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Abstract 1 

The crystallographic structures of the Į- and ȕ- polymorphic forms of para aminobenzoic acid are decon-2 

structed into their constituent hydrogen bonding molecular structural building blocks of monomers, di-3 

mers, tetramers and octamers, where they are analysed using ab-initio quantum mechanical calculations 4 

of their conformation and cluster stability in solution.  5 

The molecular conformation found in the ȕ-form is less stable than the same found in the Į-form for both 6 

the gas and solution phases, suggesting that this causes a slight increase in the barrier to the crystalli-7 

sation of the ȕ-form in comparison to the Į-form. 8 

The solution populations of the self-associated OH…O H-bonding ‘classic carboxylic acid dimer’, present 9 

in the Į- and not the ȕ-structure, is calculated to dominate in acetonitrile, dimethyl sulfoxide, ethanol, 10 

ethyl acetate, methanol, nitromethane and water. It is observed that this classic dimer is least stable in 11 

water, compared to the other PABA crystallisation solvents, with the OH…N H-bonding interaction pre-12 

sent in the ȕ-form being the second most stable dimeric interaction. 13 

These results are discussed in terms of the crystallisability and polymorphic behaviour of the Į and ȕ 14 

forms of PABA from the afore mentioned crystallisation solvents, whilst detailing how this approach could 15 

be reproducible for a range of polymorphic crystalline materials. 16 

  17 
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1 Introduction 1 

Understanding and controlling the transition pathway associated with the directed assembly of molecules 2 

from their solvated state, via the crystallisation process into three-dimensional, ordered crystalline-solids, 3 

represents a significant Grand Challenge for the physical-chemical sciences3, 4. Crystallisation can be 4 

sub-divided into three-dimensional nucleation and two-dimensional, surface-mediated crystal growth 5 

stages, with the former directing a number of the important physico-chemical attributes of the product 6 

crystals, notably the crystal size distribution, crystallinity and polymorphic form5-8.   7 

Though the transition pathway from solvated molecules in solution to the phase separation of macro-8 

scopic crystals is still a matter of some debate, there has been experimental and theoretical evidence 9 

that solute molecules in the solution phase can be directed by this environment to adopt conformations 10 

and intermolecular structuring that can template the resulting crystallographic structure, and hence facil-11 

itate the nucleation of a material9-14.  12 

Smaller molecules with significantly lower degrees of conformational freedom, such as ibuprofen and 13 

aspirin, are observed to adopt molecular conformations close to their energetic minima in the their crystal 14 

structures and hence display little evidence of polymorphic behaviour15, 16. In comparison, more confor-15 

mationally flexible molecules, such as benzophenone, l-glutamic acid and ritonavir, display complex pol-16 

ymorphic behaviour, with the metastable forms of these materials displaying more energetically favoured 17 

molecular conformations than the same in the stable forms6, 8, 17, 18. Hence it has been postulated that 18 

crystal structures which contain energetically favoured molecular conformations are likely to be easier to 19 

crystallise. This is likely to be associated with the fact that the molecule will have freedom to adopt low 20 

energy conformations in solution, and hence there would be an energy penalty associated with having 21 

to transition to a high energy conformation to form a solid-state structure.  22 

Further to this, it has been observed for 5-fluoracil and tolbutamide that solvents which can facilitate 23 

formation of certain structural arrangements in solution prior to nucleation, which mimic a certain poly-24 

morph, can then template the polymorphic form which eventually nucleates19, 20. Indeed, there has been 25 
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significant research into using artificial templates which are thought to promote certain intermolecular 1 

interactions in solution, to either promote crystallisation or bias the crystallisation towards a particular 2 

polymorphic form21, 22. 3 

The identification of the influence of any conformational change that might take place during the crystal-4 

lisation process is often achieved by a comparative examination of the conformation and intramolecular 5 

energy for a fully relaxed molecule, in the gas phase, or the same with a solution-state approximation, 6 

with that found within the solid-state structure, or structures in the case of polymorphic materials6, 18, 23. 7 

Quantifying the structural evolution over the full nucleation transition pathway is extremely challenging, 8 

even for the most sophisticated of simulations. However, relating the how pre-nucleation clusters can 9 

self-assemble in solution and template a crystalline form can provide useful information on the likely 10 

polymorphic direction of a solution crystallisation24.  11 

One hypothesis is that the crystallisation of a particular crystalline form may be directed by the relative 12 

stability of small cluster building blocks in solution such as dimers or tetramers, which then self-assemble 13 

to realise the structural motifs contained within the crystal structure, has been explored extensively in the 14 

field of coordination metal-ligand chemistry25.  Such studies often focus on the self-assembly of complex 15 

structures26-28 and, in particular, on tailor-made building blocks that have been designed to induce self-16 

assembly29, 30. However, some more recent theoretical studies of organic materials have identified solute 17 

clusters in solution that resemble the crystalline form produced from different solvents31-34.   18 

In terms of understanding the nucleation transition pathway in a range of solvents, it is prudent to identify 19 

computationally efficient methods of modelling the stability of molecular clusters as a function of the 20 

solvation environment.  Dielectric continuum treatment of the solvation environment can be a useful ap-21 

proximation to calculate solution thermodynamic properties35, 36. This approach encases the solute mol-22 

ecule within a solvation cavity in the shape of the molecule, with the solvent properties being treated as 23 

a continuum based on the dielectric constant of the solvent37-39.  24 
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Klamt and co-workers have developed and expanded this approach to further treat the intermolecular 1 

interactions within solution using statistical thermodynamics calculations and have created the COnduc-2 

tor like Screening MOdel for Real Solvents (COSMO-RS)40-42, which has been extensively used to cal-3 

culate the thermophysical properties of solutions43-49. 4 

Drawing upon the above perspective, this paper uses electronic structure theory calculations to examine 5 

how the stability of the molecular conformation and the H-bonded crystallographic building blocks of para 6 

aminobenzoic acid (PABA) in solution can template the relative crystallisation rates of the Į and ȕ forms 7 

of the material. Recent studies have examined the link between OH…O H-bonding dimers in solution 8 

using molecular and intermolecular simulations32, 34. It can be observed that the packing of both forms of 9 

PABA contain different types of H-bonding interactions, hence the stability of all the different types of H-10 

bonding clusters in solution are examined in this study.  11 

The Į- and ȕ-forms of PABA are well characterised50-57, though there have been more recent discoveries 12 

of a third polymorph58 and a nitromethane solvate form59. Rosbottom et al characterised the solid-state 13 

chemistry of the Į- and ȕ-forms characterised in detail1, with the Į-form having two molecules in the 14 

asymmetric unit with its hydrogen bonding network being characterised by OH…O H-bonding dimers 15 

being linked by NH…O H-bonding interactions. In contrast, the ȕ-form has one molecule in the asym-16 

metric unit and its H-bonding network has a four membered H-bonding ring, containing two identical 17 

NH…O and two identical OH…N interactions. These are shown in Figure 1. 18 

Figure 1: Intermolecular H- bonding crystal chemistry for Į-PABA (left) and ȕ-PABA (right) 
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Detailed theoretical and experimental studies of the solution and solid-state chemistry1, 2, along with the 1 

nucleation behaviour60-62, have concluded that the solvent influence on solution pre-clustering can impact 2 

upon the nucleation rate, critical cluster size and polymorphic form crystallised8. The observation that, 3 

despite the Į- and ȕ-polymorphs having an enantiotropic relationship with a well-defined transition tem-4 

perature56, 57, the Į-form often dominates the crystallisation, is of particular interest.  5 

Previous studies have identified that the OH…O H-bonding classic dimer found in the Į-structure is im-6 

portant in stabilising the lattice energy of the Į-form1. In addition, previous theoretical studies of PABA 7 

cluster stabilities in ethanol suggested that the classic OH…O dimer would be very stable in ethanol, 8 

correlating to experimental studies small angle X-ray scattering studies which suggested that a cluster 9 

forms with a shape consistent with two PABA molecules forming an OH…O H-bonding dimer2. One 10 

hypothesis is that this OH…O H-bonding dimer, that is present in the Į form, drives this dominant crys-11 

tallisation of the Į-form60, 61, and the impedance of this dimer by a solvent such as water can result in 12 

crystallisation of the ȕ-form62.  13 

This study deconstructs the Į- and ȕ-crystal structures down to their single molecular structures, and 14 

then re-builds them based on molecular hydrogen-bonded building blocks of monomers, dimers and 15 

tetramers. The stability of the molecular conformation and the stability of increasing size building blocks 16 

of each form in the different solvent environments is examined using electronic structure theory and 17 

statistical thermodynamics calculations, to rationalise how the conformation energy and the energy of 18 

self-assembled pre-nucleation clusters in solution could template the crystallisation of particular polymor-19 

phic forms, through the overall methodology which is summarised in Figure 2. To our knowledge, this is 20 

the first time that such an approach has been applied on a polymorphic system, whereby the simulations 21 

can be related to the solution chemistry and solvent dependent polymorphic crystallisation of the system. 22 

 23 

 24 

 25 
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2 Materials and Methods 1 

2.1 Para Aminobenzoic Acid 2 

This study focusses on the Į- and ȕ-forms of PABA. There are two structures of Į-PABA (AMBNAC01 3 

&06) and two structures of ȕ-PABA (AMBNAC04 &08) in the Cambridge Structural Database with re-4 

solved atomic positions. The two different structures of Į-PABA show practically identical intermolecular 5 

crystal chemistry, and this is the same in the case of the two different structures of ȕ-PABA. 6 

2.2 Electronic Structure Theory Calculations 7 

All electronic structure theory calculations were carried out using Gaussian0963. 8 

2.2.1 Gas Phase Geometry Optimisation of a Single Molecule  9 

The single molecules of PABA from the 4 different crystal structures, totalling 6 molecules since there 10 

are two molecules in the asymmetric unit of Į-PABA, were optimised in the gas phase with a density 11 

functional theory (DFT) approach, utilising a 6-31G* basis set and the Becke three parameter Lee-Yang-12 

Parr (B3LYP) exchange-correlation function64, 65. This method has been widely used in the simulation of 13 

the stability and thermochemistry of small molecules and has recently been used to examine the stability 14 

of H-bonding clusters of ethanol and propan-1-ol66-68.  15 

2.2.2 Gas Phase Conformational Analysis of the COOH and NH 2 Groups 16 

The dependence of the energy of a single molecule on the geometry of the COOH and NH2 groups was 17 

calculated using the ‘Redundant Coordinate Scan’ option in Gaussian09. The torsions were defined as 18 

redundant coordinate dihedrals, whereby the COOH was rigidly rotated 360° in 10° steps and the hydro-19 

gens on the NH2 group were bent into pyramidal positions approximately 40° above and below the nitro-20 

gen in 10° steps. The conformational energies were calculated using the B3LYP/6-31G* approach.  21 

 22 

 23 
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2.3 Solvent Continuum Calculations 1 

2.3.1 Selection of Molecular Structural Building Blocks 2 

The dimeric building blocks were selected based on the strongest H-bonding interactions found from a 3 

previous study of the intermolecular interactions within the crystallographic structures of the Į- and ȕ-4 

polymorphic forms of PABA1. 5 

2.3.2 Polarised Continuum Solvent Geometry Optimisations 6 

The monomers identified from the two crystal structures of Į-PABA and the crystal structure of ȕ-PABA 7 

were optimised using the 6-31G* basis set, utilising the B3LYP functional and compared to the same 8 

using the MP2/6-31G*. For both methods the torsion angles of the COOH and NH2 groups were con-9 

strained using the ‘redundant coordinate freeze option’. The Conducting Polarisable Continuum (CPCM) 10 

method35 was selected and the dielectric constant of the solvent specified. The monomers and clusters 11 

were examined in the following solvents: water (H2O), acetonitrile (ACN), di-methyl sulfoxide (DMSO), 12 

ethyl acetate (EA), ethanol (EtOH), methanol (MeOH) and nitromethane (NMe). 13 

The resulting optimised geometries were then used to calculate a single point energy using the Becke-14 

Parr 86 functional with a triple zeta plus polarisation basis set, utilising the COSMORS keyword, to pro-15 

duce inputs for subsequent solution population calculations.  16 

The B3LYP/6-31G* approach was then repeated for the dimers, tetramers and octamers. The results 17 

from using the B3LYP functional were compared to those using the dispersion corrected M06-2X func-18 

tional69, as the latter has been shown31, 70 to give much improved results when treating systems in which 19 

the dispersion force plays a significant role in the intermolecular interactions.  20 

2.3.3 Calculations of Solution Populations of Monomers and Clusters 21 

The solution populations were calculated within COSMOthermX15, using the COSMO files produced 22 

from Gaussian09 as input for the solute. The screening charge densities (ı) at the surface of the clusters, 23 
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calculated from the DFT optimisation, were used to calculate the interaction of the clusters with the sur-1 

rounding solvent molecules, using a statistical thermodynamic ensemble41 (full details provided in Sec-2 

tion S1, supplementary material). The solvent’s COSMO files were selected from the TZVP database 3 

provided in COSMOthermX15. The mixture calculation was selected and the concentration of the solute 4 

was set to infinite dilution at 25°C. The energy of the molecule or cluster in the solv ent continuum and 5 

the chemical potential of the molecule or cluster was also extracted from the COSMOtherm output file. 6 

3 Results and Discussion 7 

3.1 Conformational Analysis of a Single Molecule of PABA 8 

Table 1 shows the torsion angles for oxygen’s in the COOH group and the hydrogens of the NH2 group, 9 

away from the plane of the phenyl ring, for the six possible molecular conformers of PABA found from 10 

the Į- and ȕ-PABA crystal structures in the Cambridge Structural Database. 11 

 12 

Table 1: Torsion angles of the NH 2 and COOH functional groups from the AMBNAC01, 04 and 06 crystal 13 
structures published in the Cambridge Structural Database. Two molecules shown for the two molecules 14 
in the asymmetric unit of the AMBNAC01 and 06 crystal structures. Two angles shown for the two C-C-N-15 
H and C-C-C-O angles for the NH 2 and COOH groups respectively 16 

Polymorph Ref Code C-C-N-H torsion (°) C-C-C-O Torsion Angle (°) 

Į AMBNAC01 (1) 24.33, -12.03 1.17, -3.40 

Į AMBNAC01 (2) -11.17, 27.76 2.87, 1.91 

Į AMBNAC06 (1) 1.75, 0.002 1.34, -0.8 

Į AMBNAC06 (2) -1.91, 0.008 -2.97, -0.85 

ȕ AMBNAC04 32.91, 26.84 10.40, 9.30 

ȕ AMBNAC08 31.28, 24.61 10.87, 10.67 
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Table 1 shows that the molecular conformers in the Į-PABA AMBANC01 and AMBNAC06 structures had 1 

planar COOH groups, however the NH2 group in the AMBNAC01 structure was slightly more pyramidal 2 

than the same found in the AMBNAC06 structure. Though both of the Į-PABA structures have two mol-3 

ecules in the asymmetric unit, in both cases the conformations of the two molecules in each crystal 4 

structure were found to be almost identical.  5 

ȕ-PABA has only one molecule in the asymmetric unit, and the molecular conformations found in the 6 

AMBNAC04 and AMBNAC08 structures were almost identical, with a slightly torsioned COOH group and 7 

a more pyramidal NH2 group, in comparison to the Į-PABA conformers. Geometry optimisation of these 8 

six conformers resulted in the same structure, suggesting this was the lowest energy molecular confor-9 

mation, shown in Figure 3. 10 

  11 

 12 

Figure 3 shows that the most stable molecular conformation found for PABA had a planar COOH group 13 

and a pyramidal shaped NH2 group, with respect to the phenyl ring. These results are in good agreement 14 

with previously published gas phase electronic structure theory calculations of a PABA molecule71, 72. The 15 

Figure 3: Most stable molecular conformation for a single molecule of pABA found f rom a 6-31G*/B3LYP 
gas phase geometry optimisation.  
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0.12° 
22.86° 

-22.86° 



 

 

14 

fact that each of the conformers in the different crystal structures optimises to the same conformer sug-1 

gests that the energetic barriers to changes in molecular conformation are relatively low for PABA. 2 

Since both the torsion angles for the COOH and NH2 groups vary between the Į-PABA and ȕ-PABA 3 

conformers, the energetic dependence on the rotation of the COOH group and the pyramidilisation of the 4 

NH2 was examined, shown in Figure 4. 5 

 6 
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 4 

Figure 4(a) shows that distortion of the COOH group away from its most stable planar orientation can 5 

significantly increase the energy of the molecule. The COOH geometry found in the AMBNAC01 and 06 6 

Į-PABA structures was found to be closest to the conformational minima, whilst the slight rotation of the 7 

COOH group found in the AMBNAC04 and 08 ȕ-PABA structures resulted in a small energy penalty of 8 

less that 2kj/mol. 9 

Figure 4(b) shows that the flattening of the NH2 group to planar with respect to the phenyl ring, away 10 

from its slightly pyramidal optimal geometry, increases the energy of the molecule. Increasing the pyram-11 

idal nature of the group beyond 30° rapidly increases the energy of the molecule. The slightly pyramidal 12 
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NH2 geometry in the AMBNAC01 Į-PABA structure was found to be closest to the conformational mini-1 

mum, with the planar AMBNAC06 Į-PABA geometry and increased pyramidal AMBNAC04 and 08 ȕ-2 

PABA geometries each costing an energy penalty of approximately 2-2.5kj/mol. 3 

The relatively low energy penalties between the conformers from the different crystal structures suggests 4 

that the conformation would be relatively fluid in solution. However, the most stable conformer was found 5 

to be the AMBNAC01 Į-PABA conformer with a planar COOH and slightly pyramidal NH2 group. The 6 

assertion that the NH2 group is more likely to be pyramidal, rather than planar, is in good agreement with 7 

previously published core-level spectroscopy experimental results and periodic DFT calculations on the 8 

Į-PABA structure73. 9 

Though the conformation will fluctuate in solution, we feel that these calculations give an indication of 10 

what the energy barriers to adopting the conformation in the crystal structure are likely to be, hence giving 11 

insight into what kind of barrier to crystallisation the conformation change from solution to crystal is likely 12 

to provide. 13 

3.2 Stability of Crystallographic Building Blocks in Solution 14 

3.2.1 Monomers 15 

The solution populations calculated for the different monomers are shown in Figure 5. 16 
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 1 

 2 

 3 

Figure 5 shows that the two conformers from the AMBNAC06 Į-structure were found to have the largest 4 

solution population, then the conformers from the AMBNAC01 Į-structure and the conformers from the 5 

AMBNAC04 ȕ-structures had the lowest solution populations of around 5%. Despite the conformational 6 

analysis suggesting that the AMBNAC01 conformers were more stable in the gas phase than the 7 

AMBNAC06 conformers, the AMBNAC06 were calculated to have slightly higher solution populations 8 

than the AMBNAC01. This could be due to the COSMOtherm input files being created using the 9 

BP86/TZVP approach, which may not sufficiently account for increased stability of the slightly pyramidal 10 

NH2 group in the AMBNAC01 structure. However, these free energy differences are extremely small, 11 

whereby the main finding here is that the ȕ-conformer was calculated to be less stable in solution than 12 

the Į-conformers, probably due to the combination of the rotated COOH group and increased pyra-13 

midilisation of the NH2 group.  14 

Hence, the energy barrier due to change in molecular conformation from liquid to solid-state is likely to 15 

be greatest for the ȕ-structure. However, these calculations suggest that this energy barrier is likely to 16 
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be relatively low and may not be the directing factor in the crystallisation of the different polymorphic 1 

forms. 2 

 3 

3.2.2 Identification of Putative Growth Units for Self-assembly from Solution 4 

The above results has identified the stability of different conformers of the PABA molecule, and the energy 5 

penalty that they may occur when the molecule transitions from the solution to the solid-state crystal 6 

form. Crystal structures are a balance of conformational and packing energies, therefore, drawing upon 7 

previous studies of the solid-state chemistry, intermolecular synthon structure and solution structure pre-8 

sent in the Į- and ȕ-PABA1, 2, the following results deal with the solution stability of the H-bonded building 9 

blocks found in Į- and ȕ-PABA. These molecular building blocks are summarised in Figure 6. 10 
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 1 

 2 

 3 

The building blocks shown in Figure 6 were examined using the COSMO-RS approach to estimate their 4 

relative populations in solution (normalised weight factors).  5 

 6 

Figure 6 : The 4 dimers, 4 tet ramers and 2 octamers depicted from the crystal structure of Į- and ȕ-poly-
morphs of PABA. These clusters are based on the H-bonding interactions th at have been found to be im-
portant in the stabilisation of the Į- and ȕ-structures of PABA in previous studies 1, 2 
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 1 

3.2.3 Dimers 2 

A previous study1 has shown that the DA1 dimer was found to be the strongest synthon from the solid-3 

state structures of Į- and ȕ-PABA, and that the stability of such ‘classic carboxylic acid dimers’ in solution 4 

can template the nucleation of specific crystalline forms of small organic molecules31, 32, 34. Figure 7 shows 5 

a comparison of the normalised weight factors of the H-bonded dimers, shown in Figure 6. 6 

 7 

 8 

 9 

 10 

Figure 7 shows that the DA1 dimer dominates the solution populations in all solvents when compared to 11 

the other dimers. The comparison of DA1 with DB2 in water show that there is a small amount of the 12 

DB2 dimer predicted to be present in that solution, but the DA1 dimer is still clearly predicted to be the 13 

most stable dimeric building block in solution which exists in either the Į- or the ȕ-structure. 14 

When DA1 is not considered, the DB2 cluster is generally predicted to have the highest solution popula-15 

tion in comparison to the other dimers, shown in Figure 8. 16 
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Figure 7: Comparison of the normalised weight factors of DA1 with the ot her dimers identified in Figure 6 
showing that the DA1 dominates the calculated solution populations in all of the solvents studied here 
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 4 

 5 

Figure 8 shows that the DB2 dimer was predicted have the greatest solution population, when compared 6 

to the DA2 and DB1 which both contain the NH…O H-bonding interaction. The DB2 dimer is particularly 7 

dominant in water and nitromethane. Interesting both of these solvents display unusual polymorphic be-8 

haviour in comparison to the other solvents studied, with water being the most reliable solvent for pro-9 

ducing the ȕ-form62 and nitromethane being recently found to produce a solvate structure59.  10 

Since it has been highlighted that DFT calculations of organic materials can often poorly estimate the 11 

effects of dispersion interactions74, 75, a comparison of the results using the B3LYP and dispersion cor-12 

rected M06-2X functional revealed negligible changes in the solution population results (supplementary 13 

materials). Hence, the B3LYP functional was used for the solution population calculations of the tetram-14 

ers and octamers.  15 
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Figure 8: Solution populations of DB2 in comparison to the other dimers except DA1, showing that the DB2 
dimer is the second most stable dimer and has particular stability in water, possibly templating the for-
mation of ȕ-PABA in water 
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The free energy change from two monomers to the four H-bonding dimers, in aqueous solution, was also 1 

calculated (Figure S1 in supplementary material). The free energy change for each of the four dimers 2 

was negative, suggesting they are plausible building blocks for embryonic solution clusters. It was also 3 

found that the free energy change for the DA1 cluster was most favoured, followed by the DB2 cluster, 4 

suggesting that the populations shown in Figure 8 are representative of the free energy calculations.  5 

 6 

3.2.4 Tetramers and Octamers 7 

The normalised weight factors of the tetramers and octamers are shown in Figure 9. 8 
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Figure 9: (a) Comparison of the normalised weight factors of the H-bonding  tetramers identified in Figure 
6; (b) comparison of the normalised weight factors of the two H-bon ding octamers identified in Figure 5. 
These results show that as the size of the clusters increases, the population of the tetramers and octamers 
containing the OH…O H-bonding dimers becomes even more enhanced in comparison to those which do 
not contain this interaction 
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The TA1 cluster, which is made up of two DA1 like H-bonding dimers that are linked by an NH…O H-1 

bond, were calculated to dominate in solution over the other clusters examined. This domination of these 2 

OH…O and NH…O H-bonding clusters is also reflected in the domination of the Į-H-bonding octamer 3 

over the ȕ-H-bonding octamer. The high stability of the clusters of increasing size that are reflective of 4 

the Į-crystal structure may be indicative that the self-assembly of the Į-structure in solution is favoured 5 

over the ȕ-structure self-assembly, resulting in the dominant crystallisation of the Į-form. 6 

3.3 Cluster Energetics 7 

Equation S7 (supplementary material) indicates that the population of the different clusters is dependent 8 

on the energy of the cluster in the continuum (Ecosmo) and the chemical potential (ȝs). The Ecosmo energet-9 

ics and the chemical potentials for the dimers are shown in Figure 10. 10 
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 1 

 2 

 3 

Figure 10(a) reveals that the energy of the DA1 dimer in the continuum for all the solvents is much more 4 

stable than for the other dimers tested. This suggests that the energy of interaction between the mole-5 

cules in the DA1 results in its domination of the Boltzmann populations. Further to this, Figure 10(b) 6 

shows that the chemical potentials for DA1 are in general lower than for most of the other clusters stud-7 

ied. Indeed, the chemical potential calculated for the DA1 cluster in water was found to be positive, 8 
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Figure 10: (a) Ecosmo  for the dimers showing that the free energy of the DA1 dimer is over 20kj/ mol more 
stable than the next most stable dimer in all solvents; (b) the chemical potentials for t he dimers showing 
that the DA1 has a particularly unfavourable chemical potential in water 
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suggesting that the DA1 dimers interactions with the surrounding solution are unfavourable, but this is 1 

compensated by the favourable interaction energy between the PABA molecules within the dimer.  2 

3.4 Impact upon the Direction of Polymorphic Form 3 

The examination of the conformation and cluster stability of PABA in solution suggests that both of these 4 

pose a greater barrier to the crystal nucleation of ȕ-PABA from solution, compared to Į-PABA. Further 5 

scrutiny of the H-bonding ring structure in ȕ-PABA (Figure 1) shows that the directionality of the DB1 and 6 

DB2 synthons indeed distorts the conformation of the COOH and NH2 groups to a conformation that was 7 

calculated to be less stable in solution than the Į-PABA conformation. Hence, it is likely that the COOH 8 

group on the molecule in the ȕ-form rotates to this unfavourable conformation to maximise the OH…N 9 

and NH…O H-bonding interactions. However, since the energy barriers to distorting the conformation in 10 

solution were calculated to be low, it is more likely that the clustering of the solute in solution directs the 11 

nucleation to a greater extent than the molecular conformation.  12 

The calculated dominant stability of the OH…O H-bonding dimers, along with the tetramers and octamers 13 

containing such H-bonding motifs, probably directs the dominant nucleation of the Į-form observed from 14 

most organic solvents. A comparison to p-aminophenol76 shows that replacing the COOH group with an 15 

OH group results in a packing structure which more closely resembles the ȕ-PABA structure, rather than 16 

Į-PABA. It can be observed that in small molecules which contain a carboxylic group, such as ibuprofen77 17 

and aspirin78, their crystal structures contain the classic OH…O H-bonding interaction. However, as mol-18 

ecules go up in molecular weight and have other competing intermolecular interactions which they can 19 

form, the propensity for the OH…O dimers to direct the packing structure may well be reduced. However, 20 

from the limited structures examined we can suggest that small molecules are likely to pack in motifs that 21 

facilitate the formation of these strong H-bonding dimer interactions. 22 

It is interesting to note the role that the NH…O interactions play in linking the OH…O H-bonding dimers 23 

in the Į-structure to form H-bonding chains through the structure. These chains will create a cooperative 24 

H-bonding effect which can enhance the packing energy of the Į-like clusters as they increase in size, 25 
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where such cooperative H-bonding stabilisation has been seen in similar organic molecules79, 80. In con-1 

trast, the ȕ-form does not have any infinite chains of H-bonds within its structure, suggesting that clusters 2 

which resemble the ȕ-form would be much less likely to benefit from such cooperative H-bonding effects. 3 

Hence, the H-bonding cooperativity would be likely significant role in the rapid self-assembly of the Į-4 

form in solution, and have a much lesser effect on stabilising solute clusters which resemble the ȕ-form 5 

in solution. 6 

Drawing upon the more detailed examination of the COSMO-RS calculations, the OH…O H-bonding 7 

dimers were found to be least stable in water, due to unfavourable interactions of this dimer with the 8 

surrounding solution. We speculate that the observation of crystallisation of the ȕ-form from aqueous 9 

solutions54, 62 can be related to these unfavourable interactions of this dimer with the surrounding water, 10 

hence impeding the nucleation of the Į-form.   11 

 12 

4 Conclusions 13 

This study has revealed that even for a small molecule, such as PABA, the molecular conformation, 14 

crystal packing and solute clustering in solution can impact upon the polymorphic direction of solution 15 

crystallisation. These simulations have revealed that the crystal packing of the Į-form structure is less 16 

likely to distort the PABA molecule away from its most favoured conformation, whilst the directional 17 

OH…N and NH…O H-bonding ring interactions present in the ȕ-form structure distort the NH2 and COOH 18 

torsion angles away from their most favoured conformation. As a caveat to this, the OH…O H-bonding 19 

dimer that has been identified as a key synthon for the Į-form structure was found to dominate the solu-20 

tion populations, in comparison to the other identified key synthons from the Į- and ȕ-forms.  21 

These results suggest that the energetic barrier to solution crystallisation of Į-PABA would be lower than 22 

ȕ-PABA, reflected in the experimentally observed dominant crystallisation of this form from solution, even 23 

in environments where the ȕ-form is expected to be thermodynamically stable. Indeed these calculations 24 

also suggest that the formation of the OH…O H-bonding carboxylic acid dimer would be least stable in 25 
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water, reflecting experimental observations that the kinetic barrier to nucleation is higher in water when 1 

compared to acetonitrile and ethanol60, along with water being the only solvent to reliably crystallise the 2 

ȕ-form62.  3 

The flexibility of such simulations to be able to treat a wide variety of elements indicates that the methods 4 

here could be expanded to a wide variety of polymorphic materials. The early indication of barriers to 5 

crystallisation of certain molecules, or polymorphs of a particular molecule, can be vital in the design of 6 

crystallisation of a high value crystalline material. Indeed, folding the influence of different solvent into 7 

the model can further assist in the decision making associated with the manufacturing and processing of 8 

a high value crystalline material. 9 
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