

This is a repository copy of Production of HO₂ and OH radicals from near-UV irradiated airborne TiO₂ nanoparticles.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/140893/

Version: Accepted Version

Article:

Moon, DR, Ingham, T, Whalley, LK orcid.org/0000-0002-4486-9029 et al. (3 more authors) (2019) Production of HO₂ and OH radicals from near-UV irradiated airborne TiO₂ nanoparticles. Physical Chemistry Chemical Physics, 21 (5). pp. 2201-2824. ISSN 1463-9076

https://doi.org/10.1039/C8CP06889E

This article is protected by copyright. This is an author produced version of a paper published in Physical Chemistry Chemical Physics. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Production of HO₂ and OH radicals from near-UV irradiated airborne TiO₂ nanoparticles

- 3 D. R. Moon¹, T. Ingham^{1,2}, L. K. Whalley^{1,2}, P. W. Seakins^{1,2}, M. T. Baeza-Romero³, D. E. Heard^{1,2*}
- ⁴ School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
- ⁵ ² National Centre for Atmospheric Science, School of Chemistry, University of Leeds, Leeds, LS2 9JT,

6 UK

³ Escuela de Ingeniería Industrial, Universidad de Castilla-La Mancha, 45071, Toledo, Spain

8 * Corresponding author. Email: d.e.heard@leeds.ac.uk

9 Abstract

10 The production of gas-phase hydroperoxyl radicals, HO₂, is observed directly from sub-micron airborne 11 TiO₂ nanoparticles irradiated by 300 – 400 nm radiation. The rate of HO₂ production as a function of O₂ pressure follows Langmuir isotherm behaviour suggesting O₂ is involved in the production of HO₂ 12 following its adsorption onto the surface of the TiO₂ aerosol. Reduction of adsorbed O₂ by 13 14 photogenerated electrons is likely to be the initial step followed by reaction with a proton produced via oxidation of adsorbed water with a photogenerated hole. The rate of HO₂ production decreased 15 16 significantly over the range of relative humidities between 8.7 and 36.9 %, suggesting competitive adsorption of water vapour inhibits HO₂ production. From the data, the adsorption equilibrium 17 constants were calculated to be: $K_{02} = 0.27 \pm 0.02 \text{ Pa}^{-1}$ and $K_{H20} = 2.16 \pm 0.12 \text{ Pa}^{-1}$ for RH = 8.7%, 18 decreasing to $K_{O2} = 0.18 \pm 0.01$ Pa⁻¹ and $K_{H2O} = 1.33 \pm 0.04$ Pa⁻¹ at RH = 22.1%. The increased coverage 19 20 of H_2O onto the TiO₂ aerosol surface may inhibit HO_2 production by decreasing the effective surface 21 area of the TiO₂ particle and lowering the binding energy of O_2 on the aerosol surface, hence shortening 22 its desorption lifetime. The maximum yield (i.e. when $[O_2]$ is projected to atmospherically relevant levels) for production of gas-phase HO₂, normalised for surface area and light intensity, was found to 23 be $k'_{prod} = (3.64 \pm 0.04) \times 10^{-3} \text{ HO}_2$ molecule photon⁻¹ at a RH of 8.7% for the 80% anatase and 20% 24 rutile formulation of TiO₂ used here. This yield decreased to $k'_{prod} = (1.97 \pm 0.03) \times 10^{-3}$ molecule 25 26 photon⁻¹ as the RH was increased to 22.1%. Using this value, the rate of production of HO₂ from TiO_2 27 surfaces under atmospheric conditions was estimated to be in the range $5 \times 10^4 - 1 \times 10^6$ molecule cm⁻³s⁻ ¹ using observed surface areas of mineral dust at Cape Verde, and assuming a TiO₂ fraction of 4.5%. 28 29 For the largest loadings of dust in the troposphere, the rate of this novel heterogeneous production 30 mechanism begins to approach that of HO_2 production from the gas-phase reaction of OH with CO in 31 unpolluted regions. The production of gas-phase OH radicals could only be observed conclusively at

high aerosol surface areas, and was attributed to the decomposition of H_2O_2 at the surface by photogenerated electrons.

34 1. Introduction

The photocatalytic properties of TiO_2 are widely known ^{1, 2} and have been exploited in many 35 applications such as water and air purification and self-cleaning materials.³ TiO₂ is a semiconductor 36 material and when illuminated with UV light an electron (e⁻) is promoted from its valance band into its 37 38 conduction band also creating a hole (h^+) (R1). The magnitude of the band gap for TiO₂ nanoparticles is ~ 3.2 eV, so there is a wavelength threshold of λ < 388 nm for TiO₂ to become electronically 39 conductive. ⁴ The e^{-} and h^{+} pair can migrate to the crystal surface and subsequently oxidise and reduce 40 adsorbed donor and acceptor molecules, respectively.⁵ One reaction of interest is the oxidation of water 41 by h⁺ to produce highly reactive hydroxyl radicals (OH, R2) on the TiO₂ surface. ⁶ Other reactive 42 oxygenated species (ROS), such as the hydroperoxyl radical (HO₂), hydrogen peroxide (H₂O₂) and 43 singlet oxygen ($O_2(^{1}\Delta)$, R3-R10), can also be formed on the surface of TiO₂ materials. The detailed 44 reaction mechanism for the formation of these ROS on the surface of TiO₂ is not well understood, 45 however it is believed to be as follows ⁶: 46

47
$$TiO_2 + hv (\lambda < 388 \text{ nm}) \rightarrow TiO_2 + h^+ + e^-$$
(R1)

48
$$h^+ + H_2O \rightarrow OH + H^+$$
 (R2)

$$49 O_2 + H^+ + e^- \rightarrow HO_2 (R3)$$

$$50 \qquad \qquad 2OH \rightarrow H_2O_2 \qquad (R4)$$

51
$$HO_2 + e^- + H^+ \rightarrow H_2O_2$$
 (R5)

52
$$2HO_2 \rightarrow H_2O_2 + O_2$$
 (R6)

53
$$O_2 + e^- \rightarrow O_2^-$$
 (R7)

54
$$O_2^- + h^+ \rightarrow O_2(^1\Delta)$$
 (R8)

55
$$H_2O_2 + O_2^- \rightarrow OH + OH^- + O_2$$
(R9)

56 $OH + HO_2 \rightarrow H_2O_2 + \frac{1}{2}O_2$ (R10)

ROS formed on the surface of the TiO_2 catalyst can react with and degrade adsorbed organic compounds making it ideal for air and water purification applications. However, some laboratory studies have shown that some ROS can also desorb from the surface of TiO_2 materials into the gas phase. Lee and Choi⁷ observed the degradation of soot particles that came within close proximity, but not into direct

contact, with an illuminated substrate partially covered with TiO₂. Tatsuma et al. ⁸ saw the degradation 61 of organic films placed adjacent (up to 2.2 mm) from a TiO₂ film in the presence of light and air. Both 62 experiments indicate possible OH emissions from the surface. Murakami et al.⁹ conducted the first 63 64 study that directly observed gas phase OH radicals using low pressure laser induced florescence up to 65 8 mm from illuminated TiO₂ powders. They demonstrated that OH was produced from photocatalytic 66 activity on the surface of the TiO₂ powder through studies using deuterated water vapour, and observed 67 a decrease in OH signal as calcination temperatures of TiO₂ powders were increased. Vincent et al.¹⁰ and Thiebaud et al.¹¹ demonstrated experimentally the formation of OH radicals and H₂O₂ molecules 68 69 in the gas phase upon irradiation of TiO_2 surface in the presence of H_2O . HO_2 emissions from irradiated 70 TiO_2 surfaces in the presence of gas phase H_2O_2 at low pressures (50 and 200 Torr) were first observed 71 by Bahrini et al. ⁶ In that study HO₂ was detected up to 44 mm away from the TiO₂ surface using Cavity Ring Down Spectroscopy (cw-CDRS) which directly observed the decomposition of H_2O_2 and 72 73 production of HO₂ simultaneously. Bahrini et al. ⁶ showed that significant concentrations of H_2O_2 (1.2 $\times 10^{14}$ molecule cm⁻³) decomposed over 140 s until a steady state concentration was reached. In one 74 example, it was demonstrated that 6.9×10^{11} molecule cm⁻³ of HO₂ was generated in this way. It was 75 76 concluded that gas phase HO₂ was produced via the decomposition of H₂O₂ by irradiated TiO₂, however the mechanism for the formation of HO₂ was unclear. This study was taken further by Yi et al. ⁴ who 77 78 showed that gas phase HO₂ was only produced if H₂O₂ was also present within their system and that 79 using either N₂ or O₂ as carrier gas made little difference in gas phase HO₂ concentrations. This suggests that HO₂ was created via H₂O₂ decomposition and not from photocatalytic reduction of O₂ and that 80 81 H_2O_2 serves as the electron acceptor as well as an electron donor (R11 – 12). Yi et al. also showed that 82 different polymorphs of TiO₂, such as anatase and rutile, perform very differently with some showing rapid degradation of H₂O₂ but little HO₂ emissions and others with slower degradation but with higher 83 84 emissions of HO₂. Through studies with e^{-} and h^{+} scavengers it was shown that H₂O₂ decomposition is 85 initiated by reaction with e^{-} (R11) or h^{+} (R12) or OH (R13), produced via R2.

$$H_2O_2 + e^- \rightarrow OH + OH^-$$
(R11)

87
$$H_2O_2 + h^+ \rightarrow HO_2 + H^+$$
(R12)

88
$$H_2O_2 + OH \rightarrow HO_2 + H_2O$$
 (R13)

This study reports the first direct observation of HO₂ and OH emissions when airborne TiO₂ nanoparticles are irradiated with UVA light (320 to 400 nm) in the presence of water vapour and oxygen alone (i.e. with no added H₂O₂) within an aerosol flow tube equipped with a highly sensitive laser induced fluorescence (LIF) detector for OH and HO₂ (limit of detection ~ 1×10^6 molecule cm⁻³).

93 2. Experimental

94 **2.1 Overview**

95 Figure 1 presents a schematic diagram of the apparatus, with all experiments undertaken at room

96 temperature $(293 \pm 3 \text{ K})$.

97

Figure 1. Schematic diagram of the aerosol flow tube experiment. MCP: Multi-Channel Plate
photomultiplier, HEPA: high-efficiency particulate air filter, FAGE: fluorescence assay by gas
expansion, RH/T: Relative Humidity/Temperature.

101

A detailed description of the apparatus, which has been used in a slightly different configuration for 102 uptake studies of HO₂ onto a variety of sub-micron aerosols, is provided elsewhere. ¹² In summary, a 103 104 humidified flow of TiO₂ aerosols was introduced within a laminar aerosol flow tube reactor made from 105 borosilicate glass (107 cm length, 5.9 cm I.D.) held at atmospheric pressure. The TiO_2 aerosols were 106 irradiated with a UV lamp (see section 2.2) placed 5 cm above the aerosol flow tube. The HO_2 signal 107 was then measured at the end of the aerosol flow tube using a laser-induced fluorescence at low pressure, a technique known as Fluorescence Assay by Gas Expansion (FAGE, see section 2.4), after chemical 108 conversion by its reaction with NO to OH.¹³ The size distribution of TiO₂ aerosols within the aerosol 109 110 flow tube was measured using a Scanning Mobility Particle Sizer (SMPS, see section 2.3) from a flow sampled from the exhaust of the aerosol flow tube. All gas flows within the experiment were controlled 111 using mass flow controllers (Brookes and MKS). The RH and temperature of the flow was measured 112 113 using a calibrated probe (Rotronics Hygroclip2, accuracy $\pm 0.8\%$ RH and ± 0.1 K) in the exhaust of the 114 aerosol flow tube.

116 2.2 Aerosol Irradiation

117 The aerosol flow tube was illuminated with a UV lamp located adjacent to the FAGE cell and approximately 5 cm above the aerosol flow tube. Two UV lamps were used in this study; a 15 W UVA 118 119 bench lamp (which has two 420 mm length fluorescent tubes, UVP, XX-15) and an 8 W UVA lamp (1 120 \times 8 W 300 mm length fluorescent tube, Eterna, LFT58WH). The 15 W UVA lamp was used in all 121 studies unless otherwise stated. The absolute lamp fluxes of the lamps as a function of wavelength were 122 measured using a calibrated spectral radiometer (Ocean Optics QE500) as is shown in Figure 2. These 123 fluxes were measured outside the aerosol flow tube since it was not possible to fit the integrating dome 124 of the spectral radiometer within the aerosol flow tube due to space constraints. Both the aerosol flow 125 tube and the halocarbon wax film, which was applied to the walls of the aerosol flow tube to reduce 126 HO₂ wall losses, attenuates light entering the aerosol flow tube. An experiment was conducted where 127 the spectral output of the 8 W lamp whilst it was placed inside the aerosol flow tube was measured with 128 the integrating dome of the spectral radiometer placed outside the aerosol flow tube and positioned 129 where the UV lamps are usually placed (with the same distance from lamp to integrating dome). This 130 experiment showed that the total flux of UVA photons from the 8W lamp (integrated between 250 and 388 nm) placed inside the aerosol flow tube was 16 times lower than when the flux was measured with 131 132 the lamp outside the aerosol flow tube (as shown in Figure 2) for the same lamp to integrating dome 133 distance. Hence the light flux inside of the aerosol flow tube with the lamp placed outside is assumed 134 to be 16 times smaller than shown in Figure 2, although it is realised there are considerable uncertainties, 135 for example the circular nature of the flow-tube may create a heterogeneous light field within the aerosol 136 flow tube and there is an opposite lensing effect for the two cases. The attenuation factor from the 137 tube/wax was found to be approximately constant with wavelength across the spectral output of the 8 138 W lamp, and hence it was assumed for the 15 W lamp (which would not fit within the flow tube) that 139 the flux inside the flow tube would scale in a similar manner and be 16 times lower than shown in 140 Figure 2.

Figure 2 also compares the spectral variation of the flux of the lamps to a typical actinic flux spectrum 141 142 measured at a mid-latitude coastal site in the UK in summer. The amount of light with $\lambda < 388$ nm 143 (threshold for promotion of electron to the TiO₂ conduction band) from the 8W lamp entering the flow 144 tube was ~ 7 times smaller than that from typical actinic fluxes experienced within the troposphere and 145 \sim 5 times smaller than fluxes from the 15 W lamp. The amount of such light emitted from the 15 W 146 lamp entering the flow tube was comparable to typical actinic fluxes, which are 40% greater. There are 147 also notable differences in the emission spectra of the two lamps. The average wavelength emitted 148 from the 15 W lamp (340 nm) is smaller than the 8W lamp (365 nm) and the 15 W lamp emits a broader

- range of wavelengths in the ultraviolet region (275 400 nm) compared to the 8 W lamp (325 400
- 150 nm).

151

Figure 2. UVA emission spectra for the 8 W UVA lamp inside (green line) and outside (black line) the aerosol flow tube and the 15 W UVA lamp inside (purple line) and outside (red line) the aerosol flow tube, in all cases with the spectral radiometer integrating dome outside the flow tube. In all cases the distance from the lamp to the spectral radiometer integrating dome was constant. The actinic flux (blue line) measured at the Weybourne Atmospheric Observatory (Norfolk Coast, UK, 52°57'N, 1°07'E) on the 1st July 2015 is shown for comparison.

159 2.3 Aerosol Generation and Detection

160 A suspension of TiO₂ nanoparticles (Aldrich Chemistry 718467, 99.5% Degussa, 5 g in 500 ml of Milli-Q water) was placed in a commercial atomizer (TSI 3076) which was in turn connected to compressed 161 nitrogen which produced a 3.5 L min⁻¹ flow entrained with TiO₂ particles, of which 1.5 L min⁻¹ was 162 163 introduced into the apparatus (referred to as the aerosol flow) and the rest left the apparatus through an 164 exhaust. The nanoparticles are composed of 80% anatase and 20% rutile, polymorphs of TiO₂. Similar 165 formulations of TiO₂, such as Degussa P25 (75% anatase and 25% rutile), are widely used in laboratory 166 studies², and have been shown to have enhanced photocatalytic activity as electrons can rapidly transfer from the rutile to anatase crystallites which results in photoactivity occurring at visible wavelengths and 167 creates enhanced catalytic activity at the rutile-anatase interface.¹⁴ The aerosol flow was then passed 168 169 through a neutraliser to reduce static wall losses, a diffusion drier and an impactor (TSI 1034900) to

- 170 ensure larger aerosols beyond the detection range of the SMPS (~750 nm) do not enter the aerosol flow 171 tube. A high-efficiency particulate air (HEPA, PALL Life Sciences) filter situated within a by-pass 172 loop was used to control the number concentration of particles entering the aerosol flow tube. The 173 aerosol flow was then mixed with a humidified flow of nitrogen to control the RH within the system. 174 The RH of the humidified flow was altered by changing the ratio of dry nitrogen and nitrogen passed 175 through a water bubbler. Oxygen was introduced into the system via zero air (BOC UN1002, 20% O₂ 176 and 80% N_2) before the aerosol and humidified flow enters the conditioning tube and controlled using 177 a calibrated mass flow controller (Alicat Scientific). This flow was then passed through a conditioning 178 tube (residence time ~ 5 s) before entering the aerosol flow tube to allow time for adequate mixing of 179 the three flows and water vapour adsorption onto the surface of the TiO_2 particles to equilibrate at the 180 given RH. The combined flow rate through the aerosol flow tube was 5.3 L min⁻¹.
- 181 The aerosol size distribution and number concentration was measured over a period of 180 s once during 182 each measurement using a Scanning Mobility Particle Sizer (SMPS, TSI 3081) and condensation 183 particle counter (CPC, TSI 3775), from which the total surface area and average radius of particles can 184 be calculated, assuming that particles are spherical. Scanning Electron Microscope images of the TiO_2 particles used within the experiments showed that these particles are indeed spherical.¹² Measurements 185 186 of the size distribution of the TiO_2 aerosols were made at the beginning and end of the aerosol flow tube 187 which showed that there only a small loss of aerosols during transit of the flow tube (< 5%).
- 2.4 188

HO₂ and OH Radical Detection

OH and HO₂ (HO_x) radicals were detected by Fluorescence Assay by Gas Expansion (FAGE, detection 189 190 limit 10^6 molecule cm⁻³).¹⁵ HO_x radicals entered the FAGE cell placed at the end of the flow tube 191 through a 0.7 mm diameter pinhole. In order to detect HO₂, it was chemically converted to OH by 192 injecting 50 sccm of NO (BOC, 99.5 %) into the resulting jet on the low pressure side of the pinhole. The Q₁(2) line of the OH ($A^2 \Sigma^+ - X^2 \prod_i v' = 0 - v'' = 0$) transition at ≈ 308 nm was used to 193 194 electronically excite the OH in the FAGE cell. A Nd:YAG pumped dye laser (JDSU Q201-HD Q-195 series, Sirah Cobra Stretch) was used to produce the required 308 nm radiation (line width ≈ 0.1 cm⁻¹) at a pulse repetition rate of 5 kHz. The FAGE cell was continuously evacuated using a combination of 196 197 a rotary pump (Edwards, model E1M80) and a roots blower (EH1200), and was kept at 0.8–0.9 Torr, 198 which was monitored using a capacitance monitor (Tylan General, CDC 11). The FAGE signal was calibrated using a turbulent flow tube calibration method ¹⁶ which has been developed for field 199 200 measurements of OH and HO₂ radicals, meaning the LIF signal could be converted into an absolute 201 concentration. The calibration experiment involves generating known concentrations of OH and HO₂ 202 from photolysis of H₂O vapour in zero air in a turbulent flow tube placed immediately adjacent to the 203 FAGE sample inlet.

204 2.5 Experimental Procedure and Data Analysis

205 At the beginning of all experiments the FAGE background measurements without the UVA lamp on 206 were taken without and with NO injected into the FAGE cell and subtracted from the OH and HO₂ 207 signals respectively, to correct for laser scatter and photolysis of any impurities in the NO which may 208 form OH. The FAGE signal was averaged over 20 s (average of twenty 1 s data points, each 209 corresponding to 5000 laser shots) for each measurement. Eight 20 s measurements were taken during 210 each run. Measurements were made in the absence of aerosols and in the presence of aerosols. 211 Measurements of HO_x concentrations produced from TiO_2 aerosols under varying conditions were made 212 at different total surface area densities of TiO_2 aerosols, RH, light flux and oxygen concentration. The 213 laser power was recorded for each measurement and used to normalise the HO_2 signal to correct for any 214 fluctuations in laser power (< 5% during an experiment).

The HO₂ signal measured at the end of the aerosol flow tube results from several radical production and 215 216 loss processes, namely wall loss (R14), aerosol uptake (R15), HO₂ self-reaction in the gas-phase (R16), 217 production of HO_2 from aerosols which have been deposited on the walls of the aerosol flow tube (R17) 218 and HO₂ production from airborne TiO₂ aerosol surfaces (R18). To obtain the rate coefficient k_{prod} for HO₂ production from processes occurring on airborne aerosol surfaces, reactions (R14)-(R18) were all 219 220 included in a numerical model developed within the Kintecus integrator package (Windows Version 2.80). ¹⁷ The HO₂ concentration measured at the end of the flow tube after illumination for a known 221 222 period of time was used as the target parameter for the model.

223
$$HO_2 \xrightarrow{k_{wall}} Wall loss$$
 (R14)

224
$$HO_2 \xrightarrow{k_{uptake}} Aerosol Uptake$$
 (R15)

$$HO_2 + HO_2 \xrightarrow{k_{self}} H_2O_2 + O_2$$
(R16)

227
$$\text{TiO}_2 \operatorname{aerosol} + hv \xrightarrow{k_{prod}} \text{HO}_2$$
 (R18)

The HO₂ wall loss rate coefficient (k_{wall}) used in the model was determined at the beginning and end of each experiment using a methodology previously described ¹² in which a sliding injector emitting HO₂ was translated down the flow tube in the absence of aerosols (but after the walls have been conditioned in the presence of aerosols). Wall losses increased as RH was increased during experiments. The HO₂ concentration as a function of time along the flow tube when determining k_{wall} (as k_{self} is negligible in at the HO₂ concentrations of these experiments) can be expressed as:

234
$$\ln[HO_2]_t = \ln[HO_2]_0 - k_{wall}t$$
 (E2)

where $[HO_2]_t$ and $[HO_2]_0$ are concentrations of HO₂ at time t and t = 0 (i.e. $[HO_2]$ at initial injector

- position) respectively, and k_{wall} is the observed pseudo-first-order rate coefficient for HO₂ wall losses. This rate constant was determined in independent experiments where HO₂ was generated in the injector
- 237 This face constant was determined in independent experiments where 1102 was generated in the injector
- 238 as in previous work 9 in the absence of aerosols. Similar HO₂ concentrations were used in these
- 239 experiments and in HO₂ generation experiments.
- 240 The aerosol loss rate coefficient, $k_{aerosol loss}$, was calculated using E3:

241
$$k_{aerosol \ loss} = 0.25 \ S_a \omega_{\rm HO_2} \gamma(\rm HO_2)$$
(E3)

where γ (HO₂) is the reactive uptake coefficient of HO₂ onto TiO₂, which was previously measured in this laboratory in the absence of light ¹², S_a is the surface area density of TiO₂ aerosols and w_{HO2} is the molecular speed of HO₂. The self-reaction of HO₂ (R16) in the gas-phase contributes a negligible HO₂ loss pathway (~ 0.01 %) at the HO₂ concentrations used. The production of HO₂ from the surfaces of the flow tube walls and TiO₂ aerosols was characterised in Kintecus using equations (E4) and (E5), respectively:

248
$$\frac{d[\text{HO}_2]}{dt} = k_{wall \, prod}[\text{Wall}] \tag{E4}$$

$$\frac{d[\text{HO}_2]}{dt} = k_{prod}S_a \tag{E5}$$

where [Wall] is the surface area concentration (cm² cm⁻³) of the illuminated walls of the aerosol flow 250 251 tube (i.e. surface area of the interior walls of the aerosol flow tube divided by the internal volume of 252 aerosol flow tube) and Sa is the surface area density of the TiO2 aerosols, determined by the SMPS. 253 Using [Wall], Sa, kself, kwall, and kaerosol loss as constraints, which are all known for a given experiment, the 254 Kintecus model was used to calculate $[HO_2]$ at the appropriate illumination time, which is also known 255 for a given lamp. With the lamp illuminating the flow tube, but in the absence of aerosols ($S_a = 0$), the 256 value of kprod wall within Kintecus was optimised to give the best fit with measured [HO2] at the end of 257 the flow-tube after the known illumination time. Using this value of kwall prod, but now in the presence of aerosols at a given Sa, the value of kprod was optimised within Kintecus to match [HO2] at the end of the 258 259 flow tube. k_{prod} describes the rate of HO₂ production per unit surface area of TiO₂ aerosols, and is expected to depend on experimental variables such as [O₂], RH and lamp radiation flux (which itself is 260 a function of S_a). In the following section, the HO₂ concentration was measured at the end of the flow 261 tube whilst changing a number of variables, and Kintecus was used to obtain an optimised value of kprod 262

263 for each set of experimental conditions.

264 **3. Results**

3.1 HO₂ production by irradiated airborne TiO₂ nanoparticles

266 3.1.1. Variation with aerosol surface area and lamp flux

Initial experiments were performed using a carrier gas consisting of either pure nitrogen or 5.9% O₂ in 267 268 nitrogen. Figure 3 displays the concentration of HO_2 measured at the end of the aerosol flow tube 269 (corresponding to 14 s of exposure to the lamp radiation) as a function of the surface area density of 270 airborne TiO₂ nanoparticles, S_a. In the presence of O₂ a significant increase of gas-phase HO₂ was 271 measured as S_a was increased, however when the carrier gas was composed of solely compressed 272 nitrogen at similar RH no significant change was observed. These experiments suggest that the HO₂ 273 produced was from the surfaces of irradiated airborne TiO₂ nanoparticles via a photocatalytic 274 mechanism involving adsorbed molecular oxygen. A small HO₂ signal was detected at $S_a = 0$ (i.e. when 275 airborne TiO₂ nanoparticles were not present in the aerosol flow tube) likely associated with production 276 from previously deposited TiO₂ nanoparticles on the walls of the aerosol flow tube and O₂ impurities in the nitrogen (estimated at ~ 100 ppm). No such HO₂ signal was observed after the aerosol flow tube 277 had been cleaned. The small concentration of HO₂ produced from the walls at $S_a = 0$ was included 278 within the Kintecus model using (R17) and k_{prod wall} (E4). 279

280 Figure 3 shows that HO_2 increases as more airborne TiO_2 nanoparticles enter the system until a 281 maximum was reached, after which adding more particles results in a decrease in the HO₂ concentration. 282 Two processes may account for this. TiO₂ aerosols have a large refractive index (2.5 at 500 nm) 18 , therefore lamp radiation entering the aerosol flow tube will be Mie scattered by the aerosols shading 283 284 those aerosols below and which may result in a drop in the overall photocatalytic activity of TiO_2 285 aerosols, and hence the total rate of production of HO₂. Moreover, as the aerosol loading of the flow tube increases the rate of reactive heterogeneous uptake of HO₂ by TiO₂ aerosols via reaction (R15) 286 287 also increases and will compete with HO₂ production.

288

289

Figure 3. Gas phase HO₂ produced by airborne irradiated TiO₂ nanoparticles as a function of surface area density, S_a , with a carrier gas composed of compressed nitrogen with ~ [O₂] = 100 ppm impurity (solid black squares) at RH = 24.0%, and for a 5.9 % mixture of O₂ (balance N₂) (filled red squares) at RH = 16.4%. At $S_a = 0$, the HO₂ is due to production at the flow tube walls. The aerosol flow tube was illuminated with the 15 W lamp. The illumination time = 14 s.

296

Figure 4 compares the HO₂ produced as a function of S_a when the 8 W and 15 W UVA lamps were used to illuminate the aerosol flow tube. As expected, the use of the higher-powered lamp resulted in more gas-phase HO₂ being produced, however the 15 W UVA lamp is also longer by 12 cm (40%) resulting in aerosols being irradiated for 4 s longer than with the 8 W lamp and will also account for the higher concentrations of HO₂ produced. A similar dependence of HO₂ production with varying S_a was observed.

303

Figure 4. Gas phase HO₂ produced from airborne irradiated TiO₂ nanoparticles as function of total surface area density (S_a) at RH = 8.0% and [O₂] = 5.9% using an 8 W UVA lamp (red circles) and a 15 W UVA lamp (black squares) to illuminate the aerosol flow tube. The illumination time for 15 W lamp = 14 s and 8 W lamp = 10 s. The ratio of flux with $\lambda < 388$ nm that enters the flow tube emitted from the 8 W and 15 W lamp was 1:5.

310 Using the constrained model described by reactions (R14) – (R18), the optimised value of k_{prod} (the 311 number of HO₂ molecules emitted per cm² of particle surface per second) was calculated to give the 312 best fit to the measured [HO₂] at the end of the flow tube after illumination. The variation of k_{prod} as a function of Sa is shown in Figure 5 for both lamps, and shows kprod decreases rapidly with Sa, which is 313 314 expected given the decreasing rate of production of HO₂ with S_a seen in Figure 4. The inverse 315 dependence of k_{prod} with S_a is consistent with aerosol light scattering reducing the photons per unit surface area interacting with the TiO₂ surface. At low S_a, k_{prod} using the 15 W lamp was significantly 316 317 greater than k_{prod} using the 8 W lamp, which is expected owing to the larger light flux, although the 318 production of HO₂ below 388 nm may also be wavelength dependent. However, as the aerosol loading 319 within the aerosol flow tube was increased, k_{prod} using the 15 W lamp decreases ~ 3 times faster than 320 for the 8 W lamp, suggesting light from the 15 W lamp is more affected by aerosol scattering. At high S_a , k_{prod} reaches a minimum value which is ~ 5 times larger for the 15 W lamp than the 8 W lamp, 321 322 consistent with the ratio of lamp fluxes for $\lambda < 388$ nm of the two lamps entering the flow tube. As seen 323 in Figure 2 the 15 W lamp emits UV light across a much broader range of wavelengths (275 - 400 nm)324 with an average wavelength of 340 nm compared to the 8 W lamp which emits across a smaller range 325 of wavelengths (325 - 400 nm) with an average wavelength of 365 nm. As the refractive index of a 326 material and the Mie scattering are inversely proportional to the wavelength of light, the 15 W lamp 327 radiation may be more efficiently scattered.

Figure 5. The variation of k_{prod} as function of total surface area density (S_a) of TiO₂ nanoparticles at RH = 8.0% and [O₂] = 5.9% using the 8 W UVA lamp (black squares) and the 15 W UVA lamp (red circles) to illuminate the aerosol flow tube. Solid lines represent exponential decays as a guide to the eye. The lamps have different fluxes (see text for details).

333

328

334 The value of k_{prod} depends on several factors, including the lamp flux $\lambda < 388$ nm, F, and a flux-335 independent rate coefficient, k'_{prod} , can be defined as $k_{prod} = F k'_{prod}$. Figure 6 shows that values of k'_{prod} 336 decayed exponentially as the aerosol loading was increased in the aerosol flow tube. At the lowest value of S_a (~ 1 × 10⁻⁴ cm² cm⁻³) and using the lamp flux appropriate for within the flow tube, the values 337 of k'_{prod} for the 8W and 15 W lamps were determined to be 6.4×10^{-4} and 2.3×10^{-4} HO₂ molecule 338 photon⁻¹ respectively (see Figure 6), with an average value of 4.4×10^{-4} HO₂ molecule photon⁻¹. This 339 340 shows that HO_2 production was 2.8 times more efficient when using 8 W lamp, likely due to greater 341 levels of scattering or lesser levels of absorbance of light from the 15 W lamp. However, at the highest S_a (~ 1 × 10⁻³ cm² cm⁻³) where k_{prod} reaches a minimum and scattering reaches its maximum level the 342 values of k'_{prod} for the 8 W and 15 W were broadly consistent and determined to be $(7.4 \pm 0.3) \times 10^{-5}$ 343 and (5.9 \pm 0.4) \times 10 $^{-5}$ HO_2 molecule photon $^{-1}$ respectively, with an average value of 6.7 \times 10 $^{-5}$ HO_2 344 345 molecule photon⁻¹.

Figure 6. The variation of k'_{prod} as function of total surface area density (S_a) of TiO₂ nanoparticles at RH = 8.0% and [O₂] = 5.9% using the 8 W UVA lamp (black squares) and the 15 W UVA lamp (red circles) to illuminate the aerosol flow tube. Solid lines represent exponential decays as a guide to the eye.

351

352 3.1.2. Variation with illumination time, [O₂] and RH

Further experiments were conducted at low aerosol surface area densities (~ $1 - 2 \times 10^{-5}$ cm² cm⁻³) to reduce the effects Mie scattering and aerosol uptake of HO₂, and Figure 7 shows the HO₂ concentration per unit surface area measured at 4 different illumination times, which was varied by masking different lengths of the 15 W lamp, and for two different [O₂]. The rate of production of HO₂ appears to slow down with irradiation time (although not observed it is expected HO₂ production would reach a steadystate value at longer time) and increases with the O₂ mixing ratio. The observed slowdown of HO₂ produced is associated with wall loss and aerosol uptake.

Figure 7. Time dependence of HO₂ produced by the 15 W UVA lamp at 4 illumination times for $S_a = 1.6 \times 10^{-5}$ cm² cm⁻³, RH = 11.0% and at $[O_2]_{t=0} = 7.3\%$ (black squares) and 4.4% (red circles) RH = 11.0%. The solid lines are a polynomial fit as a guide to the eye. Error bars represents 1 σ of the data points taken over the 20 s averaging period.

For a fixed illumination time of 14 s (the lamp was unmasked), the dependence of $[HO_2]$ at the end of flow tube was measured as a function of $[O_2]$ over the mixing ratio range 0-8 %. Using the Kintecus model described above, k_{prod} , the rate coefficient for HO₂ production from illuminated aerosols was calculated and is shown as a function of the partial pressure, pO₂, in Figure 8 for two different RH. The relationship between k_{prod} and pO₂ in Figure 8 shows typical Langmuir adsorption behaviour, described by the reaction scheme:

371
$$[O_{2(g)}] \stackrel{k_1}{\underset{k_{-1}}{\rightleftharpoons}} [O_{2(ad)}] \stackrel{k_2}{\rightarrow} [HO_2]$$
(R19)

372 with HO₂ postulated as being generated from the oxidation of adsorbed water vapour by a 373 photogenerated hole (h^+) (R2) to form H⁺, and reaction of H⁺ with O₂ and a photogenerated e⁻ (R2 – 374 R3).

375

Figure 8. k_{prod} , the rate coefficient for the production of gas-phase HO₂ from irradiated airborne TiO₂ nanoparticles as a function of O₂ partial pressure and for RH = 8.7% (black squares) and 22.1% (red circles). The solid lines represent fits of the Langmuir expression equation (E7) to the data, see text for details. Light intensity $\lambda < 388$ nm = 1.63×10^{15} photons cm⁻².

The relationship between the rate of HO₂ formation and the amount of water vapour within the aerosol flow tube was investigated more extensively. Figure 9 shows that the concentration of HO₂ produced per unit surface area decreases significantly as the relative humidity was increased within the aerosol flow tube. As expected from Figure 8, tripling the concentration of O₂ only resulted in a modest increase in HO₂ production. Beyond a RH of ~ 40% k_{prod} appears to approach a minimum value and H₂O no longer has an inhibiting effect to HO₂ production. From FTIR studies of TiO₂ aerosols in the presence

386 of various RH this corresponds to a H₂O surface coverage of 1.6 monolayers. ¹⁹

Figure 9. Gas-phase HO₂ concentration per unit of S_a for airborne TiO₂ nanoparticles at an illumination time of 14 s as a function at different RH for $[O_2] = 1\%$ (red circles) and 3% (black squares). Solid lines represent exponential decay fits to experimental data as a guide to the eye. Error bars represents 1 σ of the data points taken over the 20 s averaging period.

Figures 8 and 9 suggests adsorption of water vapour inhibits HO_2 production by reducing the effective surface area of the particle and therefore reducing the number of available sites on the TiO₂ particle surface that O₂ can adsorb and react on. The total concentration of active sites, [S₀], is given by:

395
$$[S_0] = [S] + [H_2O_{(ad)}] + [O_{2(ad)}]$$
(E4)

where [S] is the concentration of unoccupied sites, and $[H_2O_{(ad)}]$ and $[O_{2(ad)}]$ are the density of sites inhibited or occupied by water vapour and O₂, respectively. The equilibrium constant for adsorption of O₂ or water vapour is defined by:

399
$$K_{A} = \frac{k_{1}}{k_{-1}} = \frac{[A_{(ad)}]}{p_{A}[S]}$$
(E5)

400 where k_1 and k_{-1} is the rate of adsorption and desorption respectively, $A = O_2$ or H_2O , p_A is the partial 401 pressure of A and $[A_{(ad)}]$ is the concentration of A adsorbed on the surface. For Langmuir adsorption 402 within the presence of an inhibiting species, the fractional coverage of O_2 , θ_{O2} , defined as the fraction 403 of actives sites on the TiO₂ nanoparticle surface occupied by O_2 , is given by:

404
$$\theta_{O_2} = \frac{[O_{2(ads)}]}{[S_0]} = \frac{K_{O_2} p_{O_2}}{1 + K_{O_2} p_{O_2} + K_{H_2O} p_{H_2O}}$$
(E6)

405 where K is the adsorption equilibrium constant for O_2 or H_2O vapour on TiO_2 , and p is the partial 406 pressure of O_2 or H_2O vapour. From experiments using IR spectroscopy Goodman et al. ¹⁷ showed that 407 at RH = 8.7% and 22.1% the number of monolayers of H_2O is 0.9 and 1.2 respectively on TiO_2 . 408 Assuming reaction (R3) is the rate determining step, the rate of production of HO_2 from the TiO_2 409 aerosols (k_{prod}) is then given by:

$$k_{prod} = k_2 \theta_{O_2} = \frac{k_{prod \max K_{O_2} p_{O_2}}}{1 + K_{O_2} p_{O_2} + K_{H_2 O} p_{H_2 O}}$$
(E7)

411 where $k_{prod max}$ is the maximum rate coefficient of production of HO₂ at high partial pressures of O₂. 412 Figure 8 also includes a fit of E7 to the experimental data which yielded best-fit values for $k_{prod max}$, K_{O2} 413 and K_{H2O} , which are summarised in Table 1.

414

415 **Table 1.** Parameters yielded from fitting E7 to the experimental data in Figure 8 (error = 2σ). Average 416 $S_a = 1.5 \times 10^{-5} \text{ cm}^2 \text{ cm}^{-3}$. Light intensity $\lambda < 388 \text{ nm} = 1.63 \times 10^{15} \text{ photons cm}^{-2}$

Parameter	RH = 8.7%	RH = 22.1%
$k_{prod max}$ / molecule cm ⁻² s ⁻¹	$(5.93 \pm 0.07) \times 10^{12}$	$(3.21 \pm 0.02) \times 10^{12}$
$k'_{\text{prod max}}$ / molecule photon ⁻¹	$(3.64 \pm 0.04) \times 10^{-3}$	$(1.97 \pm 0.03) \times 10^{-3}$
K_{O2} / Pa^{-1}	0.269 ± 0.016	0.184 ± 0.004
K_{H2O} / Pa^{-1}	2.16 ± 0.12	1.33 ± 0.04

417

418 A measurement of K_{H2O} onto a TiO₂ surface has previously been conducted via a study of the 419 photocatalytic reduction of CO₂ with H₂O. ²⁰ However, key descripancies between the studies make 420 the measurements incomparable; i.e., the measurements in this study were regarding surfaces of 421 airborne Degussa TiO₂ nanoparticles, whereas that study concerned a graphene oxide-supported 422 oxygen-rich TiO₂ hybrid, which was used to coat the walls of a flow tube. There are no previous 423 measurements of K_{O2} on TiO₂ surfaces to our knowledge.

424 **3.2** OH formation by irradiated airborne TiO₂ nanoparticles

OH production from irradiated TiO_2 aerosols was also investigated. The FAGE instrument operated with no added NO in the fluorescence cell did not see any OH signal from TiO_2 aerosols illuminated within the aerosol flow tube. However, this observation might be explained by OH losses to the walls of the flow tube or via reactions of OH with impurities before entering the FAGE sampling nozzle. To test this hypothesis, CO (0.5 L min⁻¹, 5% in air) was added to the carrier gas prior to the conditioning tube to rapidly scavenge any OH generated from the aerosol surface via the reaction:

431
$$\operatorname{CO} + \operatorname{OH} (+ \operatorname{O}_2) \rightarrow \operatorname{CO}_2 + \operatorname{HO}_2$$
 (R20)

Any additional OH signal when CO was added would provide evidence for aerosol production of OH. In the flow tube $[CO] = 1.1 \times 10^{17}$ molecule cm⁻³, giving an OH lifetime of $= 5.5 \times 10^{-5}$ s, during which it only moves ~ 1.4×10^{-4} cm along the flow tube, and other loss processes should not compete. Figure 10 shows that for aerosol surface areas (S_a) lower than 2×10^{-4} cm⁻² cm⁻³ there was no discernible difference between HO₂ produced with and without CO present, for RH = 10 - 12%. However, for S_a > 2×10^{-4} cm⁻³, a noticeable difference ([OH] ~ 8×10^{8} molecule cm⁻³) was observed, providing some evidence for OH production, although the uncertainties are quite high at the largest S_a.

440 **Figure 10.** Gas-phase HO₂ produced by irradiated airborne TiO₂ nanoparticles at an irradiation time = 441 14 s as a function of S_a for $[O_2] = 5.9\%$ without added CO (black squares, RH=10.0%) and with added 442 CO (red circles, RH=11.7%).

OH is likely produced by the decomposition of H_2O_2 (R11) formed by HO_2 uptake, which is more prevalent at high [HO₂] and S_a. The mechanism of H_2O_2 decomposition producing OH and the resulting OH reacting with H_2O_2 , may explain the HO₂ observed by Yi et al. ⁴ (R11 and R13). Murikami et al. ⁹ directly observed gas-phase production of OH from irradiated TiO₂ surfaces. OH may be associated with H_2O_2 decomposition rather than from water oxidation, and a theoretical study ²¹ has shown that OH formed by water oxidation on anatase is likely to remain adsorbed on the surface rather than desorbing into the gas-phase and on rutile peroxy intermediates are formed rather than OH.

450

439

451 **4. Discussion**

Sources of HO_x radicals in the condensed phase that have been previously suggested include the uptake 452 of OH and HO₂ from the gas-phase, followed by the formation of aqueous H₂O₂ and subsequent 453 decomposition, as well as Fenton reactions of reduced metal ions and H₂O₂, and direct photolysis of 454 455 H_2O_2 , nitrite, nitrate, hydroperoxides, light-absorbing secondary aerosols and iron (III) complexes.²² Although the formation of HO₂ from illuminated aerosols containing a photo-sensitizer (imidazole-2-456 457 carboxaldehyde) has been measured indirectly by converting gas-phase NO to NO₂, this study presents the first direct observations of HO₂ radicals generated on aerosol surfaces. These are the first 458 observations of HO₂ production from illuminated TiO₂ surfaces in the presence of light and O₂, but 459 without the presence of added H₂O₂, which was needed by Yi et al.⁴ in order to see HO₂ from TiO₂ 460 461 films. Unlike heterogeneous reactions involving surfaces or films, heterogeneous reactions involving 462 airborne nanoparticles are not limited by diffusion of gas-phase reactants to the particle surface. To 463 overcome diffusion limitations production from solid surfaces or thin film experiments are often performed at low pressure, however this will not favour adsorption of species with a high vapour 464 465 pressure, such as water vapour. Yi et al. used pure forms of TiO₂ polymorphs which has been shown to enhance photocatalytic activity ¹⁴ rather than a blend, and surface or thin film experiments often take a 466 467 number of minutes, so surface saturation and product accumulation may occur on the surface of the 468 sample and could change its chemical characteristics.

469 The mechanism generating HO_2 on irradiated TiO_2 surfaces in the presence of O_2 is postulated to be 470 (where V_{br} , O_{br} and OH_{br} are bridging vacancy, oxygen and hydroxyl groups):

- 471 $TiO_2 + hv (\lambda < 388 \text{ nm}) \rightarrow TiO_2 + h^+ _{VB} + e^- _{CB}$ (R1)
- 472 $H_2O + V_{br} + O_{br} \rightarrow 2OH_{br}$ (R21)
- 473 $OH_{br} + H_2O_{(g)} \leftrightarrows OH_{br} OH_{2 (ad)}$ (R22)
- 474 $OH_{br} OH_{2 (ad)} + h^{+} \rightarrow OH_{(ad)} + H^{+}_{(ad)} + OH_{br}$ (R23)
- 475 $Ti + O_{2(g)} \leftrightarrows Ti O_{2(ad)}$ (R24)
- 476 $\operatorname{Ti-O}_{2(ad)} + e^{\overline{}}_{CB} \rightarrow \operatorname{Ti-O}_{2(ad)}$ (R25)

477
$$Ti-O_2(ad) + H^+(ad) \rightarrow Ti-O_2H(ad)$$
(R26)

478
$$Ti-O_2H_{(ad)} + hv \rightarrow Ti + HO_{2(g)}$$
 (R27)

479

480 The reaction is initiated by the production of photogenerated electrons in the conduction band (e_{CB}) and 481 holes within the valence band (h_{VB}^+), which can either recombine or reside in a trapped state or within

the respective band. O_2 is an effective electron scavenger forming either O_2^- or O_2^{2-} . A study of this 482 process on TiO₂ (101) surfaces ²³ showed that photogenerated e^{-} can exist on paramagnetic Ti³⁺ sites or 483 delocalise within the conduction band. At room temperature, most photogenerated e⁻ remain stable 484 485 within the conduction band rather than in trapped Ti³⁺ states, however at lower temperatures e⁻ can reside in these traps which could lead to a higher rate of O_2^- formation. That study observed the efficient 486 487 production of long-lived O_2^- , with all photoexcited e⁻ being transferred to adsorbed O_2 . It is likely that 488 the mechanism for HO₂ production would therefore have to involve the reduction of adsorbed O_2 with 489 e_{CB}^{-} forming adsorbed O_2^{-} (R25). O_2^{-} can then go on to react with a proton (R26) formed by the oxidation 490 of adsorbed water via its reaction with a photogenerated h^+ (R23) located at bridging oxygen sites (O_{br}) for TiO₂ (110) and OH_{br} groups for TiO₂ (101) $^{24, 25}$ to form adsorbed HO₂. This mechanism highlights 491 the contradictory role that water plays in the photocatalytic activity of TiO₂, on the one-hand producing 492 493 active species on the surface of photocatalytically active TiO₂ available for reaction (R21) and, on the other hand, reducing the availability and effectiveness of active sites and therefore reducing adsorption 494 495 of gas-phase species, as shown in Figures 8 and 9. It is also likely that desorption of HO_2 could be 496 augmented by photodesorption (R27) as shown below in Figure 11:

498

499 **Figure 11.** Mechanism for the production of gas-phase HO₂ from the surfaces of airborne TiO₂ 500 nanoparticle. Ti_{5c} refers to fivefold coordinated Ti sites. h^+_{VB} refers to valence band holes and e^-_{CB} refers 501 to conduction band electrons.

502

503 Adsorption of water vapour may inhibit the reaction by blocking adjacent O_2 adsorption sites reducing 504 the effective surface area available and by reducing the O_2 adsorption binding energy and hence 505 desorption lifetime. The value of K_{H2O} (obtained from Figure 8) shows that $K_{H2O} > K_{O2}$ suggesting that 506 the H₂O adsorption enthalpy onto TiO₂ is larger than for O₂ adsorption and many more water molecules are adsorbed on the surface of the TiO₂ particle than O₂. This is consistent with studies that have shown 507 TiO₂ surfaces become super-hydrophilic when irradiated with UV light. ²⁶ Both K_{O2} and K_{H2O} decrease 508 as RH was increased (Table 1) suggesting that the enthalpy of adsorption of both species is decreasing 509 510 with RH. Bridging hydroxyl groups (OH_{br}), formed in R21 by dissociation of water at oxygen vacancy

defects in bridging sites (V_{br})²⁷, provide an anchoring point for water molecules to adsorb onto TiO₂ 511 512 surfaces forming OH_{br}-H₂O complexes (R22) which are acidic in character (i.e. OH_{br} groups act as Hdonors). ^{27, 28} The enthalpy of water adsorption on these sites is ~ 70 kJ mol⁻¹. As RH is increased 513 514 beyond 11% (RH for one monolayer of H₂O on TiO₂¹⁹) a second monolayer of H₂O begins to form and 515 H₂O binds to the OH_{br}-H₂O complexes, reducing their acidity and resulting in the water binding structure being more characteristic of bulk water ²⁸ and a lowering of the H₂O adsorption enthalpy, and 516 517 hence K_{H2O}. Density functional theory (DFT) calculations ²⁹ have shown that O₂ adsorption onto TiO₂ 518 (110, i.e. the rutile polymorph of TiO₂) surfaces is also entirely dependent on the presence of OH_{br} 519 groups. These calculations show that the most stable configuration for O_2 adsorption is onto two 520 adjacent fivefold coordinated Ti sites (Ti_{5c}) adjacent to an OH_{br} group with an adsorption enthalpy of ~ 521 77 kJ mol⁻¹. However, many other configurations have an adsorption enthalpy which is only slightly 522 less (~ 58 kJ mol⁻¹), e.g. adsorption to a single Ti_{5c} site adjacent to an OH_{br} group. The calculations also show that the adsorption enthalpy of O_2 is dependent on the coverage of OH_{br} , with higher coverage of 523 524 OH_{br} resulting in a higher enthalpy of adsorption and hence a longer adsorption lifetime for O₂. The 525 distance between adsorbed O₂ and OH_{br} does not significantly affect the adsorption enthalpy, meaning OH_{br} exerts a long-range influence on O₂ adsorption via the donation of electrons to TiO₂ which 526 527 delocalise amongst $Ti_{(5c)}$ atoms. Upon O₂ adsorption, there is a charge transfer from the $Ti_{(5c)}$ atoms to O₂ (R24), the magnitude of which determines the enthalpy of adsorption. The same mechanism was 528 found for calculations of O₂ adsorption onto TiO₂ (101, anatase). ³⁰ The decrease of K_{O2} with RH and 529 530 the inhibiting effects of H₂O adsorption to the rate of HO₂ production observed in this work are likely 531 associated with the formation of OH_{br} -H₂O complexes which inhibits the ability of OH_{br} groups to 532 donate electron density to Ti_{5c} atoms thereby reducing the adsorption enthalpy of O₂ or alternatively, 533 adsorption of H_2O blocks more favourable O_2 absorptions sites near OH_{br} . When the surface coverage 534 of H_2O reaches ~1.6 monolayers (at RH = 40%) further adsorption of H_2O does not result in further 535 inhibition of HO₂ formation (Figure 9). At sufficiently high RH large amounts of water may condense around the particle forming a liquid layer which may either block access of O_2 to all binding sites or 536 537 any HO₂ formed remains solvated within the liquid layer.

- A laboratory study investigating the photocatalytic performance of cement-based TiO₂-containing 538 materials for reduction of gas-phase oxides of nitrogen (NO_x = NO + NO₂), ³⁴ showed that upon 539 540 illumination of the material within a standard flow reactor, concentrations of NO decreased from 100 541 ppm to 20 ppm and continued to fall over the period of a couple of hours until a steady-state concentration of 10 ppm was reached. During this time, gas-phase NO₂ was formed in the flow reactor 542 543 and remained at a constant concentration of 10 ppm, with NO₂ potentially being produced via the gas-544 phase reaction of HO₂ generated at surfaces and NO. Furthermore, NO reduction showed a similar 545 dependence to O₂ concentration and RH seen in this study.
- 546

547 **5. Atmospheric Implications**

TiO₂ surfaces are present in the troposphere, occurring naturally as a component of mineral dusts and 548 549 artificially as building materials, such as self-cleaning glass or environmental catalysts, or from 550 industrial sources, including the nanotechnology industry. TiO₂ nanoparticles are also a candidate for 551 application within Solar-radiation Management (SRM) schemes to mitigate global warming due to their high refractive index and relative affordability.¹⁸ It is proposed that TiO₂ nanoparticles could be injected 552 into the dynamically stable lower stratosphere in order to back-scatter incoming solar-radiation to space 553 554 resulting in a cooling effect to the Earth's climate. However, this SRM method carries significant risk, 555 as the photocatalytic production of HO₂ radicals from TiO_2 surfaces may have the potential to perturb 556 atmospheric chemistry, particularly in the lower stratosphere where HO_2 is involved in a HO_x catalytic cycle responsible for about 40% of O₃ depletion. ³¹ Also, heterogeneous processes are known to 557 558 influence levels of active chlorine and NO_y partitioning in the stratosphere.

559 During the Saharan Mineral Dust Experiment (SAMUM-2) field campaign held at sea-level in the Cape Verde islands, typical dust concentrations ranged from $10 - 200 \ \mu g \ m^{-3}$ which correspond to surface 560 areas of $2.2 \times 10^{-7} - 4.4 \times 10^{-6}$ cm⁻³, respectively. ³² In this same region, the proportion of TiO₂ 561 in mineral dusts was measured to be 4.5% using energy dispersive X-ray spectroscopy, ³³ from which 562 we have estimated a range of effective surface areas for TiO_2 . The measured values of k'_{prod} presented 563 564 in section 3.1 above, which are the light flux and surface area independent rates of HO₂ production from 565 TiO₂ aerosol surfaces, were used to calculate the HO₂ production rate from TiO₂ photocatalytic aerosol 566 processes for a typical ambient sunlight flux (using the values at Weybourne, UK shown in Figure 2) 567 and for a 20% mixing ratio of O_2 and RH ~20%. For the above range of TiO₂ surface areas, the rate of heterogeneous HO₂ production is estimated to range from $4.5 \times 10^4 - 1.6 \times 10^6$ molecule cm⁻³ s⁻¹. 568 However, there is considerable uncertainty in this estimate owing in particular to difficulties in 569 570 obtaining the absolute flux of the lamp within the flowtube. For comparison, the production rate of HO_2 from the gas-phase reaction between OH and CO, and assuming typical concentrations of $[OH] = 2 \times$ 571 10^6 molecule cm⁻³ (0.08 parts per trillion) and [CO] = 5 × 10¹² molecule cm⁻³ (200 parts per billion), 572 typical of the unpolluted troposphere, is 1.6×10^6 molecule cm⁻³ s⁻¹. Hence, during periods of significant 573 574 loading of mineral dust the aerosol production mechanism could represent a significant source of HO_2 575 in the troposphere. However, further studies of HO_2 production from morphologies of TiO_2 typically 576 found in mineral dust are required to provide a more accurate estrimate.

577 Considering the potential impact on stratospheric ozone chemistry of the production of HO_2 from TiO_2 578 aerosols used in SRM schemes, it is important to note that the HO_2 production rate is likely to 579 demonstrate a strong temperature dependence, as adsorption is an exothermic process. Further studies 580 which investigate the temperature dependence of HO_2 production from TiO_2 aerosols at 581 stratospherically relevant partial pressures of H_2O and O_2 are required to further quantify any impact.

583 6. Conclusions

582

584 Upon illumination of airborne TiO₂ nanoparticles with near-UV light (~ 300 - 400 nm) in an aerosol flow tube in the presence of O₂ and water vapour, significant quantities of HO₂ was observed in the gas-585 phase. The dependence of HO₂ production on O₂ shows typical Langmuir adsorption behaviour 586 587 suggesting O₂ is a reactant in the process generating HO₂. The addition of further H₂O vapour inhibits 588 the production of HO_2 and reduces the adsorption equilibrium coefficient for both O_2 and H_2O_2 , 589 demonstrating the contradictory role of H₂O within the photocatalytic mechanism. Reduction of O₂ by 590 photogenerated electrons is likely to be the initial step for HO₂ production followed by reaction of O_2^{-1} 591 with a proton produced via oxidation of adsorbed water with a photogenerated hole. The maximum rate coefficient (i.e. when [O₂] is projected to atmospherically relevant levels) for production of gas-592 phase HO₂ normalised for surface area and light intensity was found to be $k'_{prod} = (3.64 \pm 0.04) \times 10^{-3}$ 593 594 HO₂ molecule photon⁻¹ at a RH of 8.7% for the 80% anatase and 20% rutile formulation of TiO₂ used here, although this decreased to $k'_{prod} = (1.97 \pm 0.03) \times 10^{-3}$ molecule photon⁻¹ as the RH was increased 595 to 22.1%. From surface areas of mineral dust observed at Cape Verde and assuming a TiO₂ fraction of 596 597 4.5%, the rate of heterogeneous production of HO_2 from TiO_2 surfaces was calculated to be in the range $5 \times 10^4 - 1 \times 10^6$ molecule cm⁻³s⁻¹, with the upper end of this range being similar to the rate of HO₂ 598 599 production from the gas-phase reaction of OH with CO typical of unpolluted regions of the troposphere. 600 Production of gas-phase OH radicals could only be observed for the largest concentrations of TiO_2 601 aerosols used, and are postulated to be formed from the photo-decomposition of H_2O_2 formed via self-602 reaction of HO₂ on the surfaces of the TiO₂ aerosols.

603

604 Acknowledgements

We are grateful to the Natural Environment Research Council for funding a studentship (DRM) and for
funding the aerosol flow tube apparatus (grant number NE/F020651/1)). LKW, TI, PWS and and DEH
are also grateful to the NERC funded National Centre for Atmospheric Science for ongoing support.
We would also like to thank the two anonymous reviewers for helpful comments.

609

610 **References**

611	1.	A. Fujishima and K. Honda, Nature, 1972, 238 , 37-38.
612	2.	H. Chen, C. E. Nanayakkara and V. H. Grassian, Chem. Rev., 2012, 112 , 5919-5948.
613	3.	J. A. Kent, Handbook of Industrial Chemistry and Biotechnology, Springer US2013.

614	4.	J. Yi, C. Bahrini, C. Schoemaecker, C. Fittschen and W. Choi, J. Phys. Chem. C, 2012, 116,
615		10090-10097.
616	5.	A. Fujishima, X. Zhang and D. A. Tryk, Surface Science Reports, 2008, 63, 515-582.
617	6.	C. Bahrini, A. Parker, C. Schoemaecker and C. Fittschen, Appl. Catal. B-Environ., 2010, 99,
618		413-419.
619	7.	N. C. Lee and W. Y. Choi, J. Phys. Chem. B, 2002, 106, 11818-11822.
620	8.	T. Tatsuma, S. Tachibana and A. Fujishima, J. Phys. Chem. B, 2001, 105, 6987-6992.
621	9.	Y. Murakami, E. Kenji, A. Y. Nosaka and Y. Nosaka, J. Phys. Chem. B, 2006, 110, 16808-
622		16811.
623	10.	G. Vincent, A. Aluculesei, A. Parker, C. Fittschen, O. Zahraa and P. M. Marquaire, J. Phys.
624		Chem. C, 2008, 112 , 9115-9119.
625	11.	J. Thiebaud, F. Thevenet and C. Fittschen, J. Phys. Chem. C, 2010, 114, 3082-3088.
626	12.	D. R. Moon, G. S. Taverna, C. Anduix-Canto, T. Ingham, M. P. Chipperfield, P. W. Seakins,
627		M. T. Baeza-Romero and D. E. Heard, Atmos. Chem. Phys., 2018, 18 , 327-338.
628	13.	D. E. Heard and M. J. Pilling, Chem. Rev., 2003, 103 , 5163-5198.
629	14	D C Hurum A G Agrios K A Grav T Raih and M C Thurnauer J Phys Chem B
630	1.11	2003 107 4545-4549
631	15	L I George P S Matthews L K Whalley B Brooks A Goddard M T Baeza-Romero
632	10.	and D F Heard Phys Chem Chem Phys 2013 15 12829-12845
633	16	E A F Winiberg S C Smith I Beian C A Brumby T Ingham T I Malkin S C Orr
63 <i>1</i>	10.	D E Heard and P W Seaking Atmos Meas Tech 2015 8 523-540
635	17	L.C. Janni in Computational Fluid and Solid Mechanics 2003. Elsevier Science I td. Oxford
636	17.	2003 np 1368-1372
637	18	E D Pone P Brassicke P C Grainger M Kalberer I M Watson P I Davidson and P A
638	10.	Cox Nat Clim Chang 2012 2 713 710
630	10	A I Goodman F T Bernard and V H Grassian Journal of Physical Chemistry A 2001
640	1).	A. E. Goodman, E. T. Dernard and V. H. Grassian, Journar of Physical Chemistry A , 2001, 105 $64A3$ $6A57$
641	20	L J. Tan W. J. Ong S. D. Chai and A. D. Mahamad. Chamical Engineering Journal 2017
642	20.	208 248 255
642 643	21	B Li V Weng Y Zhou Y Weng V Mi P Chong H Hen and C Li Energy &
644 644	21.	Environmental Science 2015 8 2377 2382
645	$\gamma\gamma$	L Conzélaz Palacios P Correl Arroyo K Z Aragahagn S S Staimar T Bartala Dausch
646	22.	B. Nozière C. George M. Ammenn and P. Volkamer, Atmos. Chem. Phys. 2016 16 11823
647		11836
6/8	23	T Barger M Starrer O Diwald F Knözinger D Panavotov T I Thompson and I T
640	23.	Vetes The Journal of Drusical Chamistry B 2005 100 6061 6068
0 4 9 650	24	V Ii P. Wong and V. Luo. The Journal of Dhysical Chemistry C. 2014, 118 , 21457, 21462
651	24. 25	1. Ji, D. Wang and Y. Luo, The Journal of Physical Chemistry C. 2014, 116 , 21437-21402.
652	25. 26	I. Ji, D. Wang and T. Luo, the Journal of Physical Chemistry C, 2014, 116, 1027-1034.
652	20.	L. Sligili and T. Hatanaka, Surface Science, 2003, 550, L525-L527.
035	27.	S. Falinaniolo, H. Blumin, K. Andersson, G. Ketteler, H. Ogasawara, M. Samieron and A.
034 655	20	Nilsson, J. PhysCondes. Matter, 2008, 20, 14.
000	28.	G. Ketteler, S. Yamamoto, H. Blumin, K. Andersson, D. E. Starr, D. F. Ogletree, H.
656	20	Ugasawara, A. Nilsson and M. Saimeron, J. Phys. Chem. C, 2007, 111, 8278-8282.
657	29.	L. M. Liu, B. McAllister, H. Q. Ye and P. Hu, Journal of the American Chemical Society,
658	20	2006, 128 , 4017-4022.
659	30.	YF. LI, U. Aschauer, J. Chen and A. Selloni, Accounts of Chemical Research, 2014, 47,
660	21	
661	31.	P. O. wennberg, Cohen, R. C., Stimpfle, R. M., Koplow, J. P., Anderson, J. G., Salawitch, R.
662		J., Fahey, D. W., Woodbridge, E. L., Keim, E. R., Gao, R. S., Webster, C. R., May, R. D.,
663		I ooney, D. W., Availone, L. M., Protfitt, M. H., Loewenstein, M., Podolske, J. R., Chan, K.
664	22	K., WOISY, S. C., Science, 1994, 266 , 398-404.
665	32.	A. Schladitz, T. Müller, A. Nowak, K. Kandler, K. Lieke, A. Massling and A. Wiedensohler,
666	22	Tellus B: Chemical and Physical Meteorology, 2011, 63 , 531-548.
667	33.	F. Hanisch and J. N. Crowley, Atmos. Chem. Phys., 2003, 3 , 119-130.

668 34. F. Mothes, S. Ifang, M. Gallus, B. Golly, A. Boréave, R. Kurtenbach, J. Kleffmann, C.
669 George and H. Herrmann, Applied Catalysis B: Environmental, 2018, 231, 161-172.