernel perturbation is
measured by its integral, and the sensitivity at a point is defined by shrinking the support of the perturbation to
that point.

The elasticity function is
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K(y, X)s(y: X) _

&y, x) = N

(C11)

In a matrix model, the elasticities sum to 1; in an integral model, the elasticity function integrates to 1:
combining equations (C10) and (C11), we have

f f &y, x)dydx=ﬁ f o) f K(y, yw(x)dxdy

1
= Nowy KW = g W) = L (C12)
Similarly,
f ey, 2y = J o x)dx=”(<?—ww(>z), (13)

which is the analogue of the result for matrix models that corresponding row and column sums of the elasticity
matrix are equal.

The intuitive meaning of equation (C12) is that if the entire kernel is increased by 5% tlseimcreased by
5%. This property is also implied by the definition of elasticity as the proportional changdana proportional
change in the kernel. Consequently, the fact that equation (C12) can be derived from equation (C10) validates
our definition of sensitivity for the integral model—it leads to an elasticity function that corresponds to the
intuitive definition of elasticity.

Noncompact Domains

Bounded noncompact domains are no problem: replace each component by its closure and extend the kernel by
continuity. For any realistic model, this should give a continuous kernel and compact domains. But unbounded
components are more problematic for two reasons.

The first reason is that on an unbounded domain, a kernel mappiimgo itself cannot be uniformly power
positive becaus&™ >c>0 would imply thafy, m) > c|n,|, for alland, hence, an infinite total population
at timem. Therefore, stable population theory has to depend on directly shawiimyindedness. In the main
text and appendix B, we gave some conditions implying P2 based on mixing at birth. Another condition,
suggested by Easterling (1998), is as follows: suppose that some kernel iterate satisfies

a(x)u,(y) < K™(y, ) < b(x)u(y), (C14)
with a, b in L, and everywhere positive 0X; then, that iterate isi-bounded.
Proof: For anyn € L, , equation (C14) implies that

Uo(y) J a(x)n(x)dx < f K™ (x, y)n(x)dx < uy(y) f b(x)n(x)dx.

The outer integrals ark, inner products and therefore finite, so timéh iterate isu,-bounded witha(n) =
(@m,B(n = (b,n).

The second problem is that the operator properties P1 and P3 no longer follow from continuity of the kernel.
If, in addition,

j f K(y, X)?dxdy< M, (C15)

thenT is a compact operator frof, into itself (DS, p. 518) and clearly preserves the cone of nonnegative
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functions. Then, if P2 holds, we have stable population growth,itexistence o\ andw and theorem 2
above). However, for sensitivity analysis, the eigenfunctions must li2and must be well defined pointwise,
and the stable distributiow needs to be i,. Unfortunately, “there exists no simply formulated necessary and
sufficient conditions on the kernel ... which ensure that the operator ... mapsLframto L,” (Z, p. 92).

Why not work directly inL,? If the kernel satisfies the mild assumptions

Ky, ) <M  xyeX
[ Ky, X)dy<M xe X'’

thenT mapsL, into L, n C. The problem is compactness; our approach and the basic results in KLS require that
some iterate off is compact. Combining theorem 3.1.10 in Dunford and Pettis (1940) and theorem 8.21 in DS,
a necessary condition for compactnesd.jrof an integral operator with kern&lon Euclidean space is that for

any € > 0, there is finite cub€(g) such that

f k(y,x)dy>1—¢ (C16)

C(e)

for all x in X. That is, extreme individuals of a typeoutsideC(e) must either die or immediately shrink back

into C(¢) with a probability of at least — ¢ —it's acceptable to create them in the model so long as most of
them go away before too long. In terms of biological generality, this is not really better than bounding the model
by “killing off” individuals outside some large cube before they come into being—which implies compactness in
L, for a continuous kernel but not necessarilylin(see Eveson 1995, corollary 5.1).

As noted in the main text, these problems disappear if a change of variables transforms the model onto a
compact domain and leaves the kernel continuous. Whether this holds depends largely on how the model is
defined outside the range of the data. For example, consider a size-structured model where individual size at time
t + 1 follows a Gaussian distribution with meaiix)  and varianégx) , Whteégethe size variable at time
Several empirical applications have used this model with linear growth and constant vagigfce: a, + a, X
0?(x) = o? wherex is the log of some linear size measurement. Suppose, in addition, that survival is an
increasing function of size, reaching some asymptote -as» . Then, if the linear growth model is extended to
all —o < x < o, then no bounded transformation exists that can give a bounded kernel (suppose the transform is
u = g(x), monotonically taking(—«, ©) = (a,b) and producing a transformed kek@, u) [ah] x [a, b] ;
then, asu— b , the transformed kernel assigns 99% probability to smaller and smaller intervals of the form
b — e <v <D, so the transformed kernel is unbounded). On the other hand, if the linear model is extended as a
sigmoid curve outside the range of the data, so i{aj} has finite limits-as-c , then logistic transformation
u = eY(1 + € results in a bounded continuous kernel via the change-of-variables formula for probability
densities.

Finally, we reiterate our advice that integral models be constructed on bounded domains. On an unbounded
domain, a biologically reasonable model has to be constrained so that it cannot produce individuals vastly
different from those actually observed, so you might as well impose a bounded domain from the outset.
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