
This is a repository copy of Shaken not stirred: Mixing semantics into XPDL.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/140888/

Version: Published Version

Proceedings Paper:
Webster, P. orcid.org/0000-0001-5983-9511, Uren, V. and Ständer, M. (2010) Shaken not
stirred: Mixing semantics into XPDL. In: Stojanovic, N. and Norton, B., (eds.) CEUR
Workshop Proceedings. 5th International Workshop on Semantic Business Process
Management (SBPM 2010), 31 May 2010, Heraklion, Greece. CEUR Workshop
Proceedings , pp. 29-35.

© 2010 The Authors. Reproduced in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Shaken not Stirred: Mixing Semantics into XPDL
Philip Webster & Victoria Uren

University of Sheffield

Department of Computer Science

Regent court

211 Portobello

Sheffield S1 4DP

{P.Webster,V.Uren}@dcs.shef.ac.uk

Marcus Ständer
Technishe Universität Darmstadt

Fachgebiet Telekooperation

Hochschulstr. 10

64289 Darmstadt, Germany

staender@tk.informatik.tu-darmstadt.de

ABSTRACT

Ubiquitous computing requires lightweight approaches to

coordinating tasks distributed across smart devices. We are

currently developing a semantic workflow modelling approach

that blends the proven robustness of XPDL with semantics to

support proactive behaviour. We illustrate the potential of the

model through an example based on mixing a dry martini.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and

Features – datatypes and structures, I.0 [Computing

Methodologies]: General, J.7 [Computers in Other Systems]:

Consumer Products,

General Terms

Languages

Keywords

XPDL, Ubiquitous computing, Semantic workflows.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

SBPM2010, May 30–31, 2010, Heraklion, Crete, Greece.

1. INTRODUCTION
Imagine a stylish apartment in the not so distant future. Bob, a

young IT consultant, has invited his boss to dinner. To impress

her, he plans to serve dry martinis: four parts gin, one part dry

vermouth and a green olive, chilled to the dew point and shaken

or stirred according to her preference. Luckily for Bob’s career

prospects he has invested in several “smart” consumer products

that will assist him in creating the perfect cocktail, rather than a

shot of lukewarm gin with a medicinal aftertaste.

The SmartProducts project is investigating the technologies

required to make scenarios such as this one a reality. The project

envisages systems in which some smart products would

incorporate sensors that can gather environmental data; in this

paper, a cocktail shaker incorporating a temperature sensor is

taken as an example. Some smart products would also have

enough capacity to reason over ontologies or execute workflows;

in this paper, this kind of product is illustrated by a device called

the Cocktail Guide. Wireless communication would be used to

exchange information between different products in ad hoc

ubiquitous environments. Workflows would provide a means to

model tasks that involve a sequence of activities, and to

coordinate activities being carried out by several products in

cooperation with human users.

It has been said that modelling behaviour as workflows causes

“users to lose control over their work and work to lose the benefit

of the insights which users bring” [Dourish 1996]. This is a risk

for commercialisation of smart products because, unlike a

business environment where employees can be compelled to

comply with workflow related practises, whether they like them or

not, buying a smart cocktail shaker is a voluntary act. Therefore,

to enhance the experience of using these products, we propose to

add semantic descriptions to workflows to allow ubiquitous

systems to copy the users’ capability of creating links to objects,

combining and reasoning. Ultimately the aim would be to deliver

proactive behaviour based on context information from the

environment, for example, recommending workflows to the user,

or identifying smart products in the vicinity, which could carry

out a given workflow activity.

Annotated workflows have already been investigated in the fields

of business process management, semantic web services and

grids; a review is provided by [Lautenbacher 2007]. All these

fields are characterised by something that the ubiquitous

computing environment we have described notably lacks, which is

access to industrial strength computer processing power. By

contrast SmartProducts’ technology needs to be deployed on

consumer products. This means that cost is a major factor in the

selection of electronic. Even a component costing one euro would

significantly increase the final cost of some smaller smart

products. These commercial considerations mean that, for the

purposes of current research, we are aiming at working with

gumstix (http://www.gumstix.com). Gumstix is an open source

specification for a computer on a circuit board about the size of a

stick of chewing gum. The targeted gumstix have a 600 MHz

processor and 256 MB of SDRAM [SmartProducts D6.2.1],

Although the actual electronics used when products go into

production would most probably not be gumstix, they provide a

readily available research platform of about the right size and

complexity.

Running a workflow execution engine on a gumstix platform is a

big leap from current standards, and in this example we assume

that the workflow execution will be controlled by the PDA device

which hosts the Cocktail Guide. Our first step towards achieving

semantic workflows executing on small devices has been to

develop a lighter weight modelling approach than those that

currently exist. This paper presents the work we have done so far.

Section 2 discusses related work, especially work on semantic

annotation of workflows. Section 3 presents the details of our

proposed approach, with discussion of some of the design choices

that were made. Section 4 illustrates functionality the annotated

workflows should support using the running example. In Section 5

we present conclusions.

2. Related Work
Modeling task related behavior has been studied extensively

because of its obvious commercial importance. Methods that have

been considered include task models such as GOMS [Card 1983]

and CTT [Paterno 1997], graph models including Petri Nets

[Salimifard 2001], and process definition languages like BPEL

[IBM 2007] and XPDL [WfMC 2008]. Since especially the latter

ones have been standards for some time now, they are often used

as bases for manual, semi-automated or fully automated systems.

In the literature there are basically two different concepts for such

process models: business processes and workflows. The term

“business process” thereby describes processes that are focused on

high level descriptions, where objectives play an important role,

while the term “workflow” slides more into the direction of grid

computing, which is much more close to technical details of the

environment. Due to the kind of processes in smart environments,

we stick to the term workflow.

There are many related projects, which are using workflow

technology combined with semantic information. DEMAC

[Kunze 2006] for example uses DPDL, an extension of XPDL.

DPDL allows annotations about required devices to be attached to

the different participants of a workflow and thus allows the

system to choose appropriate devices during runtime. A possible

problem with such an approach can appear if something changes,

e.g. a new device with previously unknown capabilities is

deployed in the environment. Suddenly the annotation could be

unsuitable, since it no longer describes the best suitable product.

The SmartProducts approach is similar in some respects to the

approach taken by Kunze, Zaplata and Lamersdorf [Kunze 2006]

in that cooperation between devices is emphasised over

orchestration of participants or services. It is expected that control

of process execution will be transferred between the participating

devices, rather than being managed by a centralised workflow

execution engine. The SmartProducts consortium agreed with the

statement by [Kunze 2006] that a centralised engine may become

a "single point of failure" and potentially become a "bottleneck

during execution time". All Smart Products developed for the

project communicate over local wireless networks, and may have

low communications bandwidth. SmartProducts differs from

DEMAC in that the process definitions are not transferred from

device to device as execution progresses. Consequently, the

transactional and error handling additions made to XPDL in

DEMAC are not required in our case.

SUPER (http://www.ip.super.org) is an integrated project

providing tools to support the creation and execution of

semantically-enhanced workflows. The SUPER project also uses

annotations to provide additional information in workflows. They

use links to ontologies, goals, web services and more [SUPER

2009] to allow semantic workflow composition, relate

input/output to their ontology and allow inclusion of web services.

The project provides an Eclipse-derived editor based on the

WSMO Studio editor (http://www.wsmostudio.org/) called

BPMO Editor [Dimitrov 2007] which allows a user to create

workflow process definitions using BPMN (Business Process

Modelling Notation) or EPC (Event-driven process chain) or to

load existing process definitions in these formats and to then add

semantic annotation to components of the model, based on

individuals from an OWL (Web Ontology Language) ontology

definition. Process definitions created using the BPMO editor are

then converted to BPEL by a plugin for execution on a workflow

execution engine. However, this approach is closely connected to

the software composition of different services and not to the

distribution of workflows on different products, having limited

resources, e.g. being able to execute one workflow at a time only.

The approach to process definition, annotation and execution in

SmartProducts differs from the work presented for SUPER in a

number of areas. The foremost difference is the human-centric

approach that is central to the SmartProducts platform - products

are intended to assist a human user to complete a task rather than

being a set of services to be orchestrated. BPEL has weaker

support for human participants - this was added initially as a

vendor extension (BPEL4People), whereas BPMN and the XPDL

serialisation format have human participant capabilities included

as standard. This difference in scope between BPEL and BPMN

affected the choice of execution engine, and had knock-on effects

on the choice of process definition languages and tools that could

be used without incurring complexity and performance issues.

Beyond the human participant emphasis, technical reasons also

influenced the selection of a non-BPEL engine. SmartProducts

uses a workflow execution engine that can execute BPMN

(serialised as XPDL) directly, thus eliminating the need for a

BPMN-to-BPEL translation layer. Much research into BPMN to

BPEL translation has been done, with emphasis on various

techniques for preserving the characteristics of a BPMN process

diagram when converted to a BPEL executable model. Depending

on the modeling style used when creating a BPMN diagram, the

resulting BPEL produced by a conversion algorithm may have

increased complexity (Recker, J. C. M., 2006) and associated loss

of human comprehensibility, due to the conceptual mismatch

between the two languages. The solution preferred by

SmartProducts was to use XPDL as the serialisation format for

BPMN process diagrams, and also as the execution format

processed by the workflow engine. This eliminated the

complexity issues that would be faced if a conversion were

required between the definition and execution phases.

In addition, the BPEL approach places heavy emphasis on

the use of Web Services to perform execution of the individual

blocks of activity in a diagram, and relies on XML-based formats

for service invocation and data transfer. By comparison, the

BPMN/XPDL approach allows code to be associated directly with

the activities represented in a process definition. In the XPDL

model, implementation of remote calls is left to the developers.

This was an advantage for SmartProducts, as the platform is

intended to run on a distributed set of resource contrsained

devices, with no central 'master' process co-ordinator. Typical

SmartProducts devices may be smart kettles or smart ovens, and

as such will have relatively slow CPUs and small amounts of

memory, making efficient methods for data transfer and

processing very important. Use of a full Web Services framework

would massively restrict the functionality of the SmartProducts

devices, as the WSDL and SOAP processing overhead would be

much greater than the overhead imposed by the alternative

lightweight embedded middleware used in SmartProducts. Each

device can execute relevant portions of a process directly in a

small and functional embedded workflow execution engine, with

inter-participant communication achieved via the use of a

communication middleware layer (MundoCore) which is also

embedded on the devices.

Thus, while the SUPER project's implementation was guided by

the requirements imposed by the aim to satisfy the needs of large

enterprises seeking to control and monitor commercial business

processes on centralised workflow execution servers, the

SmartProducts implementation is aimed at a radically different

environment: clusters of small devices working together with a

human user to achieve goals specific to the human user

participating in the process - with the added flexibility that the

human can influence the execution path and non-human

participant binding dynamically during process execution, rather

than at process definition time.

Further approaches like NEXUS (http://www.nexus.uni-

stuttgart.de) or ASTRO (http://astroproject.org) also provide the

ability to use semantic information. Unfortunately central

workflow management or missing possibilities to describe the

elements of a workflow flexibly enough make them not

completely suitable for our SmartProducts setting.

3. SEMANTIC WORKFLOW MODEL
In this section we detail the semantic workflow model and discuss

our design decisions.

3.1 The Process Definition Language
One of the central issues in creating smart environments is the

modeling and handling of processes. These processes require a

semantically well defined language allowing developers to define

for example the organizational structures of the different steps, the

participants or how to use automation capabilities of some smart

product. Thus, process descriptions range from a very high level

view down to very system specific details. Regarding the

established standards for process modeling, like BPEL [SRC],

JPDL[SRC] or XPDL [WfMC 2008] it has shown that XPDL is a

suitable base for such descriptions [Kunze 2007]. The

development is eased since XPDL supports many workflow

patterns, which are often used while modeling, directly [van der

Aalst 2003]. Further, since XPDL is based on the business process

modeling notation BPMN [OMG 2009], the workflows can be

visualized using standardized human readable graph

visualizations. There are several open source editors available

(e.g. JaWE), which help developing the workflows. During

runtime, this visualization eases tracking of the current state of a

workflow. Using the XPDL standards also allows developers to

embed their own code into the workflows and thus automate

processes by directly steering certain hardware or call own

software from within the workflow. To further extend the power

of the language, the WfMC has designed XPDL to be extensible.

There are tags like the ExtendedAttributes, which can be used to

append data to different parts of the workflows.

Consequently, our proposed model is an extension of XPDL using

semantic annotation to link in the ontologies. This approach aims

to blend the power of semantics with the proven capabilities of

XPDL.

3.2 Role of Rules
In a first step, the workflows get annotated with information

concerning when to start that workflow. Usually there are two

possible ways to automatically start a workflow: (1) having a big

workflow that permanently runs and that covers every possible

situation and then starts sub workflows or (2) trigger workflows

from outside. Basically both opportunities are based on the

definition of a set of rules. In our approach we directly attach

these rules to the headers of the workflows. The purpose of

attaching annotations and trigger rules to the workflow itself is

data transfer. It packages the semantic, non-semantic and

workflow information together so that they can be conveniently

stored, e.g., on a new smart product when it is shipped or on a

website that provides new workflows to smart product owners.

The workflows can be treated as simple XPDL and, if more

powerful computing facilities are available, semantic annotations

and rules can be transferred to them for reasoning.

At the time of writing, the rule language that will be used for the

SmartProducts infrastructure remains undecided: the web standard

SWRL (http://www.w3.org/Submission/SWRL/) and Jess

(http://www.jessrules.com/) are candidates. To minimize

computational requirements, it is likely that a forward chaining

rule engine will be used.

The format of rules will be determined by the reasoner selection

but we can assume for the purpose of discussion that they may

take a form such as:

IF (conditions) THEN (parameters)

Where the conditions are Boolean expressions containing context

values from the SmartProducts environment and the parameters

are optional context values that identify additional data that the

workflow may require during its execution.

Workflow identifiers are not explicitly included in the definition

of rules given above. This is deliberate – the SmartProducts

platform will be used in environments where devices from

multiple product vendors co-operate to complete a process. Each

vendor may choose to include a number of process definitions

with their product, and vendors may not conform to a restrictive

set of rules for defining workflow identifiers. For this reason, the

SmartProducts runtime will generate the identifiers used by the

process execution engine, eliminating the possibility of conflicts

by ensuring uniqueness. Vendors may still include their own

workflow identifiers, but these will not be the ones used during

execution.

All trigger rules will be removed from the process definitions and

stored elsewhere, in the trigger component, while the workflows

themselves will be located in a process repository. Workflow

identifiers will thus be made unique within a SmartProducts

environment without the need to impose restrictions on vendors.

For the initial design, we reuse the concept of formal parameters

used in the XPDL standard. When the workflow is started, so-

called actual parameters are mapped to the formal parameters,

allowing the execution engine to pass required information, like

the user that issued a workflow. Since these parameter signatures

form the “interfaces” of the workflows, they can later be

described by standards like the Web Service Description

Language (WSDL) to allow workflows to be used more

dynamically.

We have identified two situations in which rules are required. The

first is for recommending workflows. This will happen outside of

the workflow engine. Therefore rules of this type will be added to

workflows as annotations so that they can be extracted and

reasoned with to determine the proactive behaviour in the

ubiquitous environment. The second situation concerns rules that

are required in order to control the flow of an executing workflow.

XPDL already has facilities to add rules of this kind to transitions.

We propose to reuse this feature rather than add semantic rules to

transitions.

The workflow triggering rules should support the proactive

recommendation of workflows to the user. Default rules for the

triggering of workflows may be attached to workflows when they

are originally created and shipped to the user. A default rule for

the dry martini could be that it should not be recommended before

6pm or to anyone under the age of 18. Individual users may wish

to supplement these default rules with personal preferences, for

example permitting the suggestion of cocktails from midday

onwards at weekends and on holidays or, for users who abstain

from alcohol, rules that ensure they are only offered nonalcoholic

cocktails.

3.3 Annotation
Annotation provides the opportunity to add both semantic and

nonsemantic metadata. This could be of the following kinds:

• URIs (linking to instances of an ontology) (semantic)

• Locally defined tags, required because an ontology will

never be complete (could become semantic if fused with

the ontology)

• Snippets of text that could be presented to the end user

during workflow execution (not semantic)

• Links to other resources such as images (not semantic)

• Rules (semantic)

The annotation approach that we propose uses existing XPDL

conventions. In principle we make use of two different kinds of

information when processing a workflow. Informational metadata

such as required capabilities of a product, semantic information

about the activity, etc. and information that directly belongs to the

information flow of the workflow, like text, names, or links to

images. While the metadata is put into extended attributes,

internal data is stored in workflow variables.

Adding annotations

To allow such annotations, WfMC’s XPDL standard defines the

ExtendedAttribute element as follows:

“6.4.14.1. Extended Elements and Attributes

The primary method to support such extensions is by the use of

extended attributes. Extended attributes are those defined by the

user or vendor, where necessary, to express any additional entity

characteristics. XPDL schema supports namespace-qualified

extensions to all the XPDL elements. The XPDL elements can be

extended by adding new child elements, and new attributes.”

[WfMC 2008]

Other options within XPDL, such as ExternalReference, have too

restricted scopes of use. Extended attributes are a flexible

approach that we have used to add semantic annotations by

developing a "vocabulary" of different types of extended

attributes. They can be added to any kind of XPDL element.

Therefore annotations could be added in the workflow header if

they apply to the whole workflow or be attached to specific XPDL

elements such as activities, applications, participants, performers

or transitions if a more precisely scoped annotation is required.

However, so far, we are only annotating activities, applications

and participants. Performers and transitions should not have to be

modeled explicitly for reasons explained below.

The WfMC guidelines imply that it is also possible to define

ExtendedElements, for example an Application element could be

defined for smart product software. However in practice we

cannot find evidence of this being done. Therefore we propose to

define a vocabulary of extended attributes and guidelines for their

use specifying which kinds of elements they can be attached to.

In SmartProducts, lists are used in ExtendedAttributes. This

permits multiple values to be added to one workflow element with

a given semantic annotation. In practice, this can be used to

provide a list of expected tools or devices that could be used by a

participant to complete an activity, or it could refer to a list of

ingredients to be used for a given step in a recipe.

This approach realizes a SmartProducts metadata element set,

which is more controlled than totally free annotations in which

any extended attributes could be attached to any element. As a

starting point we propose three named extended attributes,

PRODUCT_CLASS, METADATA and ACTIVTY, which are

defined in table 1. The workflow elements these can be attached

to are outlined below.

Participant – participants that are smart products can be

annotated with:

• PRODUCT_CLASS

• METADATA

The Participant PRODUCT_CLASS annotation should not be

used to provide an exhaustive list of acceptable devices that may

be used to perform an activity – rather, it enumerates the preferred

devices as envisaged by the process designer. The flexibility of

the SmartProducts platform permits users to utilize alternative

devices not explicitly defined within the process definition. It may

also be possible for a user to use a non-smart device to perform an

activity, and if the workflow engine was designed to strictly reject

any non-specified devices, the process would be stalled

indefinitely in these cases.

Activity – activities that are performed by smart products can be

annotated with:

• PRODUCT_CLASS

• ACTIVITY

• METADATA

Application – applications describing smart products software

can be annotated with:

• PRODUCT_CLASS

• ACTIVITY

• METADATA

The XPDL Performer element is not annotated, as this serves only

as a link between a Participant and an Actvity (both of which are

already capable of accepting SmartProducts annotations). The

XPDL Transition element is also not annotated, as the aim of

SmartProducts is centred on the performance of activities rather

than the flow of the process. The use of expressions as conditions

in transitions is considered sufficiently flexible for the project.

It makes sense to have a place in a workflow where people can

store trigger rules that they write to define context conditions that

would trigger that flow. These could then be extracted from the

workflow and added to the Ubiquitous Data Store. We propose

the use of ExtendedAttribute to embed a trigger rule into the

workflow. In this case the format of the rule is irrelevant from the

viewpoint of the workflow and can be handled as a text string.

Table 1. Definitions of SmartProducts Extended Attributes

Annotation name Description

PRODUCT_CLASS

A product type or types as

defined in an ontology.

Based on the product

class it should be possible

to identify substitute

products with similar

functionality.

METADATA

An instance or instances

from a related domain

ontology, excluding

products and activities. It

supports domain specific

annotation.

ACTIVITY

A type of action that is

required to complete an

activity. This supports the

identification of products

based on their capabilities

rather than their type.

4. WORKED EXAMPLE
An example of a typical SmartProducts scenario is presented to

illustrate the use of the semantic annotations added to XPDL, and

how the SmartProducts platform makes use of this additional

information to allow new functionality to be implemented. These

examples refer to the workflow which is illustrated in figure 1.

Figure 1: A workflow for creating a Dry Martini

4.1 Selection of Workflow
Imagine Bob can remember that the very stylish cocktail favoured

by James Bond, includes gin, but he can’t remember what it is

called. He turns to his Cocktail Guide, a piece of software that is

installed on his PDA, and which can handle the execution of

cocktail-making workflows. A search for gin quickly pulls up a

list of cocktails, which include the ingredient gin. This is possible

because the XPDL Activity elements have been annotated with

METADATA ExtendedAttributes that draws on a domain

ontology that describes the typical ingredients of cocktails.

The following example shows the SmartProducts annotations

added to the ‘add gin to mixing glass’ step in the creation of a dry

Martini.

<Activity Id="add_gin" Name="Add gin to mixing glass">

<Performer>barman</Performer>

<ExtendedAttributes>

<ExtendedAttribute Name=" http://www.smartproducts-

project.eu/ontologies/cocktails.owl #METADATA"

Value="Gin"/>

<ExtendedAttribute Name=" http://www.smartproducts-

project.eu/ontologies/cocktails.owl #ACTIVITY"

Value="Pouring"/>

<ExtendedAttribute Name=" http://www.smartproducts-

project.eu/ontologies/cocktails.owl #PRODUCT_CLASS"

Value="MixingGlass"/>

</ExtendedAttributes>

</Activity>

4.2 Selection of Devices
The smart devices in Bob’s house are wireless enabled. Therefore

the Cocktail Guide can recognize which devices are available in

the apartment. Each device can broadcast a semantic description,

which specifies the kinds of action it can perform and the kinds of

contextual information it can provide. The workflows are

similarly annotated with semantic metadata which describe the

actions required to complete activities and context information

required to coordinate the process.

The constrained hardware of ubiquitous computing environments

will compel us to keep the reasoning we do lightweight and to

prove that “a little semantics goes a long way” [Hendler 2003].

The kinds of lightweight reasoning tasks that will be needed are

detailed below.

Semantic Querying: Semantic reasoning is required to match the

needs expressed in the workflow annotations against the

capabilities of the devices in the environment. In our running

example, Bob’s apartment contains two alternative devices for

mixing the cocktail: the SmartSpoon and the SmartShaker both of

which can perform mixing and detect temperature.

Mapping: Just as nobody can be compelled to buy a smart

cocktail shaker, nobody can be compelled to buy all their

appliances from the same manufacturer (see the discussion on

vendor specific rules in section 3.2). Consequently, different

appliances with similar capabilities will be described differently.

Taking a semantic approach therefore has clear advantages. Ad

hoc mapping techniques can be envisaged which could recognize

that “Blending” in one ontology is similar to “Mixing” in another.

The example below attaches a metadata URI to a Participant

element. The scope of this annotation is restricted to the

participant. This example comes from the header of a workflow

about making a dry Martini: the annotation identifies that a mixer

can be used and that there are two smart activities that may be

carried out by a compatible mixer. Here there is a choice between

a shaken or stirred Martini.

<xpdl:ExtendedAttributes>

<xpdl:ExtendedAttribute

Name="JaWE_GRAPH_PARTICIPANT_ID"

Value="Mixer"/>

<xpdl:ExtendedAttribute

Name="PRODUCT_CLASS"

Value="http://www.smartproducts-

project.eu/ontologies/cocktails.owl#Shaker,

http://www.smartproducts-

project.eu/ontologies/cocktails.owl#Stirrer"/>

<xpdl:ExtendedAttribute

Name="ACTIVITY"

Value="http://www.smartproducts-

project.eu/ontologies/cocktails.owl#Stirring,

http://www.smartproducts-

project.eu/ontologies/cocktails.owl

cocktails.owl#shaking"/>

</xpdl:ExtendedAttributes>

4.3 Guiding the user
Bob’s Cocktail Guide, can guide him through the dry martini

recipe step by step. This will be achieved by using sections of text

and images embedded in the workflow, which can be relayed to

Bob through his preferred communication screen; in this case the

T.V. set in his living room.

The workflow model requires a way in which to store sections of

the original text or diagrams. It is common practice in XPDL to

store such text in variables using the XPDL element DataFields.

This therefore is the element we propose to use. The example

below illustrates DataField syntax.

<xpdl:DataFields>

<xpdl:DataField Id="recipe_1" IsArray="FALSE"

Name="dry Martini recipe">

<xpdl:DataType>

<xpdl:BasicType Type="STRING"/>

</xpdl:DataType>

<xpdl:Description>Take four parts gin, one part dry

vermouth and place in a cocktail shaker with ice

</xpdl:Description>

</xpdl:DataField>

</xpdl:DataFields>

4.4 Incorporating Context
To be drinkable the dry martini must be sufficiently chilled. The

workflow is written in such a way that it will not proceed to the

serving step until it has confirmation that the drink has reached

the right temperature. Bob’s smart cocktail shaker contains a

temperature sensor, and the workflow execution engine can make

use of this information source.

In general, sensor information can be seen as part of the context

and designers of workflows should only need to specify when

they react on context changes. In the example above they should

only need to define that “the drink should have the right

temperature”. The detailed information regarding what the ‘right

temperature’ means and where this information can come from,

should be described in the ontology. The temperature could be

measured by different temperature sensors included in or attached

to a product, or the user could press a button that acknowledges

the action.

However, concerning sensor data there is still an open issue.

Thinking of pure OWL annotations it is not clear how best to

define ranges of sensor data. Describing that the temperature is

equal to 10° Celsius seems reasonable, since this is a single

semantic element. Defining variable ranges like 10-20° Celsius or

10-21° Celsius does not fit well into the current schema of

annotating with simple semantic elements. Thus, more complex

management information may need to be added in the future.

5. Conclusions
A review of the approaches to semantic annotation of process

definitions taken so far in existing research led us to conclude that

the SmartProducts platform would need to develop a new

approach. This approach makes use of the capabilities of a

standard process definition serialisation format (XPDL) that also

has good support as a language that can be executed by process

engines. Semantic annotation functionality was added to improve

retrieval of appropriate workflows and to support functionality

such as identifying products that can compete a given activity.

This paper presents the initial effort that has been made toward

this goal. A working version of the system, which includes a

newly-defined set of annotations that can be applied to XPDL has

been presented. In additional work not presented here, an editor

prototype that provides support linking of individuals from

ontologies to process definition components, and a workflow

engine that can execute semantically-enhanced process definitions

are being developed. Future work will enhance the expressiveness

and flexibility of the annotation system while also retaining the

ability to use the annotated workflows on lightweight devices co-

operating with a human user.

6. REFERENCES
[Bowman 1993] Bowman, M., Debray, S. K., and Peterson, L. L.

1993. Reasoning about naming systems. ACM Trans. Program.

Lang. Syst. 15, 5 (Nov. 1993), 795-825. DOI=

http://doi.acm.org/10.1145/161468.161471.

[Brown 2003] Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE. In Proceedings

of the 16th Annual ACM Symposium on User interface Software

and Technology (Vancouver, Canada, November 02 - 05, 2003).

UIST '03. ACM Press, New York, NY, 1-10. DOI=

http://doi.acm.org/10.1145/964696.964697

[Card 1983] Card S, Moran T, Newell A, 1983. The psychology

of human-computer interaction. Lawrence Erlbaum Associates

Inc., 1983

[Dimitrov 2007] Dimitrov, M., Simov, A. Stein, S., Konstantinov,

M. 2007 A BPMO Based Semantic Business Process Modelling

Environment, Proceedings of the Workshop on Semantic Business

Process and Product Lifecycle Management (SBPM-2007), Vol-

251, CEUR-WS, June 2007, ISSN 1613-0073

[Ding 1997] Ding, W. and Marchionini, G. 1997 A Study on

Video Browsing Strategies. Technical Report. University of

Maryland at College Park.

[Dourish 1996] Dourish, P., Holmes, J., MacLean, A.,

Marqvardsen, P., & Zbyslaw, A. (1996). Freeflow: mediating

between representation and action in workflow systems. In

Proceedings of the 1996 ACM conference on Computer supported

cooperative work (p. 198). ACM. Retrieved from

http://portal.acm.org/citation.cfm?id=240252.

[Forman 2003] Forman, G. 2003. An extensive empirical study of

feature selection metrics for text classification. J. Mach. Learn.

Res. 3 (Mar. 2003), 1289-1305.

[Fröhlich 2000] Fröhlich, B. and Plate, J. 2000. The cubic mouse:

a new device for three-dimensional input. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems

(The Hague, The Netherlands, April 01 - 06, 2000). CHI '00.

ACM Press, New York, NY, 526-531. DOI=

http://doi.acm.org/10.1145/332040.332491

[Hendler 2003] On Beyond Ontology, Keynote talk, International

Semantic Web Conference 2003.

[IBM 2007] IBM, B. Systems, Microsoft, SAP, and Siebel. Web

services business process execution language (WS-BPEL, BPEL),

version 2.0 specification, 2007

[Kunze 2007] Kunze, C., Zaplata, S., & Lamersdorf, W. (2007).

Mobile processes: Enhancing cooperation in distributed mobile

environments. Journal of Computers, 2(1), 1–11.

[Lautenbacher 2007] Florian Lautenbacher, Bernhard Bauer, A

Survey on Workflow Annotation & Composition Approaches,

Proceedings of the Workshop on Semantic Business Process and

Product Lifecycle Management (SemBPM) in the context of the

European Semantic Web Conference (ESWC), pp. 12-23, 7th

June 2007, Innsbruck, Austria

[Ouyang 2008] Ouyang C., Dumas M., van der Aalst W.M.P., et

al. (2008). Pattern-based translation of BPMN process models to

BPEL Web services. International Journal of Web Services

Research. 5 (1), 42-62.

[Paterno 1997] Paternò F, Mancini C, Meniconi S.

ConcurTaskTrees: A diagrammatic notation for specifying task

models. In: Proceedings of the IFIP TC13 International

Conference on Human-Computer Interaction table of contents, pp.

362 - 369 1997

[Recker 2006] Recker, J. C. M., Jan. (2006). On the Translation

between BPMN and BPEL: Conceptual Mismatch between

Process Modeling Languages.

[Salimfard 2001] Salimifard K, Wright M. Petri net-based

modelling of workflow systems: An overview. European journal

of operational research. 2001;134(3):664–676.

[Sannella 1994] Sannella, M. J. 1994 Constraint Satisfaction and

Debugging for Interactive User Interfaces. Doctoral Thesis. UMI

Order Number: UMI Order No. GAX95-09398., University of

Washington.

[SmartProducts D6.2.1] D6.2.1: Initial Architecture and

Specification of Platform Core Services, SmartProducts, 2010

[Spector 1989] Spector, A. Z. 1989. Achieving application

requirements. In Distributed Systems, S. Mullender, Ed. Acm

Press Frontier Series. ACM Press, New York, NY, 19-33. DOI=

http://doi.acm.org/10.1145/90417.90738

[Tavel 2007] Tavel, P. 2007 Modeling and Simulation Design.

AK Peters Ltd.

[WfMC 2008] The Workflow Management Coalition

Specification, Workflow Management Coalition, Workflow

Standard Process Definition Interface-- XML Process Definition

Language, Document Number WFMC-TC-1025, Document

Status – Final Approved, October 10, 2008, Version 2.1a

[Yu 1989] Y.T. Yu, M.F. Lau, "A comparison of MC/DC,

MUMCUT and several other coverage criteria for logical

decisions", Journal of Systems and Software, 2005, in press.

