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DISCORDANT VOTING PROCESSES ON FINITE GRAPHS*

COLIN COOPER', MARTIN DYER}, ALAN FRIEZE!, AND NICOLAS RIVERAT

Abstract. We consider an asynchronous voting process on graphs called discordant voting,
which can be described as follows. Initially each vertex holds one of two opinions, red or blue.
Neighboring vertices with different opinions interact pairwise along an edge. After an interaction
both vertices have the same color. The quantity of interest is the time to reach consensus, i.e., the
number of steps needed for all vertices have the same color. We show that for a given initial coloring
of the vertices, the expected time to reach consensus depends strongly on the underlying graph and
the update rule (i.e., push, pull, oblivious).
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1. Introduction. The process of reaching consensus in a graph by means of
local interactions is known as voting. It is an abstraction of human behavior and can
be implemented in distributed computer networks. As a consequence voting processes
have been widely studied.

In the simplest case each vertex has a color or opinion (e.g., red, blue, etc.), and
neighboring vertices interact pairwise in a fixed way to update their colors. After this
interaction both vertices have the same color. Three basic ways to make an update
are as follows:

Push: Pick a random vertex and push its color to a random neighbor.

Pull: Pick a random vertex and pull the color of a random neighbor.

Oblivious: Pick a random edge and push the color of one randomly

chosen endpoint to the other one.
In the case of asynchronous voting, all three methods are well defined. For syn-
chronous voting the push and oblivious processes are not well defined, as more than
one color could be pushed to a vertex at a given step.

The performance of randomized voting processes is usually measured by the con-
sensus time (the expected time to reach consensus) and the probability a given opinion
wins.

A common synchronous model is randomized pull voting, where at each step, each
vertex adopts the opinion of a randomly chosen neighbor. For connected nonbipartite
graphs, Hassin and Peleg [13] and Nakata, Imahayashi, and Yamashita [18] proved
the probability opinion (color) A wins is d(A)/2m, where d(A) is the degree of the
vertices initially holding opinion A, and m is the number of edges of the graph.
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If the colors of the vertices are initially distinct, the pull voting process takes ©(n)
expected steps to reach consensus on many classes of expander graphs on n vertices.
This is proved for the complete graph K, by Aldous and Fill [1] and for r-regular
random graphs by Cooper, Frieze, and Radzik [5]. Results for general connected
graphs based on the eigenvalue gap and variance of the degree sequence are given by
Cooper et al. in [6]. For n-vertex graphs G, they give an expected consensus time
of O(n/(v(1 — A))), where A is the second largest eigenvalue in absolute value of the
transition matrix P of a simple random walk on G. Thus A = max(|Az|,...,|Anl]),
where A1 = 1 is the principal eigenvalue. The parameter v measures the regularity of
the degree sequence and ranges from 1 for regular graphs to ©(n) for the star graph.
The value is given by v = >\, d*(v)/(d®n), where d(v) is the degree of vertex v,
and d = dave = 2m/n is the average degree.

For regular graphs, the result of [6] achieves an upper bound of O(n?) in the
worst case. Using a different approach, Berenbrink et al. [4] proved a consensus time
of O((dave/dmin)(n/®)). Here daye, dmin are the average and minimum degrees, re-
spectively. The parameter ® is the graph conductance, ® = mingcy (@) %,
where E(S : 5¢) are the edges between S and S¢, and S # 0, V.

Much of the analysis of asynchronous pull voting has been made in the continuous-
time model, where edges or vertices have exponential waiting times between events.
An example is the work by Cox [8] for toroidal grids. For detailed coverage see Liggett
[16]. More recently Oliveira [19] shows that the expected consensus time is O(Hpax),
where Hyax = max, 4ev H(v,u) and H(v,u) is the expected hitting time of u by a
random walk starting at vertex v. Asynchronous pull voting is less studied in a dis-
crete setting. It was shown in [7] that the expected time to consensus for asynchronous
pull voting is

(1) ET = O(nm/dmin®),

where m is the number of edges, dyiy is minimum degree, and @ is graph conductance.
Thus ET = O(n®) for any connected graph, and O(n?) for regular expanders.

This paper considers a different asynchronous voting process, discordant voting.
An edge is discordant if the colors of its endpoints differ, and a vertex is discordant
if any of its incident edges are discordant. In the model we consider, initially each
vertex has one of two opinions, red or blue. Neighboring vertices of different colors
interact pairwise along a discordant edge. Thus, e.g., in discordant push voting, a
discordant vertex is chosen at each step, and then a discordant edge incident with the
chosen vertex. Henceforth we refer to the voting processes discussed above (based on
choosing edges or vertices randomly) as ordinary voting processes to distinguish them
from discordant voting.

In discordant voting, the expected time to consensus varies considerably, both
with the structure of the underlying graph and with the protocol used, and some-
times in a quite counterintuitive way (see Table 1). This behavior is in contrast with
ordinary (i.e., nondiscordant) asynchronous voting. Moreover, only the push and pull
protocols exhibit this variation in consensus time with the graph structure. The obliv-
ious protocol has a consensus time of O(n?) on any connected n-vertex graph (see
the paragraph following Remark 1). This consensus time depends only on the initial
number of red and blue vertices and is independent of the graph structure, and thus
serves as a standard of comparison for the other two processes.

Discordant voting originated in the complex networks community as a model
of social evolution (see, e.g., [12], [21]). The general version of the model allows
for rewiring; the interacting vertices can break the edge joining them and reconnect
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elsewhere. This serves as a model of social behavior in which vertices either change
their opinion or their friends.

Rewiring in the oblivious discordant voting model has been extensively studied.
Holme and Newman [14] investigated discordant voting as a model of a self-organizing
network which restructures based on the acceptance or rejection of differing opinions
among social groups. At each step, a random discordant edge wwv is selected, and an
endpoint z € {u, v} chosen with probability 1/2. With probability 1—« the opinion of
x is pushed to the other endpoint y, and with probability «, vertex y breaks the edge
and rewires to a random vertex with the same opinion as itself. Simulations suggest
the existence of threshold behavior in «. This was investigated further by Durrett
et al. [10] for sparse random graphs of constant average degree 4 (i.e., G(n,4/n)).
The paper studies two rewiring strategies, rewire-to-random and rewire-to-same, and
finds experimental evidence of a phase transition in both cases. Basu and Sly [3] made
a formal analysis of rewiring for Erdos—Renyi graphs G(n,1/2) with 1 — a = 8/n,
B > 0 constant. They found that for either strategy, if 8 is sufficiently small the
network quickly disconnects, maintaining the initial proportions. As ( increases the
minority proportion decreases, and in rewire-to-random a positive fraction of both
opinions survive. A subsequent paper by Basak, Durrett, and Zhang [2] examines the
rewiring phase transitions for the intermediate case of thick graphs G(n,1/n%), where
0<a<l.

Although discordant voting seems a natural model of local interaction, its be-
havior is not well understood even in the simplest cases. Moreover, the analysis
of rewiring is highly problematic. First there is no natural model for the space of
random graphs derived from the rewiring. Second the voting and rewiring inter-
actions condition the degree sequence in a way which makes subsequent analysis
difficult.

In this paper we assume there is no rewiring and evaluate the performance of
discordant voting as a function of the graph structure. As discordant voting always
chooses an edge between the opposing red and blue sets, intuitively it should finish
faster than ordinary asynchronous voting which ignores this discordancy information.

As previously remarked, for discordant voting using the oblivious protocol, the
expected time to consensus is the same for any connected n-vertex graph. It is in-
dependent of graph structure and of the number of edges, and depends only on the
initial number of vertices of each color (red, blue). Whichever discordant edge is cho-
sen, the number of blue vertices in the graph increases (resp., decreases) by one with
probability 1/2 at each step. This is equivalent to an unbiased random walk on the
line (0, 1,...,n) with absorbing barriers (see Feller [11, Chapter XIV, section 3]).

Remark 1 (oblivious protocol). Let T be the time to consensus in the two-party
asynchronous discordant voting process starting from any initial coloring with R(0) =
r, B(0) = n—r red and blue vertices, respectively. For any connected n vertex graph,
ET(Oblivious) = r(n — ).

Starting with an equal number of red and blue vertices the oblivious protocol
takes ET ~ n?/4 steps for any connected graph. For ordinary asynchronous voting,
the performance of the oblivious protocol can also depend on the number of edges
m. In the worst case, the expected wait to hit the last red-blue edge is m. If so, the
ordinary asynchronous case could take ET = O(mn?) steps.

In contrast to the oblivious case, discordant push and pull protocols can exhibit
very different expected times to consensus, which depend strongly on the underlying
graph in question.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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THEOREM 1. Let T be the time to consensus of the asynchronous discordant vot-
ing process starting from any initial coloring with an equal number of red and blue
vertices, i.e., R = B =n/2. For the complete graph K, , ET(Push) = O(nlogn) and
ET(Pull) = ©(2").

For the complete graph K, the various protocols give very different expected
completion times, which vary from ©(nlogn) for push, to ©(n?) for oblivious, to
©(2") for pull. On the basis of this evidence, our initial view was that there should
be a meta-theorem of the “push is faster than oblivious, oblivious is faster than pull”
type. Intuitively, this is supported by the following argument. Suppose red (R) is
the larger color class. Choosing a discordant vertex uniformly at random favors the
selection of the larger class. In the push process, red vertices push their opinion more
often, which tends to increase the size of R. Conversely, the pull process tends to
re-balance the set sizes. If R is larger, it is recolored more often.

For the cycle C,,, we prove that all three protocols have similar expected time to
consensus; a result which is consistent with the above meta-theorem.

THEOREM 2. Let T be the time to consensus of the asynchronous discordant vot-
ing process. For the cycle C,, and starting from any initial coloring with an equal
number of red and blue vertices, the push and pull protocols have ET = O(n?).

For the initial coloring where the first half of the cycle is colored red and the
second half blue, as shown in Figure 4, the push and pull protocols have ET = ©(n?).

At the time of publication of this paper, the constant in the value of ET was
refined by Pongracz [20]. By combining the techniques of this paper with results for
absorbing Markov chains, it is shown that Theorem 2 can be refined to |ET —n? /4| =
O(n?/?) for all three processes.

At this point we are left with a choice: either to produce evidence for a rela-
tionship of the form ET(Push) = O(ET(Pull)) for general graphs or to refute it.
Mossel and Roch [17] found slow convergence of the iterated prisoner’s dilemma
(IPD) problem on caterpillar trees. Intuitively push voting is aggressive, whereas
pull voting is altruistic, and thus similar to cooperation in the IPD. Motivated by
this, we found simple counterexamples, namely, the star graph S,, and the double
star Sy.

THEOREM 3. Let T be the time to consensus of the asynchronous discordant vot-
ing process.

For the star graph Sy, and starting from any initial coloring with an equal number
of red and blue vertices, ET(Push) = ©(n?logn) and ET(Pull) = O(n?).

For the double star S} with the initial coloring of Figure 1, ET(Push) = Q(2"/°)
and ET (Pull) = O(n*).

At this point little remains of the possibility of a meta-theorem except a vague
hope that at least one of the push and pull protocols always has polynomial time
to consensus. However, this is disproved by the example of the barbell graph, which
consists of two cliques of size n/2 joined by a single edge.

THEOREM 4. Let T be the time to consensus of the asynchronous discordant vot-
ing process. For the barbell graph, there exist initial colorings with an equal number
of red and blue vertices, such that ET(Push) = Q(2"/19) and ET(Pull) = Q(2"/?).

We use the term ordinary to refer to the standard asynchronous voting model
in which the protocol makes no distinction between discordant and nondiscordant
neighbors.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Sl. OSQ

Fic. 1. Double star S* with half of the vertices colored red and half colored blue.

TABLE 1
Worst case expected time to consensus for discordant and ordinary asynchronous voting proto-
cols on connected n-vertex graphs.

Discordant voting Ordinary voting
Push [ Pull [ Obliv. Push [ Pull [ Obliv.
Complete graph K,, | ©(nlogn) o(2") Oo(n?) | O(n?) | O(n%)
Cycle C), 0(n?) 6(n?) Oo(n?) | O(n?) | O(n3)
Star graph Sp ©(n%logn) O(n?) n2/4 [ O(n2) | O(m?) | O(n3)
Double star S}, Q(2"/%) O(n%) o(n3) | o(n%) | on3)
Barbell graph Q(2n/10) Q(2"/?) o(nt) | o(n*) | O(n?)

A summary of these results is given in the table below. The moral of the story is
that there is always some graph and starting configuration for which the chosen push
or pull process behaves badly.

The column for ordinary asynchronous pull voting in Table 1 follows from (1). The
column for ordinary asynchronous pull voting from ET = O(n?m) (see the paragraph
following Remark 1). To complete the column for ordinary asynchronous push voting,
we used a result of [7]. For any graph G = (V(G), E(G)),

2) ET(Push) = O(1/%(G)),
where
(@) 1 1
) = g S T (8), (5] 2 d(v)d(w)’

(v,w)€EE(S:5°)

The expression is evaluated over sets S # (, V(G), and dpax is maximum degree,
C(G) = (X ,ev 1/d(v))~t, E(S : 5¢) are the edges between S and S, and J(S) =
ves d(v) 1. The parameter ¥ does not seem related to the classical graph param-
eters, but can be directly evaluated for the graphs we consider. For regular graphs,
2

\II:E@’

in which case ET = O(n?/®), which agrees with the asynchronous pull model in (1).

Asynchronous discordant voting model. We next give a formal definition of
the discordant voting process. Given a graph G = (V, E) with n = |V, each vertex
v € V is labeled with an opinion X (v) € {0,1}. We call X a configuration of opinions.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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We can think of the opinions as having colors, e.g., red (0) and blue (1). An edge

e =wv € E is discordant if X(u) # X(v). Let K(X) denote the set of discordant

edges at time t. A vertex v is discordant if it is incident with any discordant edge,

and D(X) will denote the set of discordant vertices in X. We consider three random
update rules for opinions X; at time t¢.

Push: Choose vy € D(X}), uniformly at random, and a discordant neighbor wu; of
vy uniformly at random. Let Xyiq(u) + Xi(ve), and Xpy1(w) < Xe(w)
otherwise.

Pull: Choose v; € D(X;), uniformly at random, and a discordant neighbor u; of
vy uniformly at random. Let Xi11(v) < X¢(ur), and Xepq(w) + Xi(w)
otherwise.

Oblivious: Choose {ut,v:} € K(X;) uniformly at random. With probability 1/2,
Xt+1(’l)t) — Xt(ut) with probablhty 1/2, Xt+1(ut) “— Xt(’l)t), and Xt_,_l(w) <
X (w) otherwise.

These three processes are Markov chains on the configurations in G, in which the

opinion of exactly one vertex is changed at each step. Assuming G is connected,

there are two absorbing states, when X (v) = 0 for all v € V or X(v) = 1 for all

v € V, where no discordant vertices exist. When the process reaches either of these

states, we say that is has converged. Let T be the step at which convergence occurs.

Our object of study is ET.

Structure of the paper. A major obstacle in the analysis of discordant voting
is that the effect of recoloring a vertex is not always monotone. For each of the graphs
studied, the way to bound ET differs. The proof of the pull voting result for the cycle
C,, in particular is somewhat delicate and requires an analysis of the optimum of a
linear program based on a potential function.

The general proof methodology is to map the process to a biased random walk on
the line 0,...,n. In section 2 we prove results for a birth-and-death chain which we
call the push chain. This chain can be coupled with many aspects of the discordant
voting process. We then prove Theorems 1, 2, 3, and 4 in that order.

2. Birth-and-death chains. A Markov chain (X;);>¢ is said to be a birth-and-
death chain on state space S = {0, ..., N} if given X; = ¢ and then the possible values
of X;41 are i + 1,4, or ¢ — 1 with probability p;, r;, and ¢;, respectively. Note that
go = py = 0. In this section we assume that r; = 0, po = 1, gy = 1, p; > 0 for
1€{0,...,N—1} and ¢; > 0 fori € {1,..., N}. We next summarize some results on
birth-and-death chains (see Peres, Levin, and Wilmer [15, Chapter 2, section 5]).

Denote by E;Y the expected value of random variable Y when the chain starts in
i (i.e., Xo = 7). Define the random hitting time of state i as T; = min{¢t > 0 : X, = i}.
Thus E;T; is the expected hitting time of state ¢ starting from state j or first return
time if j = i.

A probability distribution 7 satisfies the detailed balance equations, if

(3) 7(i)P(i,§) = w(5)P(j,4) for all i, j € S.

Birth-and-death chains with p; = P(i,i + 1),¢; = P(i,i — 1) can be shown to satisfy
the detailed balance equations. It follows from this (see, e.g., [15]) that

1 i—1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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For birth-and-death chains, this equation can be written explicitly in terms of p;, g;
(see [15]) as EqTh = 1/pg = 1 and in general for i € {1,..., N},

i—1

1 Grg1 - L
5 E,_1T;, = E _
( ) ! pk Pk+1 - Dsi —1

In writing this expression we follow the convention that if k = i—1, then % =1

so that the last term is 1/p;—1. Note also that the final index k on p; is k = N — 1,
i.e., we never divide by py = 0.

For any M < N we have that EgTy = Y0, E; 1 T;. For example, EgT; = 1=
1land EqTs =1 + o —|— D etc. Thus, for M > 1

PoP1

i—1

1 H q]
kjskt1 P

We define two birth-and-death chains which feature in our analysis. The chains
have states {0,1,...,4,..., N}, where N = n/2 (assume n > 2 even). We refer to
these chains as the push chain and pull chain, respectively.

Push chain. Let Z; be the state occupied by the push chain at step ¢ > 0. Let
d € {—1,0,+1} be fixed. When applying results for the push chain in our proofs, we
will state the value of § we use. The transition probability p; = P(¢,i+1) from Z; = ¢
is given by

i—

M
(6) BTy = ZEZ T=)

1
zlkO

1, if i =0,
(7) pi=1{1/2+i/n+d/n, ifie{l,...,n/2—1},
0, if i =n/2.

Pull chain. Let Z, be the state occupied by the pull chain at step ¢ > 0. Given
that Z; = i, the transition probability p; = P(i,7 + 1) is given by

1, if i =0,
(8) p;=141/2—i/n—46/n, ific{l,....n/2 -1},
0, if i =n/2.

For 1 <7 < N — 1 the pull chain is the push chain with the probabilities reversed,
ie,p;,=1—p;.

Push chain: Bounds on hitting time.

Push chain: Upper bound on hitting time.

LEMMA 5. For any M < N |, let E¢Tys be the expected hitting time of M in the
push chain Zy starting from state 0. Then

E()T]V[ S 2N10gM + O(l)

Proof. Using (6) and recalling the notational convention given below (5) we can

change the order of summation to give

M-1 M M-2 M-1

() Eoly= Y Y Bl L NN e

b—0 i k+1pkpk+1 Pi—-1 PM 1 =0 i k+1pkpk+1 P71
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Using (7), we see for 1 < k < N — 2 that qi/pr > qr+1/Pr+1, ¢1/p1 < 1, and for
2 <k <N —1that qx/pr <1. As pg = 1, we upper bound EyTys by

M—2 i—k—1
(10) BTy <M+ 4 Z Z (qu)

Pm-1 ko 1 \Pk+1

and

M2 e o ¢ M-2 »

k1 k+1

I S S (W ~

i1 PR =0 \Pk+1 prl— 25 et w1 Pk PR+l T Gkl
Asqg=1—pr, Pk —qx =2pr — 1 >0for all k € {2,..., N — 1}, then m = ,%_6.
For all k € {1,..., N — 2} we have % < 2. Using (10) Wlth the upper bounds given
n (11), we obtain the required conclusion. |

Push chain: Lower bound on hitting time.

LEMMA 6. Let 6 =0 in (7). Let EqTy be the expected hitting time of M in the

push chain Z; starting from state 0. There exists a constant C such that, for any
VN < M = o(N3/%),

EoTy > C(Nlog M/vVN +VN).

Proof. For 0 < x < 1,

1—=z x3 g2+l
— _9 oy g0
1+ eXp{ (“Hg+ HETES )}

Thus with N = n/2

i—1 .
H CIJ _ H 1—j/N
Jj= k-‘rl j:k+11+j/N
i—1 .
7 (]/N)2€+1
= exp —2 Z + +Zw+
j=k+1
(13) = exp{—20},

say. If f(s) is nonnegative and monotone increasing, then Z o k 1 f(8) < fk
Thus, the sum of terms in (j/N)? and above in ¥ can be bounded above by

(j/N)>+1 1 /i 241
> Z 20+ 1 —21(2£+1)N2€+1 v de

0>1 j=k+1

1 i2€+2
< .
- Z (20 +1)N2+1 20+ 2

>1

-0 () E arrmary = (%)

Thus, using our assumption that M = o(N3/4),

i(i—1) k(k+1) it i2 kK i+ k
=" v t9%\ws) T olb)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/10/19 to 129.11.23.146. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2406 COOPER, DYER, FRIEZE, AND RIVERA

Replacing ¥ in (13) with the upper bound given above gives a lower bound on the
term (13) in (6). Thus

(14) BoTh 2 (1= of iiiex" (‘) o (ﬁv)

zOkO

For ¢ < M the last term on the right-hand side of (14) is bounded below by a positive
constant. Let

9 - Se (4

Let 8 = (1/2)log2 ~ 0.34. We claim that if i > /N, then

BN
(16) (i) = e

Leta:BN/iandthenforiZ\/]V,i—a>0. Fork>i—a

k2 i2 2ia  a? i2 i2
>4 == = 7,2
N~ N N+N N NB +B - B

If k > i — a, then exp{k?/N} > L exp{i®/N}. As there are at least a such values of

k, it follows that o (i) > BN /2ie’ /N
Let VN <i < M = o(N3/*). Replace (15) in (14) with (16). Noting that po = 1
and for 1 <k < M, py ~ 1/2, we can assume (1 —o(1))/pr > 1/2 to give

ﬂN \F BN M
EoTy > Y. 7+ Z ya log
z<\/> z— 3 \/N D

3. Voting on the complete graph K,,. For the complete graph K,, the
probability that the number of blue vertices B increases at a given step is B(t)/n,
whereas in the pull process it is R(t)/n = 1 — B(t)/n. The chain defined by Y; =
max{R(t), B(t)} —n/2 is a birth-and-death chain. We study the time that it takes Y;
to reach N = n/2 starting from 0.

Theorem 1: Push process. For the push model, the process Y; is identical to
the push chain Z; with transitions given by (7) with 6 = 0. This was analyzed in
section 2.

Theorem 1: Pull process. For the pull model, the process Y; is identical to
the pull chain Z; with transitions given by (8) with § =0
For the pull model, the process Y; is identical to the pull chain Z; with transitions
given by (8). To begin with, observe that wy = (Nik),k =0,1,..., N satisfies the
detailed balance equation (3). Hence we have 7 (k) = wg /W, where W = wqg + w1 +
4wy
It follows from (4) that

2n 1 ‘ n
Eilﬂ:m'(”i)'Z(NJrk)'
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14 15 16 14 15 16

(i) All X(3) =1 (i) All X (i) = i mod 2

Fic. 2. Cycle with n = 18.

Putting ¢ = N we have

(17) Ey_ 1Ty = Nz_:l (NZ k) = % <2” —24 <;‘[)> = Q(2").

k=0
On the other hand, an upper bound

N

N
S B Ti<2-2" ) i =0(2")

= = (¥4

follows from a result of Sury [22] that
ZN: 1 ntl
( n ) - on

i=1 \N+1i

20
i+1

NE

o(1).

=0

4. Voting on the cycle. Ann-cycle G withV = [n]has E = {(i, i+1) : i € [n]},
where we identify vertex n + ¢ with vertex i. See Figure 2.

Let X = X (¢t) denote the (configuration of opinions) of the voting process at time
t. Let K(X) denote the set of discordant edges of X and let k(X) = |K|. Let D(X)
denote the set of discordant vertices in X. We note that, during voting, the number
of discordant edges can never increase from its current value.

We say i + 1, i+ 2,...,7 is a run of length (j — i) (1 < j—i < n)if X(i) #
X(i+1)=X(i+2)=-=X(j) # X(j+1). A singleton is a run of length 1, a
single vertex. These vertices require special treatment, since they lie in two discordant
edges. If a singleton is recolored, the number of discordant edges decreases by two,
and indeed recoloring a singleton is the only way to decrease the number of discordant
edges.

Note that the number of runs, k£(X), in X is equal to the number of discordant
edges. Also k is even, since red and blue runs must alternate, so we will write r(X) =
1k(X), and ko = 2rg = k(Xp). Thus r(X) is the number of paths of a given color.
Then T is the first ¢ for which k(X;) = r(X;) = 0 (a cycle is not a path).

Let the k runs in X have lengths 1,05, ..., ¢, respectively, and let s(X) denote
the number of singletons. Clearly Zle {; = n, and there are kK = 2k — s discordant
vertices, so k < k < 2k.
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We wish to determine the convergence time 7' for an arbitrary configuration Xg
of the push or pull process to reach an absorbing state Xp with Xp(i) = Xp(1)
(i € [n]). In these processes, the run lengths behave rather like symmetric random
walks on the line. However, an analysis using classical random walk techniques [11]
seems problematic. There are two main difficulties. First, the k “walks” (run lengths)
are correlated. If a run is long, the adjacent runs are likely to be shorter, and vice
versa. Second, when the change vertex is a singleton, the lengths of three adjacent
runs are combined, so three walks suddenly merge into one. One of the three runs is
a singleton, but the other two may have arbitrary lengths.

Therefore, we will use the random walk view only to give a lower bound on the
convergence time. For the upper bound, we use a different approach. We will define
a potential function

k
w<X):Z¢E,

where (X) = 0 if and only if £(X) = 0. The important feature of ¢ is that it is a
separable and strictly concave function of the ¢; (i € [k]). Almost any other function
with these properties would give similar results.

LEMMA 7. For any configuration X on the n-cycle with k runs, ¥(X) < Vkn.
Proof. If k = 0, this is clearly true. Otherwise, if & > 2, by concavity we have

V) /k=F XV < X0l = V/nfk, so (X)) < Vim. 0

Observe that k(X¢41) = k(X¢) at step ¢t of either the push or pull process, unless
the change vertex is a singleton, in which case we may have k(X¢y1) = k(X)) — 2.
Thus {t : k(X;) = 2r} is an interval [t,., t,.—1 ), which we will call phase r of the process.

Let v; = v € D(X;) be the active vertex, i.e., the vertex selected to push in the
push rule, or pull in the pull rule. Let d, be the expected change in v, i.e.,

6y = E[P(Xiq1) —(Xy) | vr = 0]

If there are k = 2k — s discordant vertices, the total expected change § in v is

A = BlH(Xin) ~ (X)) = + Y b

veED

We will show that A is negative, so 1(X;) is monotonically decreasing with ¢, in
expectation. Unfortunately we cannot simply bound §, for each v € D, since it is
possible to have §, > 0. Thus we will consider discordant edges. We partition the set
K of discordant edges uv into three subsets:

(A) A= {uv:wuand v not singleton};

(B) B ={uwv: u not singleton, v singleton};

(C) C ={uv:wuand v both singleton}.
See Figure 3, where ¢, is the length of the run containing discordant vertex z for
z € {u,v,w,q}.

Note that k can change only if uv € BU C. Now let

NIV uv € A; Oy + Oy, uv € A;
Auw = VO, + 3V,  uv € B; Oup = 6u+ 30, w € B;
V0 + 5V, weC; 30+ 36, wweC.
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&y
v
u
by
(A) w and v not (B) w not single- (C) wand v both
singleton ton, v singleton singleton

Fic. 3. Cases for discordant edge uv.

Each singleton is in two discordant edges, all other discordant vertices in one, and
each run is bounded by two discordant vertices. Therefore

¢:%Z\/E:ZAW, 5212511:1251”1
veD uwve K HUED HquK

We will show that d,, < 0 for all uv € K. We consider cases (A), (B), and (C)
separately. So far, the analysis is identical for pull and push voting. Now we must
distinguish them. First we consider the push process.

Push voting.
(A)

o =Vl + 1=\l + V= 1=/,

Su =l =1 =Vl + Vil + 1=/l
Hence 8y = (Vly + 1+l — 1 —20,) + (Vl, + 1+l —1—21,) <
—i(é;?’/z + &73/2), using Lemma 8.
LEMMA 8. For all £ > 1, I+ 1+ VI —1 < 2Vl — 30732,

Proof. First, we prove the inequality 1 + z+v1 —x < Qf%xz forallz < 1.
By squaring both sides, the inequality is true if 2421 — 22 < 4—2%+ £a?.
This is true if yT—y < 1— 1y with y = 2. Squaring both sides, this
is1—9y? < 1—92+ %y‘l, which is clearly true. Now, letting z = 1/,

VI+T+Vl—=1 < 2v/0—1073/2 is equivalent to VI + z+v/1 -z < 2—1a?

with z < 1. O
(B) Let u,w be the discordant neighbors of v. Then

5v=%(«/£u—1—\/Fu+\/§—1+\/£w—1—\/fw+¢§—1).

Since VI — 1 <V, §, <2 — 1. Also
§u: \/€w+€u+1*\/€w*\/euflg\/gf’i;a

using Lemma 9. Thus

1 1
Suv < 5(&— N+vV3-3<-1< —5(z53/2 + 07372,
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LEMMA 9. For all £1,00 > 1, \/l1 +la +1 > /1 +l5 + 14 (3 —/3).

Proof. Consider f(£1,03) = /I3 + /T3 +1— /1 + o + 1+ (v/3 —3). Then,
for all ¢1,45 > 0,

o . ! >0 (i=1,2)
= _— Z — ,
ot; 2Vl 2Vl + 1l + 1
Hence f(¢1,62) > f(1,1) =0 for all 41,62 > 1. 0
(C) Let u,w be the discordant neighbors of v, and v, ¢ the discordant neighbors

of u. Then
1
5,,:5(\/&)—1—\/zw+\/§—1+w/zq+2—\/?q—2).
Now V/—1 <Vl and VI+2 -Vl -2 < \/§—3, using Lemma 9 with

(1 =1. Thus 6, < §(v2 — 1 ++/3 = 3) < —0.425. Similarly 6, < —0.425, so
duw < —0.425 < _%(53/2 407,

Hence we have 0, < —%((;3/2 + &;3/2) for all uv € K, so
S= T = X b <o S GV < g S
K v K w= 5k v “ 5k v
veD wveK uwveK veD

Thus 1
= —3/2
E[p(Xi41)] < ¢(Xe) 5r Zév .
veD
Since f(x) = 273 is a convex function, E[f(X)] > f(E[X]) by Jensen’s inequality [23,
6.6], so

Ly ets (V) = () > ()

as k = 2k—s, and we assume ¢ is in the interval [¢,, ¢,_1) in which there are k(X;) = 2r
runs. Therefore,

3
(18) E[(Xe41)] < ¢(X) - é(zq/,(kXt))g = (X)) - 4()1;(;)@3

Hence, using Lemma 7 we have that ¢(X;) < vkn and so
(19) B[y (Xes1)] - B (X)) < —g5h®/(kn)*/? = —45(k/n)*2.

During phase r of the process (the interval [t,,t,_1)) the number of runs is k = 2r
for r € [ro], where ro = 2k(Xp) is the initial number of runs. Let ¢, = E[¢(X;,)].
Since 19 = 3k(Xo), tr, = 0, and since r(X7) = k(X7) = 0, tp = T and ¢y = 0.
Let m, = E[t,_; —t,] for r € [ro] and 7, = 2(2r/n)*?. Then (7) implies that
W(X;) + (t — ty—1)7, is a supermartingale [23, Chapter 10, section 3] during phase 7,
and t,_1 is a stopping time. Then the optional stopping theorem [23, Chapter 10,
section 10] implies that

pr1+yeme = ElY(Xy, ) + 7 (t = t1)] < E[p(X,)] = o,
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which implies
(20) Pr — Pr_1 Z YrMyp = Ilomr(Qr/n)s/z (’I“ € [TO]) .

Note, in particular, that ¢, > @,._1 for all r € [ro].
From Lemma 7, ¢, < v/2rn. Then, from (20), we have m, < 40v/2rn(2r/n)=3/% =
20n?/r. Thus

T0 T0
E[T] = m; < 20n*» 1/j < 20n*(logro +1).

j=1 j=1

Since r9 < n/2, this gives an absolute bound of 20n? log(en/2) = O(n?logn). How-
ever, we can improve this with a more careful analysis.

Let 2, = ¢, — ¢r—1 > 0 for r € [rg]. By Lemma 7, Y, _, x; = ¢, < V2rn. Also,
from (20), we have m, < 40z, (n/2r)*? = 1020 %z, /r3/2, so B[T] = Y7 m; <
1020323770 |, 132,

Thus E[T] is bounded above by T*, the optimal value of the following linear
program.

T0
T* = max 10\/5713/221:1“/7"3/2
r=1
21 -
(21) such that ij < V2rn (r € [ro]),
j=1
5 >0 (G € o))

This linear program can be solved easily by a greedy procedure. In fact, it is
a polymatroidal linear program [9], but we will give a self-contained proof for this
simple case, using linear programming duality.

LEMMA 10. Let 0 < by < by < --- < b, and ¢y > cg > --- > ¢, > 0. Then the
linear program max Y 7_, cjx; subject to 375 xj < by, x>0 (r € [V]) has optimal
solution x1 = by, x; =b; —bj_1 (j=2,3,...,v).

Proof. This solution has objective function value ¢1by +ca(b2 —b1) + -+ -+ ¢, (b, —
b,—1). The dual linear program is min) ._, b;y; subject to Z;‘/:j Yi = ¢j, y; > 0
(j € [v]), and has feasible solution y, = ¢,, y; = ¢; —¢j+1 (j € [v —1]). Then the
dual objective function has value b,c, +b,_1(c,—1 —¢,) + -+ + b1(c1 — c2). However,

c1bi +ca(ba — b))+ -+ (by —bu—1) = by +bu_i(cv—1 —cv) + -+ bi(er —e2).

Since the objective function values are equal, it follows that the two solutions are
optimal in the primal and dual, respectively. 0

Thus, the optimal solution to (21) is z, = v2nr — /2n(r — 1) = V2nr(1 —
V1=1/r) <+/2n/r for r € [ro], since 1 —y < /T —y for 0 <y < 1. Thus

T0 70
™ < 10\/§n3/22wr/r3/2 < 10\/51122\/5/(\/777"3/2)

Jj=1 Jj=1

T0
=20n*> 1/r* < (107%/3)n?,

r=1

since Y o2, 1/r? = 72/6. Thus we have an absolute bound of E[T] = O(n?).
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Fic. 4. Lower bound configuration.

Pull voting. The case of pull voting is similar, but the calculations for cases
(A)—(C) are changed as follows.

(A’) The analysis for this case is identical to (A), except that d,, and J,, are inter-

changed. Hence 0., < ﬁ(z;m + 653/2), as before.

(B") 0y = Vly + oy +1— /0y, — /Ty —1 < /3 -3, using Lemma 9. Also 6, =
V24, —1—l,—1 <V2-1. Thus §,, < V2-1+3(V3-3) < —0.22 <
_%(&73/2 _'_&73/2).

(C) 6y = Vly +2 — V0l —2 < /3 -3, from Lemma 9 with £ = 1. Similarly
Su < V/3—3,50 6, <V3—3 < —1.25 < —L(6,°2 4 0,%/%).

Hence we have 0,, < —%(6;3/2 + 6;3/2) for all wv € K, whereas we had d,, <

-1, 32 4 073/ %) for push voting. Thus the estimated rate of convergence is only half
that for push voting. The rest of the analysis follows the same lines as before, except
that the convergence time estimates are doubled. However, we may still conclude that
E[T] = O(n?).

Lower bound. Suppose G is an n-cycle, with n = 2v even, and the push or
pull process starts with Xo(i) =0 (i =1,...,v), Xo(i) =1 (i =v+1,...,n). Thus
k =2 and ¢; = ¢ = v. See Figure 4. At each step before convergence, there are
two discordant edges and four discordant vertices and the push and pull processes
proceed identically. Let L; be the length of (say) the red run at step ¢, so Ly = v,
Ly € {0,n}. At each step before convergence, we have k(X;) = 2, Lyy1 + Ly — 1
with probability 1/2 and L;1q < L; + 1 with probability 1/2. Thus L; is a symmetric
simple random walk. The number of runs k(X;) can only be reduced from two to
zero if either Ly =1 or Ly = n — 1, when one of the runs is a singleton. Thus E[T] is
bounded below by the expected time for a symmetric simple random walk started at
v to reach either 1 or (n — 1). This is well known [11, Chapter XIV, section 3] and
is exactly (v — 1)? = Q(n?). Therefore the expected convergence time for either the
push or pull process is ©(n?).

5. Voting on the star graph S,,. Let (r,b, X) denote the coloring of the star
graph S, on n vertices in which there are r red vertices b = n — r blue vertices. The
central vertex has color X € {R, B}.

Push voting on the star.

THEOREM 11. Starting from |R| = n/2, the push process on the star with n ver-
tices has expected consensus time ET = ©(n?logn).
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S(r+1) S(r—1)

Fic. 5. Pseudostates for the push process.

In the case of the push process, the transitions from state (r,b, R) are to state
(r+1,b—1, R) with probability 1/(b+1) and to state (r—1,b+1, B) with probability
b/(b+1). The transitions from state (r — 1,b+ 1, B) are to (r,b, R) with probability
(r—1)/r and to (r — 2,b+ 2, B) with probability 1/r. For the purposes of discussion
we group the states (r,R) = (r,b,R) and (r — 1,B) = (r — 1,b+ 1, B) into a single
pseudostate S(r). The transitions probabilities within or between S(r+1) or S(r —1)
are shown in Figure 5, and are derived as follows:

Let X,Y € {R,B}. For a particle occupying a state (of color) X in S(r) let
Px (Y, r) be the probability of exit from S(r) via state Y. For example, Pr(R,7) is
the probability that a particle starting at (r, R) eventually exits from S(r) via state
(r,R) to state (r + 1, R) in S(r + 1). Thus

1 b r—1 b or—1\F
PR(R’T)b—I-l(ler—&—l T +“'+(b—&—1 T > +“'>’

1 1 T

Tbh+11-pr—10/b+1)r] n

Similarly let Pg(R,r) be the probability that a particle currently at (r—1, B) in S(r)
moves from S(r) to (r +1,R) in S(r +1). Then

so that

PR(R, 7’)

1 1
L Pr(Rr) = .

Ps(R =
(1) r n

In summary, starting from state X € {R, B} of S(r), for 1 <r <n —1 the transition

probability px (r) from S(r) to S(r+1) (resp., transition probability px (b) from S(r)

to S(r — 1)) is given by

(22) pxr) = TRy = IO
n n

States (0, B) (i.e., S(0)) and (n, R) (i.e., S(n)) are absorbing.

Let ¢ = max(r,b) — n/2. To obtain lower and upper bounds on the number of
transitions between pseudostates S(r) before absorption, we can couple the process
with a biased random walk on the line L = {0,1,...,n/2} with a reflecting barrier at
0 and an absorbing barrier at n/2. We assume n is even here. For 0 < i < n/2, let
p; be the probability of a transition from ¢ to ¢ +1 on L, and let ¢; = 1 — p; be the
probability of a transition from ¢ to i — 1. It follows from (22) that to obtain bounds
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on the number of transitions between pseudostates S(r) before absorption we can use
a value of p; given by

(23) pi=1/24(i+1)/n lower bound, p; =1/24 (i—1)/n upper bound.

We next consider the number of loops, for example, (r, R) — (r — 1, B) — (r, R),
made within S(r) before exit. For a particle starting from state X of S( ) let Cxy =
Cxy (r) be the number of loops before exit at state Y. Let A = H—1T; and p =
A/(1 = \)2, then

1 A 1

ECrr = Zb+1 RAT = br1(1-N2 Cb+1
k>0
Similarly,
ECBr = Pil ECgrp = PLy ECpp = Pl-
r(b+1)’ r(b+1)
The conditional expectations pxy (r) = ECxy (r)/Px(Y,r) are given by
PR XY = RR,
(24) pxy(r) = p%% b Ay
Pt oy XY = RB,
piist, XY =BB.

The value of p = (rb(r — 1)(b + 1))/n?. In particular if b,7 = (1 + o(1))n/2, then
whatever colors X,Y
n
(25) pxy (r) = (1+o(1))7.
Let N = n/2. Starting from r = b = n/2 let T} be the number of transitions
between states S(r) to reach max(r,b) = N + n/2. Referring to (23), we consider a
biassed random walk with transition probabilities of Z = max{r,b} — n/2 given by

1 if i =0,
(26) pi=1{1/2+i/n+d/n, ifie{l,...,n/2—1},
0, if i =n/2,

where we set = 1 for a lower bound on the number of steps T’ to absorption, and
6 = —1 for an upper bound.

The walk in (26) is the push chain Z; with transitions given by (7) as analyzed
in section 2. Referring to (7) and (6) we set § = 0 for a lower bound on E¢Ty;. For
M = N3/* from Lemma 6,

M

M
EoT]w Z @(1) Z )IOgﬁ =
i=VN

For all states i = v/N,..., N3/4, the corresponding value of r = (1+0(1))n/2. Refer-
ring to (25), whatever the type of transition XY between S(r) and neighboring states,
uxy(r) = (1+o0(1))n/4. Let p =miny y (pxy(r) : n/2 <r < M), then > n/5. As
EoTn > EoTy = O(nlogn) we have that

ET(Push) > 1 EoTyr = Q(n?logn).

> 0Q(N

N
- ©(nlogn).

The upper bound follows by a similar argument. Put 6 = —1 in (7), and use Lemma
D.
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S(r+1)
b b4l
10— 1 R) bt1 b+2
T r—1

F1a. 6. Pseudostates for the pull process.

Pull voting on the star.

THEOREM 12. The pull process on the star with n vertices has expected consensus
time ET = O(n?).

As before, we group the states (r, R) = (r,b,R) and (r —1,B) = (r—1,b+ 1, B)
into a single pseudostate S(r). The transitions probabilities within or between S(r+1)
or S(r—1) are shown in Figure 6 and are obtained by calculations similar to the push
case. In the final pseudostate S(n) on the left, the state (n,0, R) is absorbing, and
so the state (n — 1,1, B) cannot be reached. As an initial state, (n — 1,1, B) goes to
(n — 2,2, B) with probability 1.

The pull process seems much easier to analyze. Suppose the star currently has a
red central vertex, and we are in state (r,b, R) of S(r). The probability of a direct
transition from (r,b, R) to (r + 1,b — 1, R) is b/(b + 1). This occurs when a blue
leaf vertex is chosen and pulls the color of the red central vertex. We say a run is
a sequence of transitions which leave the color of the central vertex unchanged. Let
p(r,z, R) be run given by the sequence of transitions

(r,b,R) - (r+1,b—1,R) —»--- = (z—1,n—2+1,R) = (x,n —z,R).

Then
n—r n—r—1 n—x+1_n—x+1
n—-r+1 n—r n—xz+2 n—r+1’

The probability a run starting at (r,n — r, R) finishes by absorption at (n,0, R) is

Pr(p(r, L, R)) =

1 1

Pr(p(r,n, R)) = n—rriZn

Each run is terminated by absorption, or by a change of color of the central vertex,
say, from R to B. In the latter case, this marks the start of a new run (possibly of
length zero) in the opposite direction. Starting from (r,n—r, R), let X be the number
of changes of color of the central vertex from R to B, or vice versa, before absorbtion
at (n,0,R) or (0,n,B). Let Y be the winning step for a sequence of independent
trials with success probability p = 1/n. Then EX < EY = n. Each run has a length
between zero and n, so ET(Pull) = O(n?).

6. Voting on the double star.

Push voting on the double star. A double star S3,,, comprises two stars
S1,S52, each with n leaves, and their central vertices ¢y, co joined by an edge. See
Figure 1. Let X; : V — {R, B} identify the colors of the vertices v € V at time ¢t. We

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/10/19 to 129.11.23.146. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2416 COOPER, DYER, FRIEZE, AND RIVERA

g !

Fig. 7. Sy with r leaves colored R.

will show that the convergence time for the push process on S3,, , can be exponential
in n.

THEOREM 13. The push process on the double star with 2n + 2 vertices has worst
case convergence time (22"/5).

Proof. We will assume that the initial configuration for the process has Xo(v) = B
(v e Sy), and Xo(v) = R (v € S). Then, for convergence to occur, we must have
either X(v) = R (for all v € S1) or X(v) = B (for all v € S3). Without loss of
generality, we suppose S7 that must be recolored R, and temporarily restrict attention
to Sl~

Let 7o = {v € S1\ c1 : Xt(v) = R} be the number of leaves in S; which are
colored R, and hence (n — ;) leaves are colored B. We make no assumption about
Xi(e1) or X¢(c2). See Figure 7.

Now, if r4_1 = r, at step t either r; < r+ 1, r, < r — 1, ¢; changes color, or the
step involves So. We discard all steps which involve S5 or ¢; and consider the time ¢
as changing only when either ry41 <~ 7. 4+1 or riyq < r; — 1. Thus ¢ is a lower bound
on the duration of the process.

We will upper bound Pr(r;y; = 7 + 1), when r; = r. This event occurs only
when ¢; is chosen and will be maximized when X;(c;) = R, since otherwise ¢; must
first change color. It is also maximized when X;(c2) = R, since then ¢jco cannot
be chosen as a discordant edge. However, ¢; may be recolored B, R any number of
times, k, say, between t and t 4+ 1. The probability that ¢; is recolored B is at most
(n—r+1)/(n—r+2), when ¢y is colored B. Subsequent to this, the probability that
¢1 is recolored R is at most (r +1)/(r + 2), when ¢y is colored R.

0o k
1 r+ln—r+1
Pr(ripi=r+1|r=r) < g ( )

nfr+1k_o r+2n—r+2
B 1 ] r+ln—r+1\"
on—r+1 r+2n—r+2

(r+2)(n—r+2)
n+3)(n—r+1)

r+3
< , ifr<(n-1)/2.
- n+3 = )/
Since the only alternative is that ;11 =7 — 1, when r < (n — 1)/2, we also have

r+3 n—r
P =r—1 = =1-P = 1) > 1-— = .
r(rep1=7r |re=1) r(repr=r+1) > e m——

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/10/19 to 129.11.23.146. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

DISCORDANT VOTING PROCESSES ON FINITE GRAPHS 2417

Now Pr(ripy =r+1 | =7) < (r+3)/(n+3) < Ysifr < (n—12)/5. Let
v = |(n —12)/5]. Thus, in the range 0 < r; < v, the process r; is dominated by a
random walk Z; with Pr(Z;11 =r+1 | Zy =7) =15, Pr(Zij1 =r—1| Zy =71) = 4/5.
Let a trial of this process be the sequence of T steps, starting with Zy = 1, until either
of the events Ey : Zr =0 or E, : Zr = v occurs. From [11, p. 314], we have

< 47 forv>1.

Let EL* be the event that E, ever occurs in k trials. Thus Pr(EL}*) < k4177 = 4k /47,
The corresponding event £2* in Sy is that n—r; = v occurs in k trials, and so similarly
Pr(E2F) < k417, Let EX = ELk v E2F 50

Pr(E¥) = Pr(EL* v E*%) < Pr(EL*) 4+ Pr(E?%) < 8k/4¥ = k/2% 73,

Clearly convergence requires E¥ to have occurred. However, if k < 22(*=%) | E¥ occurs
with probability at most 1/4. Thus we need at least Q(4") = €Q(22"/5) trials before
there is any appreciable probability of convergence. Hence 9(22”/ %) is a lower bound
on the time for convergence with high probability. 0

For a double star S3 on N = 2n + 2 vertices, it follows that for the push process
ET = Q(2V/%), as stated in Theorem 3.

Pull voting on the double star.

LEMMA 14. Let T be the expected time to complete discordant pull voting on the
double star of 2n + 2 vertices. Then for any starting configuration ET = O(n*).

Proof. Our proof mimics that for pull voting on the star graph. If the centers
1, co are the same color (say, red) we call the central edge monochromatic. If the
central vertices are both red, then a run is a sequence of steps in which a blue leaf
vertex is chosen at each step and pulls the red color from one of the central vertices.

Let r1,b1 be the number of red and blue leaves in Sy (resp., r2,bs in Ss). Let
by + by =b. Let p(b,k | R) be the probability of a run of length at least & > 0 given
the central vertices are red. The probability that a central vertex is recolored at the
next step is p(b,0 | R) = 2/(b+ 2). The required probabilities are

b
(et k=1,
b(b—1) _
(GIGEE k=2,
Pk R) = (b—k+2)(b—k+1)
—k42)(b—k+ _
W7 ki37...7b71,
2 —

1) (b12)° k=b.

Before cancelation of terms, for k& > 3 the expression for p(b, k | R) is

b b—1b—2 b—(k—3) b—(k—2) b—(k—1)

b+2b+1 b b—(k—3)4+2b—(k—2)+2b—(k—1)+2

The cases k = 1,2 are given by the first two terms of this expression.
If the central edge is monochromatic, then the probability P to finish voting
without recoloring either of ¢, ¢ is P = p(b,b | R) > 1/n%. Let u’ be an upper bound
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on the expected number of runs required for an exit (i.e., for the entire coloring to be
monochromatic). Then u' < 1/P = n?.

If the central edge is not monochromatic, e.g., ¢; is red and cs is blue, let the
probability of becoming monochromatic in a given step be ¢(r1,b1,r2,bs). Thus

¢( b b)> . 2 2 > 2 1
r r min ’
1,01,72,02) 2> by+re+2" 1 +be+2[ " 2n+2 n+1l

Let p be an upper bound on the expected wait for the central edge to become
monochromatic. Then p < n + 1.
The number of steps in any run is at most s = 2n + 1. Thus for the pull process

ET < pp's = (n+1) n* (2n+1) = O(n*). 0

7. Voting on the barbell graph. The barbell or dumbbell graph of N = 2n
vertices, Bay, is formed from two disjoint cliques S; and Sy of size n joined by a single
edge e.

Push voting on the barbell. We start with the following configuration: all
vertices in S are red, and all vertices in Sy are blue. Initially e is the only discordant
edge. Let T the first time when the whole of S; is blue (or Ss is red). Clearly T is less
than or equal to the time to reach consensus. For simplicity, we just look at S; and
assume the final color of S (and Ss) is blue. Suppose that N; is the number of blue
vertices in Sq, where initially Ny = 0. Let M; be the number of discordant vertices,
where My = 2. When 1 < Ny <n/5—9 then M; > n, and

Pr(NtJ’_l = Nt - 1|Nt) = (Tl — Nt)/Mt > 2/5

PI'(Nt_;,_l = Nt + 1|Nt) S (Nt + 1)/Mt < (Nt + 1)/7?, S 1/57

In the regime 1 < Ny <n/5—9, N; is dominated by a process N/ with

Pr(N;,, = N, +1|N;) =1/5,
Pr(Nji, = N, = 1|N}) = 2/5,
(27) Pr(Nyy = N{|N)) = 2/5.

Let Z be N/ observed when N/ changes, and thus we ignore the loop steps given by
(27), in which case the probability p that Z increases by one is p = 1/3, and the
probability ¢ that Z decreases by one is ¢ = 2/3. We now follow the analysis for
push voting on the double star. Let a trial of this process be the sequence of T steps,
starting with Zy = 1, until either of the events Ey : Zr = 0 or E, : Zp = v occurs.
From [11, p. 314], we have

1
< 217" forv>1.

Pr(E,) = w1 =

From now on, the same argument used for the double star works here. We just repeat
the conclusion that ET = Q(2") = Q(2"/%) = Q(2V/10), where N = 2n is the total
number of vertices.

Pull voting on the barbell. We suppose we have reached a configuration in
which all vertices except one are red. Suppose the unique blue vertex is in S;. We
modify our process so that the system reaches consensus faster. To do that, in each
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round we only select vertices in 57 and assume the final color will be red. If the final
color would be blue, then we must also recolor all of S5. Even if the vertex c¢; of the
bridge edge e = (c1, ¢2) is blue, the interaction between S; and S does not affect the
outcome. If S7 is not in consensus, then each vertex in S; has at least one discordant
neighbor in S, so the (red) opinions in S3 will not affect the outcome.

We use a result from the proof of Theorem 1 for K, as given in section 3. In-
equality (17) shows the expected time for pull voting to reach consensus in K,,, when
all but one vertex is red is €(2"). So, the time to finish in the modified process is
Q(2") = Q(2N/?) on a graph with N vertices.

8. Concluding remarks. In contrast to ordinary randomized voting which per-
forms consistently on a wide variety of graphs, the consensus time of push or pull
discordant voting depends strongly on the structure of the underlying graph (see Fig-
ure 1). The exact structural properties which could be used to predict this behavior
are unclear. This performance seems counterintuitive, as focusing on the conflicts be-
tween vertices rather than ignoring them ought to allow us to reach consensus more
quickly.

Unlike ordinary voting which admits a general analysis (see, e.g., [7]), the methods
used for discordant voting are somewhat ad hoc. In the case of discordant voting on
the cycle, one of the referees suggested an alternative approach to upper bounding
the consensus time based on coupling with a simple random walk.
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