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Astrocyte adenosine deaminase loss increases
motor neuron toxicity in amyotrophic lateral
sclerosis

Scott P. Allen,1 Benjamin Hall,1 Lydia M. Castelli,1 Laura Francis,2 Ryan Woof,1

Alexandros P. Siskos,3 Eirini Kouloura,3 Elizabeth Gray,4 Alexander G. Thompson,4

Kevin Talbot,4 Adrian Higginbottom,1 Monika Myszczynska,1 Chloe F. Allen,1

Matthew J. Stopford,1 Jordan Hemingway,1 Claudia S. Bauer,1 Christopher P. Webster,1

Kurt J. De Vos,1 Martin R. Turner,4 Hector C. Keun,3 Guillaume M. Hautbergue,1

Laura Ferraiuolo1 and Pamela J. Shaw1

As clinical evidence supports a negative impact of dysfunctional energy metabolism on the disease progression in amyotrophic

lateral sclerosis, it is vital to understand how the energy metabolic pathways are altered and whether they can be restored to slow

disease progression. Possible approaches include increasing or rerouting catabolism of alternative fuel sources to supplement the

glycolytic and mitochondrial pathways such as glycogen, ketone bodies and nucleosides. To analyse the basis of the catabolic

defect in amyotrophic lateral sclerosis we used a novel phenotypic metabolic array. We profiled fibroblasts and induced neuronal

progenitor-derived human induced astrocytes from C9orf72 amyotrophic lateral sclerosis patients compared to normal controls,

measuring the rates of production of reduced nicotinamide adenine dinucleotides from 91 potential energy substrates. This ap-

proach shows for the first time that C9orf72 human induced astrocytes and fibroblasts have an adenosine to inosine deamination

defect caused by reduction of adenosine deaminase, which is also observed in induced astrocytes from sporadic patients. Patient-

derived induced astrocyte lines were more susceptible to adenosine-induced toxicity, which could be mimicked by inhibiting

adenosine deaminase in control lines. Furthermore, adenosine deaminase inhibition in control induced astrocytes led to increased

motor neuron toxicity in co-cultures, similar to the levels observed with patient derived induced astrocytes. Bypassing metabolically

the adenosine deaminase defect by inosine supplementation was beneficial bioenergetically in vitro, increasing glycolytic energy

output and leading to an increase in motor neuron survival in co-cultures with induced astrocytes. Inosine supplementation, in

combination with modulation of the level of adenosine deaminase may represent a beneficial therapeutic approach to evaluate in

patients with amyotrophic lateral sclerosis.
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Keywords: ALS; C9orf72; metabolism: inosine: adenosine deaminase

Abbreviations: ALS = amyotrophic lateral sclerosis; HRE = hexanucleotide repeat expansion; iNPC = induced neuronal progenitor
cell; NAD(P)H = nicotinamide adenine dinucleotides; RT-PCR = reverse transcriptase polymerase chain reaction

Introduction
Amyotrophic lateral sclerosis (ALS) is an adult-onset dis-

ease causing degeneration of upper and lower motor neu-

rons resulting in progressive failure of the neuromuscular

system and death typically within 2–3 years of symptom

onset. Approximately 10% of all ALS cases and of fronto-

temporal dementia are associated with a hexanucleotide

repeat expansion (HRE) in C9orf72. There are three

main mechanisms through which the C9orf72-HRE has

been postulated to contribute to neuronal death: (i) loss

of C9orf72 protein function, which affects autophagy

(DeJesus-Hernandez et al., 2011; Webster et al., 2016);

(ii) deposition of cytoplasmic dipeptide repeat proteins

(DPRs) by sequestration of the nuclear export adaptor

SFSR1 onto C9orf72 repeat transcripts (Mori et al.,

2013a, c; Hautbergue et al., 2017); and (iii) production

of expanded RNA species (Mori et al., 2013b; Cooper-

Knock et al., 2014), with sequestration of RNA-binding

proteins (Haeusler et al., 2016).

However, there are several common mechanisms between

C9orf72-HRE ALS and sporadic ALS including oxidative

stress and mitochondrial dysfunction (Lopez-Gonzalez

et al., 2016; Onesto et al., 2016; Konrad et al., 2017).

ALS is associated with both mitochondrial and metabolic

dysfunction, which may influence disease progression as the

metabolic pathways are highly susceptible to the disease

process, (Haeusler et al., 2016; Tefera and Borges, 2016;

De Vos and Hafezparast, 2017; Vandoorne et al., 2018).

Increased reactive oxygen species production, lipid perox-

idation, mitochondrial uncoupling and membrane depolar-

ization can lead to electron transport chain (ETC)

dysfunction, alterations in calcium buffering and reduced

ATP generation in both the CNS and in peripheral tissues

(Ferraiuolo et al., 2011b; Bartolome et al., 2013; Allen

et al., 2014, 2015; Raman et al., 2015; Tefera and

Borges, 2016; Valbuena et al., 2016; Konrad et al.,

2017). Energetically, neurons are supported predominantly

by oligodendrocytes and astrocytes (Ferraiuolo et al., 2016;

Tefera and Borges, 2016). Astrocytes have a key metabolic

role in the CNS: they are the major source of glycogen, and

lactate released by astrocytes can be used by motor neurons

as a source of energy (Pellerin and Magistretti, 1994).

Astrocytes play an important role in ALS disease progres-

sion via various mechanisms including reduced lactate re-

lease, reduced expression of the glutamate reuptake

transporter EAAT2 and release of inflammatory mediators

such as nitric oxide and prostaglandin E2 (Lin et al., 1998;

Ferraiuolo et al., 2011a, b). Induced neuronal progenitor

cell (iNPC) derived induced astrocytes from sporadic ALS

and C9orf72 patients have been shown to cause toxicity to

motor neurons in co-culture (Haidet-Phillips et al., 2011;

Meyer et al., 2014; Re et al., 2014). However, the precise

manner in which C9orf72-HRE affects energy production

especially in astrocytes, the mechanisms by which human

C9orf72-derived astrocytes cause motor neuron toxicity

and how these relate to sporadic ALS, are currently

unknown.

Many of the dysfunctional metabolic traits associated

with ALS correlate with disease duration and survival

and are intrinsically linked to the patient’s nutritional

status (Desport et al., 1999, 2005). As clinical evidence

supports a negative impact of dysfunctional energy metab-

olism on the disease progression in ALS (Desport et al.,

2005; Dupuis et al., 2011), it is important to understand

how the metabolic pathways could potentially be manipu-

lated to achieve neuroprotective effects. Therefore, the pur-

pose of this study was to test the hypothesis that ALS

results in dysfunctional energetic pathways, which can

lead to reduced ATP output and an increasing bioenergetic

deficit in the CNS. Identification of the specific dysfunc-

tional pathway(s) may allow additional supplementation

of the defective energy substrates involved back into the

cell to restore the metabolic defect. Alternatively, supple-

mentation of energy substrates downstream of the identified

defect would potentially allow the cell to bypass the dys-

function and increase energy production.

Using both patient-derived fibroblasts and iNPC-derived

induced astrocytes we have adapted a phenotypic metabolic

profiling approach (Bochner et al., 2011) to identify defi-

cient metabolic pathways. This technology enables the com-

parison of normal versus disease cellular models by

simultaneously comparing the rates of energy production

from 91 potential energy substrates. This approach has

not been used previously in the ALS field and allows a

non-biased metabolic screen to be performed on in vitro

models to identify dysfunctional metabolic pathways by

measuring the ability of cells to produce NAD(P)H (nico-

tinamide adenine dinucleotides). Using this approach, we

have identified a novel adenosine metabolism dysfunction

caused by reduction of adenosine deaminase (ADA). These

data show for the first time, reduced expression of ADA in

fibroblasts, in iNPC-derived induced astrocytes and in

induced neurons from individuals with C9orf72 and spor-

adic ALS. Stimulating the adenosine metabolism pathway

downstream with inosine supplementation in vitro,

increased induced astrocyte bioenergetic flux, increased

ATP levels and reduced induced astrocyte-mediated motor

neuron toxicity.

Inosine bypasses ADA deficit BRAIN 2019: 142; 586–605 | 587
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Materials and methods
All chemicals were obtained from Sigma unless stated

otherwise.

Human biosamples

Experiments were carried out using samples obtained from six

C9orf72-HRE-positive ALS cases, three sporadic ALS cases

and eight matched controls in total (Supplementary Table 1).

The average age at time of skin biopsy in ALS cases (five fe-

males, four males) was 54 (�12.0) years and 54 (�8.7) years

in controls (six females, two males). The average disease dur-

ation of the ALS cases was 42.9 (�24.6) months.

Ethical approval

Informed consent was obtained from all human subjects before

skin sample collection (Study number STH16573, Research

Ethics Committee reference 12/YH/0330). All applicable inter-

national, national, and/or institutional guidelines for the care

and use of animals were followed.

Human fibroblast cultures

Skin biopsies were obtained from the forearm of subjects after

informed consent, in accordance with guidelines set by the

local ethics committee. Fibroblast cell cultures were established

in supplemented cell culture medium (Lonza) with 10% foetal

calf serum (Labtech), 2mM glutamine, 50 mg/ml uridine, vita-

mins, amino acids and 1mM sodium pyruvate in humid incu-

bators at 37�C with 5% CO2.

C9orf72 cerebral cortical astrocyte
mouse culture

Primary cultures of cerebral cortical astrocytes were prepared

from C9orf72-BAC (C57BL/6) newborn mice (1–2 days old)

and were screened for the C9orf72 expansion using qualitative

PCR. Astrocytes were grown to confluence in high glucose

(25mM) Dulbecco’s modified Eagle medium (DMEM) con-

taining 10% foetal bovine serum (FBS) and separated from

contaminating microglia through shaking and then mild tryp-

sinisation (Saura et al., 2003).

Rodent cortical neuron culture

Cortical neurons were isolated from embryonic Day 18

Sprague Dawley rat embryos (Charles River) and embryonic

C9orf72-Bac mice (C57BL/6). Neurons were cultured on poly-

D-ornithine/poly-L-lysine half-area 96-well plates (Griener) in

Neurobasal
TM

A medium (Thermo Fisher) supplemented with

B27 supplement (Invitrogen), 100 IU/ml penicillin (Lonza),

100mg/ml streptomycin (Lonza), 2mM L-glutamine, 0.4mM

sodium pyruvate and 25mM glucose for 10 days prior to

metabolic profiling.

Human induced astrocyte and
induced neuron culture

Fibroblasts were differentiated as previously described (Meyer

et al., 2014). INPCs were cultured in DMEM containing 1%

N2 supplement (Life Technologies), 1% B27 and 20 ng/ml
fibroblast growth factor-2 (Preprotech). To induce NPC differ-

entiation to induced astrocytes, cells were incubated in a 10 cm
dish coated with fibronectin (5 mg/ml, Millipore). Twenty-four

hours later the media was changed to DMEM with 10% FBS

and 0.3% N2 and allowed to differentiate for 7 days. As pub-
lished previously (Meyer et al., 2014), this procedure produces

induced astrocytes that are 100% positive for vimentin, CD44

and glial fibrillary acidic protein (data not shown). For differ-
entiation into neurons, iNPCs were plated in fibronectin

coated (2.5mg/ml) six-well plates and grown to 70–80% con-

fluence after which iNPC medium was removed and replaced
with neuron differentiation medium (DMEM/F12 with 1% N2

and 2% B27). On Day 1 post-differentiation, the cells were

treated with 2.5 mM DAPT (Tocris) to promote differentiation
toward a neuronal lineage. On Days 3–7, the medium was

supplemented with 1mM retinoic acid, 0.5 mM smoothened

agonist (SAG) (Millipore) and 2.5 mM forskolin. This method
produced 70% b-III tubulin (Tuj1) positive cells (data not

shown). Astrocyte/neuronal experiments were repeated at

least three times for each line using iNPCs between passages
18 and 25.

Phenotype microarray analysis

Preparation for human fibroblasts

On Day 1, 96-well phenotype microarray plates (PM-M1,
Biolog; Supplementary Table 2) had 30 ml of IFM-1 (Biolog)

containing 10% dialysed FBS and 0.3mM glutamine added
and then incubated overnight at 37�C/5% CO2. On Day 2,

96-well half-area plates were coated with 50 ml of fibronectin

(0.25 mg/ml in PBS) for 60min at room temperature and then
washed with 100ml PBS. Confluent fibroblasts were harvested

by trypsinisation (Lonza) and the cell number was determined

using a trypan blue dye exclusion test and a Countess auto-
mated cell counter (Invitrogen). Using the PM-M1 plates incu-

bated the previous day, the IFM-1 fluid now containing the

different metabolites was transferred to the corresponding
wells on the fibronectin-coated plates. The cells were resus-

pended at 800 000 cells per ml of IFM-1 media and 20 ml,

(equivalent to 16 000 cells), was transferred to each well of
the substrate plate and then incubated at 37�C/5% CO2 for

40 h. After the stated incubation time, 10 ml of redox dye mix

MA (Biolog) was added to each well and the plates sealed with
sterile Seal-Plate film to stop gas transfer. Dye colour change

was measured every 20min for 120 min and then every 60min

up to 300min using a BMG Omega Pherastar at 590/790 nM
(790 nM was removed from 590 nM to account for back-

ground values). After incubation, the plates were washed

three times with 100 ml of PBS and stored overnight at
�80�C prior to cell counting. All results were normalized to

cell number by addition of CyQUANT
�

(Invitrogen) to each

well as per the manufacturer’s instructions (1/400 dilution of
the dye in HBSS buffer, 100ml per well) and fluorescence was

measured using a BMG Omega FLUOstar.
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Preparation for human induced astrocytes

The procedure for induced astrocytes was identical to that for
fibroblasts, except for the following: astrocytes at 6 days post-
differentiation were harvested by addition of accutase for
3min. Astrocytes were plated at 10 000 cells per well and
incubated for 24 h at 37�C/5% CO2. After dye addition, the
plates were sealed and incubated in an OmniLog

TM

Phenotype
Microarray system at 37�C. The Dye colour change was moni-
tored every 5min for 355min for kinetic analysis. All induced
astrocytes were analysed from three independent differenti-
ations. For the pentostatin assays, control induced astrocytes
were treated with 0.5 mM pentostatin for 24 h in the assay
plate prior to adding the redox dye. The assay was then con-
tinued as described above.

Preparation for mouse astrocytes

The mouse astrocyte preparation was identical to the fibroblast
preparation except that the 96-well plates were coated with
1 mg/ml poly-D-ornithine at 4�C overnight prior to plating the
cells and an OmniLog

TM

Phenotype Microarray system was
used to assess dye colour change every 5min for 355min.

Preparation of mouse cortical neurons

On Day 9 post-neuronal plating, PM-M1 plates had 50 ml of
Neurobasal

TM

A with B27 and 0.3mM glutamine added to
each well and incubated at 37�C/5% CO2 overnight. On
Day 10, the neuronal media was removed from the cells and
replaced with the media from the PM-M1 plate. The cells were
then incubated for 40 h prior to addition of 10 ml Redox dye
MB (Biolog). The assay was then continued as previously
described for the induced astrocytes.
All data had background values removed and subsequently,

for fibroblasts, heat maps with hierarchical clustering were
generated using Qlucore Omics Explorer 3.0, with time point
eliminated as a factor and P4 0.05 taken as significant. Any
substrates identified that showed significant toxicity between
patients and controls were removed as false positives. Toxicity
was assessed by normalizing the specific substrate in question
to the positive glucose controls as 100%, using the equation:
[(average toxicity assay value) / (average toxicity assay value of
glucose)] � 100. The substrates identified using Qlucore under-
went further kinetic analysis by two-way ANOVA with Sidak
post-test correction at every time point. Initial rate analysis (0–
120min) by linear regression as well as area under the curve
analysis was performed on all the kinetic traces on GraphPad
Prism (Version 6). All data were analysed from three independ-
ent experiments.

Western blot analysis

Cell pellets were washed in PBS and resuspended in 100 ml lysis
buffer (89% Radio-Immunoprecipitation Assay buffer, 10%
protease inhibitor cocktail and 1% phosphatase inhibitors),
on ice. After 30min, the cells were centrifuged at
13 000 rpm, 4�C for 30min and the supernatant was collected
and retained on ice. Protein content of the supernatant was
determined using a Bradford assay as per the manufacturer’s
instructions. All samples were denatured at 95�C for 5min in
Laemmli buffer and 20 mg of protein was loaded on 10% SDS
polyacrylamide gels and protein electrophoresis was performed
using Mini-PROTEAN

�

Tetra Handcast systems (Bio-Rad).

Proteins were resolved and transferred to a polyvinylidene
difluoride membrane (Millipore) at 250mM for 60min
before being blocked in 5% bovine serum albumin (BSA)
with Tris-buffered saline plus 0.01% Tween (TBST). Primary
antibodies used at a dilution of 1/1000 included mouse adeno-
sine deaminase (Santa Cruz D4-sc23846), rabbit LC3 (Novus,
NB100-2220), mouse P62 (BD Bioscience, 610833), rabbit
NQO1 (Abcam, ab341732) and rabbit actin (Abcam,
ab8227). Before detection by chemiluminescence (EZ-ECL
HRP kit, Biological Industries) using a G:BOX (Syngene), the
membranes underwent 6 � 10min washes in TBST and were
then incubated with secondary anti-rabbit/mouse HRP-linked
antibody (1:5000, Cell Signalling Technology) for 60min.
Quantification of protein levels were obtained by densitometry
using GeneTools software (version 4.03.05, Syngene). After
normalization to the loading controls, patient values were
compared to the control value, which was set to 1. For the
LC3 blots, LC3-I levels were divided by LC3-II levels to obtain
a LC3-I/II ratio.

Quantitative RT-PCR

Extracted RNA samples from three independent differenti-
ations were DNase treated and RNA converted to cDNA as
previously described (Hautbergue et al., 2017). The sequences
of the ADA qPCR primers can be found in the Supplementary
material (Note 1). Quantitative RT-PCR reactions were per-
formed in duplicate using the Brilliant III Ultra-Fast SYBR

�

Green QPCR Master Mix (Agilent Technologies) on a CFX
96

TM

Real-Time System (Bio-Rad). Quantitative RT-PCR data
were analysed using CFX Manager 3.1 (Bio-Rad) and
GraphPad Prism using one-way ANOVA with Bonferroni
post-test analysis.

Adenosine/inosine cell survival assay

Induced astrocytes were plated in 96-well plates at 10 000 cells
per well in 100 ml DMEM containing 5mM glucose, 0.3mM
glutamine and 10% serum and incubated overnight at 37�C/
5% CO2. The next day 100ml DMEM with 0.4–13.5mM
adenosine or inosine was added to the plate and incubated
for 24 h at 37�C/5% CO2. Cells were washed three times
with 100ml PBS and stored at �80�C overnight. The next
day, the cell number was measured by Cyquant addition as
previously described. For the effect of adenosine deaminase
inhibition on cell numbers, pentostatin (Cambridge
Bioscience) was added to the cells for 18 h at a final concen-
tration of 0.05–50 mM in DMEM. The media was then
replaced with DMEM plus 4mM adenosine and the assay
was continued as described above. All assays were performed
on three controls and three patient induced astrocyte lines
from three different differentiations. All data were compared
to the glucose control at 100%, all percentage data were firstly
transformed Y = 1/Y, then subsequently Y = logit(Y) prior to
Kruskal Wallis analysis with a Dunn’s post-test.

ATP assay

Induced astrocytes were plated at 8000 cells per well in 96-
well white walled clear-bottomed plates (Greiner) in induced
astrocyte media. After 24 h, the media was changed to DMEM
media with 5mM glucose, 10% serum and 0.3mM glutamine

Inosine bypasses ADA deficit BRAIN 2019: 142; 586–605 | 589
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plus 0.4–13.5mM inosine. The cells were incubated at 37�C/
5% CO2 for 24 h after which 300mM iodoacetate (IAA) was
added to half of the wells and the cells were then incubated at
37�C/5% CO2 for 60min. After 30min, 1mM oligomycin was
added to half of the wells containing IAA and incubated for
30min to abolish all ATP production and confirm that the
ATP levels in the presence of IAA were produced by the mito-
chondrial ATP synthase. Subsequently, the media was removed
from the wells and cellular ATP was measured using an
ATPlite assay kit (PerkinElmer) as per the manufacturer’s in-
structions. The plate was read on a BMG Pherastar plate
reader on luminescence mode. Cell numbers were normalized
by adding Cyquant to all the wells and incubating for 60min
at 37�C/5% CO2. Cell counts were read on a BMG Pherastar
plate reader at 485 nm excitation 520 nm emission. Fibroblast
ATP assays were performed in the same way except that in-
osine was incubated for 40 h prior to IAA being added. Total
ATP levels were determined as well as the oxidative phosphor-
ylation specific ATP levels (ATP levels in the presence of IAA
which are oxidative phosphorylation specific as they are abol-
ished in the presence of IAA and oligomycin; data not shown).
Glycolytic ATP was determined by subtracting oxidative phos-
phorylation-specific ATP from total ATP. All assays were per-
formed on three controls and three patient induced astrocyte
lines from three different differentiations and analysed by one
way ANOVA with a Bonferroni post-test analysis.

Seahorse XF24 bioanalyser assay

Induced astrocytes were plated at 15 000 cells per well in a 24-
well Seahorse cell culture plate (Agilent/Seahorse Bioscience) in
induced astrocyte cell culture media and incubated overnight
at 37�C/5% CO2. The next day the media was replaced with
DMEM media with 5mM glucose, 10% serum, 0.3mM glu-
tamine and inosine at 1.0–13.5mM. The cells were incubated
at 37�C/5% CO2 for 24 h. The next day the media was
replaced with Seahorse media pH 7.4 (Agilent/Seahorse
Bioscience) containing inosine and incubated at 37�C in a
non-CO2 incubator for 60min. The effect on oxygen con-
sumption rate and extracellular acidification rate was mea-
sured four times for 2.5min each in the absence and
presence of oligomycin (to determine coupled respiration and
glycolytic capacity), FCCP, and finally antimycin A in combin-
ation with rotenone. To allow normalization, cell numbers
were determined by the addition of Cyquant to the cells as
previously described. All data were analysed by Kruskal
Wallis analysis with a Dunn’s post-test.

Lactate assay

Lactate levels were measured using a Promega Lacate-GloTM

assay kit on fibronectin coated 384-well plates. induced astro-
cytes were plated at 10 000 cells per well in 30 ml of DMEM
containing 5mM glucose, 0.3mM glutamine and 10% dia-
lysed serum and then incubated at 37�C/5% CO2. 24 h later,
DMEM � 4mM inosine was added and the plate was incu-
bated for a further 24 h at 37�C/5% CO2. The media was then
removed and the assay was continued as per the manufac-
turer’s instructions. Lactate levels were measured on a BMG
PHERAstar plate reader with cell numbers measured by
adding Cyquant as described previously. All assays were per-
formed on three controls and three patient induced astrocyte

lines from three different differentiations and analysed by one-

way ANOVA with a Bonferroni post-test analysis.

Uric acid assay

C9orf72 induced astrocytes and controls were differentiated as

described previously in six-well dishes. On Day 6 post differ-

entiation, the media was changed to DMEM with 5mM glu-

cose, 10% serum and 0.3mM glutamine, �4 mM inosine.

The plates were incubated for 24 h at 37�C/5% CO2, prior

to being harvested and stored at �80�C. On the day of the

assay, samples were homogenized in 125 ml of cold uric acid

assay buffer for 20min on ice and then centrifuged at 13 000g

for 10min at 4�C to remove insoluble material. Protein con-

tent was assessed using a Bradford assay as per the manufac-

turer’s instructions. Uric acid standards for colorimetric

detection at 0 (blank), 2, 4, 8, 16, 24, 32, and 40 nmol/well

in 50 ml uric acid buffer were added to the plate in duplicate as

well as the patient samples. Fifty microlitres of a master mix

containing 46 ml assay buffer, 2 ml uric acid probe and 2 ml

enzyme mix were added to each well. The plate was incubated

in the dark for 30min at 37�C, prior to detection on a BMG

PHERAstar at 570 nm.

Induced astrocyte EGFP motor
neuron viability co-culture assay

On Day 1, 1500–3000 induced astrocytes were seeded in 25 ml

DMEM containing 5mM glucose, 10% serum and 0.3mM

glutamine on fibronectin-coated black 384-well plates and

incubated at 37�C/5% CO2 for 24 h. On Day 2, 0.1–

13.5mM inosine was added and then incubated as described

for a further 24 h. On Day 3, 2500 murine Hb9-EGFP +

motor neurons (a kind gift from Tom Jessell, Columbia

University, New York) per well were seeded on top of the

pretreated induced astrocytes. Hb9-GFP + motor neurons

were imaged after 24, 48 and 72 h using an IN Cell

Analyzer 2000 (GE Healthcare), and the number of viable

motor neurons were counted using the Columbus analyser

software. The number of viable motor neurons (defined as

GFP + motor neurons with at least one axon) that survive

after 72 h in co-culture was calculated as a percentage of the

number of viable motor neurons after 24 h in co-culture. One-

way ANOVA with Bonferroni post hoc test was then per-

formed. For the pentostatin assays, induced astrocytes were

treated with 0.05/0.5/5 mM pentostatin for 18 h prior to the

addition of adenosine to the cells. Pentostatin media was

removed from the cells and replaced with media containing

4mM adenosine for 24 h prior to adding the motor neurons.

Cell survival was assessed as described up to 48 h. All assays

were performed on three controls and three patient induced

astrocyte lines from at least four different differentiations.

Data availability

Raw data were generated at The University of Sheffield.

Derived data supporting the findings of this study are available

from the corresponding author on request.

590 | BRAIN 2019: 142; 586–605 S. P. Allen et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
/a

rtic
le

-a
b
s
tra

c
t/1

4
2
/3

/5
8
6
/5

3
0
3
6
5
6
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

2
 M

a
rc

h
 2

0
1
9



Results

C9orf72-HRE leads to reduced NADH
production with adenosine in fibro-
blasts and induced astrocytes

We used a novel screening approach to identify substrates

that had significantly different NADH production in the

C9orf72 ALS models compared to controls. To identify

the substrates in question for further kinetic analysis, data

from the screens were analysed using Qlucore to generate

heat maps (Supplementary Fig. 1) and all identified sub-

strates were analysed by two-way ANOVA, area under

the curve (AUC) analysis and initial rate analysis to identify

significant hits. Using this stringent analytical approach,

five energy substrates—fructose, adenosine, pyruvic acid,

galactose and succinamic aci—were identified as being

hypometabolic in the C9orf72 cases compared to controls

(Fig. 1A, B and Supplementary Fig. 2A–C). Two fructose

disaccharides lactulose and palatinose were identified as

hypermetabolic in the C9orf72 cases compared to controls

(Supplementary Fig. 2D and E). All the substrates showed

an overall significant difference between controls and

C9orf72 cases (using two-way ANOVA) and a significant

difference at one-time point or more (Sidak post-test ana-

lysis). Both control and C9orf72 fibroblasts were repro-

grammed into iNPCs before differentiation into induced

astrocytes. C9orf72 has been shown to play a key role in

the initiation of autophagy, with decreased autophagy

observed in C9orf72 models of disease including induced

neurons and accumulation of the p62 protein observed in

CNS cell models and CNS tissue from ALS patients (Al-

Sarraj et al., 2011; Webster et al., 2016). The C9orf72

induced astrocytes used in this study displayed C9orf72

specific cellular dysfunction such as raised p62 levels

(Supplementary Fig. 3A and B), an elevated LC3-I/II ratio

indicating disruption in the autophagy pathway

(Supplementary Fig. 3C and D) and reduced levels of

NQO1 [NAD(P)H dehydrogenase quione1], indicating po-

tentially a reduced antioxidant response (Supplementary

Fig. 3E and F). When we phenotypically screened the

iNPC-derived induced astrocytes, unlike the fibroblasts,

the C9orf72 induced astrocytes were susceptible to starva-

tion-induced toxicity (data not shown) and were only able

to metabolise on average nine of the energy substrates in

addition to the glucose control. Therefore, Qlucore analysis

was not appropriate due to the high number of false posi-

tives produced. We focused our analysis on the substrates

that were successfully used by at least two out of the three

C9orf72 induced astrocytes patient lines. Of those nine

substrates, five were hypometabolic to varying degrees in

the C9orf72 patient-derived induced astrocytes compared

to controls (Fig. 1, Supplementary Figs 4A–F and 5A–F).

As with the fibroblasts, fructose, adenosine and pyruvic

acid were identified as significantly hypometabolic (by

two-way ANOVA) in two of three C9orf72 cases compared

to controls [the remaining Patient (Patient 183) showed

significant levels of toxicity in the presence of all these me-

tabolites and the data were not included in the analysis]. In

addition, glycogen and dextrin showed reduced NADH

production in the induced astrocytes; however, this did

not reach significance when performing two-way ANOVA

(Supplementary Fig. 4B and C). The remaining substrates

showed no significant difference in NADH production be-

tween controls and patients (Supplementary Fig. 4 D-F),

including inosine (Fig. 1F), which mimicked what was

observed in C9orf72 fibroblasts (Fig. 1C). As adenosine

undergoes deamination by adenosine deaminase (ADA) to

produce inosine and the known pathways for NADH-based

energy production from both inosine and adenosine is via

metabolism to ribose-phosphate and eventually glycolysis,

this pathway warranted further investigation.

Reduced levels of adenosine deami-
nase are observed in ALS patient cells

To assess whether levels of ADA were altered in the

C9orf72-HRE cellular models, which might contribute to

adenosine hypometabolism, we used western blot analysis

to measure ADA levels in fibroblasts, induced astrocytes

and induced neurons. Overall, ADA levels were signifi-

cantly lower in C9orf72 fibroblasts (Supplementary Fig.

2F and G), induced astrocytes (Fig. 2A and B) and induced

neurons (Fig. 2C and D). Patient 201 had the highest pro-

tein level of ADA across all three cell models in the

C9orf72 patients including the iNPCs (Supplementary Fig.

3G and H), whilst Patient 183 had the lowest. This con-

sistency was also observed at the mRNA level, with Patient

183 showing the lowest mRNA levels in induced astrocytes

and induced neurons. Overall the level of ADA mRNA was

significantly reduced in induced astrocytes but not induced

neurons (P = 0.080; Fig. 2I and J), which reflected the west-

ern blot data. As HRE-driven C9orf72 ALS accounts for a

significant portion of both familial and apparently sporadic

ALS cases, common mechanisms of dysfunction are likely

to exist between the two currently described distinct sub-

groups of ALS. To answer the question of whether the

adenosine metabolism pathway was one possible common

mechanism, we measured ADA levels in three sporadic ALS

patient-derived induced astrocyte cell lines. As with the

C9orf72 induced astrocytes, a significant reduction in

ADA was observed in the sporadic ALS cases at the protein

level primarily driven by Patients sALS-9 and sALS-12

(Fig. 2E and F). A reduction of ADA was also observed

at the mRNA level but this did not reach significance

(P = 0.086; Fig. 2I). We repeated these experiments in spor-

adic ALS induced neurons and found comparable results

both at the protein and mRNA level (Fig. 2G, H and J).

To assess whether reduced NADH production was also

evident in sporadic ALS induced astrocytes in the presence

of adenosine, we screened the patient cohort as previously
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Figure 1 NADH production kinetic analysis of the top hits from the fibroblast and astrocyte phenotypic metabolic screen.

(A) NADH production in fibroblasts with D-fructose as the sole energy source. (B) NADH production in fibroblasts with adenosine as the sole

energy source. (C) NADH production in fibroblasts with inosine as the sole energy source. (D) NADH production in induced astrocytes

(iAstrocytes) with D-fructose as the sole energy source. (E) NADH production in induced astrocytes with adenosine as the sole energy source.

(F) NADH production in induced astrocytes with inosine as the sole energy source. Controls depicted in black and C9orf72 patients in orange.

Fibroblast NADH production was measured using a BMG PHERAstar plate reader taking absorbance readings every 15min over a 6-h period.

Induced astrocyte NADH production was measured using an OmniLog
TM

metabolic profiling system, taking readings every 5min over a 6-h period.

Data presented as mean with standard error, for eight controls and six patients in triplicate for the fibroblasts and three controls and three

patients for the induced astrocytes in triplicate. Background intensity values were subtracted from raw data values before being normalized to cell

number (by Cyquant analysis). To detect differences in NADH production between controls and patients, two-way ANOVA, with Sidak post-test,

area under the curve (AUC) and initial rate analysis by linear regression was performed. *P4 0.05, multiple consecutive significant time points are

represented as arrows. For all AUC and rate analyses see Supplementary Table 3.
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Figure 2 RNA and protein levels of adenosine deaminase (ADA) are reduced in C9orf72 and sporadic ALS patient cell models.

(A and E) Western blot in human induced astrocytes. (B and F) induced astrocyte densitometry analysis. (C and G) Western blot in

human induced neurons. (D and H) Induced neuron (iNeuron) densitometry analysis. (I) RT-PCR analysis of ADA RNA levels in induced

astrocytes. (J) RT-PCR analysis of ADA RNA levels in induced neurons. Densitometry analysis performed by normalizing the ADA levels to the actin

loading control and setting the control values to one then comparing the patient value to the matched control value. Representative western blots

of three controls versus three patients performed n = 3/4 before densitometry analysis by Wilcoxon matched rank analysis. *P4 0.05,

**P4 0.01, ***P4 0.001. Individual RT-PCR data presented with mean and standard deviation followed by unpaired t-tests. Dashed lines = in-

dicates cropped image. For full length gels see the Supplementary material.
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described (Supplementary Figs 5G–I and 6A–G). As with

the C9orf72 induced astrocytes, the sporadic ALS induced

astrocytes were able to use fructose, inosine, dextrin, glyco-

gen and pyruvic acid to varying degrees (as well as glucose,

maltotriose, mannose and maltose, data not shown). As

with the C9orf72 induced astrocytes, the sporadic ALS

induced astrocytes showed no inosine metabolism defect

but a strong adenosine metabolism defect in two of three

patients, leading to cell death (Supplementary Fig. 6A and

C). Cell line sALS-17, which had the highest ADA levels

out of all the ALS patients, also showed the highest NADH

production in adenosine, which was statistically indistin-

guishable from the controls.

Adenosine causes toxicity in ALS
astrocytes which can be replicated in
controls by ADA inhibition

Adenosine has been shown to be toxic to embryonic stem

cell-derived motor neurons in the presence and absence of

wild-type astrocytes (Ng et al., 2015). With this is mind we

supplemented the iNPC-derived induced astrocyte cultures

with increasing levels of adenosine and inosine and mea-

sured cell numbers 24 h later (Fig. 3). C9orf72 and spor-

adic ALS induced astrocytes were more susceptible to

adenosine induced cell loss than control induced astrocytes

(Fig. 3A), with �60–80% cell loss when exposed to

44mM adenosine, compared to 40% in the controls. In

contrast, inosine supplementation produced very little cell

loss in any lines, comparable with just adding more glucose

to the cells (data not shown) indicating that the cell loss at

the top concentration of 13.5mM was likely to be due to

mild osmotic shock. To assess whether the level of ADA at

the protein level was protective, we correlated the level of

ADA expression in the patient induced astrocytes with cell

survival observed in the adenosine toxicity assays (Fig. 3C).

The level of cell survival positively correlated with relative

ADA expression (R2 = 0.889, P = 0.0048), whereas no sig-

nificant correlation was observed in control-derived cell

lines (data not shown). Inhibition of ADA in induced astro-

cytes with the irreversible inhibitor pentostatin in the ab-

sence of adenosine did not affect cell numbers (data not

shown). In the presence of adenosine, however, the control

lines showed increased sensitivity to pentostatin-induced

cell loss (Fig. 3D), with cell numbers (above 5 mM pentos-

tatin) reduced to similar levels observed in C9orf72 induced

astrocytes in the presence of adenosine. As expected,

C9orf72 induced astrocytes showed increased sensitivity

to pentostatin with 0.05 mM of the inhibitor sufficient to

cause a 60% drop in cell number (Fig. 3E). To assess

whether lower ADA activity resulted in reduced adenosine

metabolism, we measured NADH production in control

induced astrocytes treated with pentostatin for 24 h prior

to running the screening assay. We found that NADH pro-

duction in the presence of adenosine was significantly

reduced in control induced astrocytes treated with

pentostatin compared to the dimethyl sulphoxide (DMSO)

control (Fig. 3F), whilst inosine metabolism was unaffected

(Supplementary Fig. 4G). These results indicate that

reduced levels of ADA lead to reduced adenosine metabol-

ism causing a decrease in bioenergetic output and induced

astrocyte cell death in the presence of elevated levels of

adenosine. With this is mind we next investigated the pos-

sibility that supplementing ALS induced astrocytes with in-

osine may bypass the adenosine metabolism defect and be

beneficial bioenergetically.

Supplementation of induced
astrocytes with inosine leads to
increased bioenergetic capacity

Inosine supplementation of induced astrocyte cultures

increased total ATP levels in both control and patient fibro-

blasts and induced astrocytes (Fig. 4A and Supplementary

Fig. 2H). In control induced astrocytes, inosine increased

ATP predominantly via the mitochondria and to a lesser

extent through glycolysis (11% increase), whilst in patient

induced astrocytes the opposite was true (Fig. 4B and C).

This difference in metabolic response to inosine supplemen-

tation may be due to a metabolic shift in C9orf72 induced

astrocytes as observed previously in fibroblasts from SOD1

patients (Allen et al., 2014). To test this, we calculated the

metabolic equilibrium (which we define as the amount of

ATP produced by glycolysis compared to the mitochondria

as a percentage of the total) in control and C9orf72

induced astrocytes (Fig. 4D and E). In control induced

astrocytes under standard glucose conditions, 33% of the

total ATP was produced via the mitochondria indicating as

expected a predominantly glycolytic metabolic state.

However, in the presence of 4mM inosine and above,

mitochondrial ATP accounted for �50% of the total ATP

output indicating that inosine supplementation shifted the

metabolic equilibrium to a more aerobic state in control

induced astrocytes, which was not observed by supplement-

ing with additional glucose (Fig. 4D). In contrast, under

glucose conditions, the C9orf72 induced astrocytes were

more glycolytic in nature, with on average only 17%

ATP produced aerobically, almost half that observed in

controls (Fig. 4D and E). Moreover, inosine supplementa-

tion had no effect on the metabolic equilibrium of C9orf72

induced astrocytes in contrast to control induced astrocytes.

To confirm this, we used a XF24 metabolic bioanalyser to

assess the effect of inosine supplementation on mitochon-

drial respiratory rates and glycolytic flux rates in induced

astrocytes. In control induced astrocytes, inosine supple-

mentation increased the coupled respiratory flux rate by

27% without reaching significance (Fig. 4F). However, in-

osine supplementation increased not only glycolytic flux

rates but also glycolytic capacity flux rates in control

induced astrocytes (Fig. 4G and H), suggesting that al-

though glycolytic rates increased by 80% with inosine sup-

plementation in controls, this only led to a 11% increase in
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Figure 3 C9orf72 and sporadic ALS induced astrocytes are more susceptible to adenosine-mediated toxicity. (A) The effect of

adenosine supplementation on induced astrocyte cell number. (B) The effect of inosine supplementation on induced astrocyte cell number.

(C) The effect of ADA expression on adenosine mediated toxicity, analysed by Pearson’s correlation analysis (R2 = 0.8891, P = 0.0048, 95%

confidence intervals = 0.5597 to 0.9939). (D) The effect of 4mM adenosine on control induced astrocytes after pentostatin treatment. (E) The

effect of 4mM adenosine on C9orf72 induced astrocytes after pentostatin treatment. All data normalized to glucose control at 100%, each data

point indicates one cell line performed once, all assays performed on three controls and three patient astrocyte lines in triplicate. Data trans-

formed Y = 1/Y and Y = Logit(Y) prior to Kruskal Wallis analysis with a Dunn’s post-test. *P4 0.05, **P4 0.01, ***P4 0.001, ****P4 0.0001.

Cons = controls; C9 = C9orf72 patients; Glu = glucose. (F) The effect of pentostatin treatment on control induced astrocyte NADH production

in the presence of adenosine. For AUC and rate analysis see Supplementary Table 3. Data presented as mean with standard error, controls n = 3 in

triplicate. Background intensity values were subtracted from raw data values before being normalized to cell number (by Cyquant analysis). Two-

way ANOVA, with Sidak post-test, area under the curve (AUC) and initial rate analysis by linear regression was performed to detect differences in

NADH production between DMSO and pentostatin treated cells. *P4 0.05.
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Figure 4 Inosine supplementation increase glycolytic energy output in C9orf72 induced astrocytes. (A) The effect of inosine

supplementation on total ATP levels. (B) The effect of inosine supplementation on glycolytic ATP levels. (C) The effect of inosine supplementation
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glycolytic ATP levels; the reasons for this are presently un-

clear. In patient induced astrocytes, inosine supplementa-

tion did not affect coupled respiratory flux rates (data

not shown). However, the spare respiratory capacity flux

reduction we observed between patients and controls was

lost upon inosine supplementation (Fig. 4I) confirming the

mild increase in mitochondrial ATP data (Fig. 4C). Inosine

supplementation significantly increased glycolytic capacity

and showed a trend for an increase in glycolytic flux

rates (Fig. 4G and H). Interestingly, we noticed a differen-

tial glycolytic flux response in Patient 183 after inosine

supplementation compared to Patients 78 and 201, which

when grouped together showed a significant increase in

glycolytic flux and glycolytic capacity rates (Fig. 4G and

H). This muted response in Patient 183 was also observed

when we analysed lactate production in the patient induced

astrocytes after inosine supplementation (Fig. 4J). Inosine

treatment increased lactate production in C9orf72 induced

astrocytes by �60%; however, this did not reach signifi-

cance as inosine treatment did not increase lactate levels in

Patient 183, whereas an increase in lactate production was

observed in Patients 78 and 201, which reached signifi-

cance when performing an unpaired t-test (P = 0.0185).

We also measured extracellular lactate levels after inosine

supplementation, which showed similar (patient-specific) re-

sults to the intracellular lactate levels but no overall signifi-

cance (data not shown). To assess whether inosine

supplementation was also bioenergetically beneficial in the

sporadic ALS induced astrocytes as well as C9orf72

induced astrocytes, we supplemented the induced astrocytes

with inosine and measured ATP output. As observed in the

C9orf72 induced astrocytes, inosine supplementation gen-

erally increased total ATP levels in a patient-specific

manner in the sporadic ALS induced astrocytes, which

reached significance in Patient sALS-12 (Supplementary

Fig. 6H). Patients sALS-12 and sALS-17 showed an in-

crease or a trend towards an increase in both mitochondrial

and glycolytic ATP output in the presence of inosine

(Supplementary Fig. 6I and J), while Patient sALS-9

showed no increase in glycolytic ATP (Supplementary Fig.

6J). The increase in cellular ATP levels in response to in-

osine supplementation was AMP-activated protein kinase

(AMPK) independent as supplementation did not affect

the level of phosphorylated AMPK protein in either fibro-

blasts or induced astrocytes (as assessed by western blot,

data not shown). Moreover, inosine supplementation did

not affect the levels of phosphofructokinase-1, (the rate-

limiting enzyme in glycolysis), pyruvate dehydrogenase

(PDH) and PDH kinase levels (PDK4) in induced

astrocytes.

An alternative pathway for inosine metabolism is conver-

sion to uric acid via xanthine (Fang et al., 2013). To assess

whether inosine supplementation in induced astrocytes acti-

vated this pathway, we measured uric acid levels in control

and C9orf72 induced astrocytes treated with 4mM inosine

for 24 h (Fig. 4K). Inosine supplementation significantly

increased uric acid levels in both control and patient-

derived induced astrocytes.

Pretreatment of induced astrocytes
with inosine leads to increased motor
neuron survival in co-culture

To assess whether the positive effect of inosine supplemen-

tation on the bioenergetic profile of induced astrocytes was

beneficial to neurons, induced astrocytes were treated with

inosine at varying concentrations in the presence of glucose

for 24 h prior to the addition of EGFP-labelled mouse

motor neurons. Survival of the neurons was assessed over

a 72-h period using a fluorescent readout on an IN Cell

Analyzer. In the presence of control induced astrocytes, 40–

50% of the motor neurons were alive after 72 h, with the

loss of motor neurons most likely caused by cellular mech-

anisms induced by the co-culturing of mouse neurons with

human astrocytes or perhaps species incompatibility at

induced astrocyte motor neuron contact sites. Typically,

and as reported previously (Meyer et al., 2014), C9orf72

induced astrocytes were less supportive to motor neurons

than control induced astrocytes, leading to 30–40% in-

crease in neuronal death after 72 h, compared to controls

(Fig. 5A). Inosine supplementation in both control and pa-

tient induced astrocytes led to a significant increase in

motor neuron survival in a dose-dependent manner

(Fig. 5A). However, as with both the lactate and glycolytic

flux assays, the level of motor neuron survival in inosine

was patient-specific (Fig. 5B–G). Patient 78 and 201 after

inosine supplementation each showed a unique dose profile,

shown independently in Fig. 5, while inosine treatment in

Patient 183 did not alter the level of toxicity towards motor

neurons. Inosine supplementation in the sporadic ALS

induced astrocytes led to a significant increase in motor

Figure 4 Continued

on mitochondrial ATP levels. (D) The effect of inosine supplementation on control induced astrocyte metabolic equilibrium. (E) The effect of

inosine supplementation on C9orf72 induced astrocyte metabolic equilibrium. (F) The effect of inosine supplementation on mitochondrial coupled

respiration. (G) The effect of inosine supplementation on glycolytic flux. (H) The effect of inosine supplementation on glycolytic capacity flux. (I)

The effect of inosine supplementation on spare respiratory capacity flux. (J) The effect of inosine supplementation on cellular lactate levels. (K)

The effect of inosine supplementation on cellular uric acid levels. Induced astrocytes (iAstrocytes) were supplemented with inosine for 24 h. Each

data point indicates one cell line performed once. All assays were performed on three controls and three patient astrocyte lines in triplicate. All

data were analysed by Kruskal Wallis analysis with a Dunn’s post-test. *P4 0.05, **P4 0.01, ***P4 0.001, ****P4 0.0001. Cons = controls;

Pats = C9orf72 patients; Glu = glucose; HG = high glucose (16mM).
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Figure 5 C9orf72 induced astrocyte inosine supplementation increases motor neuron survival in co-culture. Induced astrocytes

(iAstrocytes) were treated with 0.4–13.5mM inosine for 24 h prior to 72 h co-culture with EGFP motor neurons (MN). (A) Number of motor

neurons with axons after 72 h expressed as a percentage of the number alive at the start of the assay. (B–D) Number of motor neurons with

axons after 72 h expressed as a percentage of the number alive at the start of the assay for Patients 78, 183 and 201. (E–G) Representative images

of the motor neurons after 72 h in glucose (5mM) or glucose + inosine (4mM). All data were transformed Y = 1/Y and Y = Logit(Y) prior to

Kruskal Wallis analysis with a Dunn’s post-test and are presented with mean and standard deviation. *P4 0.05, **P4 0.01.
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neuron survival in Patients sALS-12 and sALS-17, again in

a patient-specific manner (Fig. 6). In common with Patient

183, inosine supplementation in Patient sALS-9 did not

lead to a significant increase in motor neuron survival

(Fig. 6A and B). However, as with Patient 183, inosine

did not increase glycolytic energy production in Patient

sALS-9 indicating a common non-response mechanism.

To assess whether ADA levels affected the induced astro-

cyte toxicity towards motor neurons, we correlated ADA

expression levels in C9orf72 and sporadic ALS induced

astrocytes with motor neuron survival in co-culture (Fig.

6G). Under glucose conditions, we found no positive cor-

relation. In the presence of inosine, however, we found a

positive correlation between induced astrocyte ADA levels

and motor neuron survival, which reached significance at

0.4 and 1.0mM inosine, (R2 = 0.895, P = 0.0160,

R2 = 0.860, P = 0.0280, respectively). When assessing the

effect of inosine supplementation on motor neurons

alone, supplementation had no effect on survival

(Supplementary Fig. 7A and B). Therefore, the inosine sup-

plementation-induced decrease in motor neuron toxicity ap-

peared to be primarily driven by astrocyte metabolism. This

was confirmed by assessing NADH production in the pres-

ence of inosine in mouse cortical neurons compared to

mouse cortical astrocytes (Supplementary Fig. 7C and D).

Mouse cortical neurons showed minimal NADH produc-

tion in the presence of inosine compared to glucose, while

mouse cortical astrocytes showed much higher NADH pro-

duction with inosine. Rat cortical neurons also showed

minimal NADH production in the presence of inosine com-

pared to glucose (Supplementary Fig. 7E).

Our co-culture results suggest that efficient metabolism of

endogenous adenosine to inosine is important for induced

astrocyte support of motor neurons and that stimulating

this pathway by supplementing with inosine may reduce

induced astrocyte-mediated toxicity. To assess whether

functional ADA plays a role in this toxic phenotype we

treated control induced astrocytes with pentostatin before

adding motor neurons to the co-culture. We found that in

the presence of adenosine (4mM), ADA-inhibited control

induced astrocytes become significantly more toxic towards

motor neurons, mimicking the levels we observed in the

ALS patients and reducing motor neuron survival by

�35% at 0.5 mM pentostatin (Fig. 7). This toxicity towards

motor neurons became evident at pentostatin concentra-

tions that were not toxic towards induced astrocytes

(0.05–0.5 mM, Figs 3D and 7B).

Discussion
Our phenotypic metabolic screening approach in patient

models of ALS has identified dysfunction in adenosine to

inosine hydrolytic deamination (Fig. 1). This was confirmed

by western blotting and RT-PCR showing lower levels of

ADA, the enzyme responsible for deamination (Fig. 2).

These findings have important implications for the role of

effective nucleoside metabolism in ALS. A defect in the

ability to metabolise adenosine could lead to accumulation

of adenosine both intracellularly and extracellularly in the

CNS culminating in enhanced neuronal toxicity. Higher

adenosine levels have been observed in ALS patient CSF

compared to controls (Yoshida et al., 1999). Our data sug-

gested that induced astrocytes from ALS patients were

more susceptible to adenosine-mediated cell loss compared

to controls, which could be mimicked by inhibiting ADA

activity in control induced astrocytes (Fig. 3).

Under physiological conditions, both astrocytes and neu-

rons release ATP, which functions as a key signalling mol-

ecule. ATP binds to purine receptors (P2XR and P2XY),

impacting on astrocyte, oligodendrocyte, microglia and

neuronal function, influencing the response to inflamma-

tion, calcium signalling and synaptic activity (Coco et al.,

2003; Larsson et al., 2012). However, under stress or dis-

ease pathology conditions, when neurons can lose their

structural integrity, ATP release increases significantly.

This activates microglia and astrocytes causing increased

astrogliosis and neuroinflammation, damage to oligo-

dendrocytes and neuronal toxicity (Rothstein et al.,

1996). ATP levels can be reduced by the action of ectonu-

cleotide-metabolizing enzymes, metabolising ATP to ADP,

AMP and then adenosine (Volonte et al., 2016).

Physiological extracellular adenosine levels range between

25–250 nM, which may only be sufficient to activate high-

affinity A1, A2a and A3 G-coupled receptors (A-Rs).

However under stress or disease pathology conditions,

ATP derived adenosine levels increase significantly and

can activate low affinity receptors (A2b) (Dunwiddie and

Masino, 2001). Outside the striatum, under physiological

conditions, A2a-Rs are expressed at low levels by neurons,

microglia and astrocytes. However, A2a-R expression in-

creases following brain insults (Svenningsson et al., 1999;

Pickel et al., 2006; Albasanz et al., 2008; Yu et al., 2008;

Ng et al., 2015). A2a-R expression increases astrocyte pro-

liferation and activation, reduces glutamate uptake and

stimulates calcium-dependent glutamate release. This loss

of glutamate clearance leads to neuronal stress via glutam-

ate-mediated excitotoxicity in ALS (Rothstein et al., 1996).

SNARE-dependent exocytosis of glutamate has been show

to contribute to astrocyte-mediated motor neuron toxicity

in the G93A SOD1 mouse model, which could be inhibited

by the overexpression of dominant-negative SNARE

(dnSNARE). This selective inhibition of exocytosis delayed

disease onset in the SOD1 mice (Kawamata et al., 2014).

However, SNARE-mediated astrocyte glutamate stimula-

tion of neurons is a hotly debated topic (Sloan and

Barres, 2014). Data generated to study gliotransmission

in transgenic dnSNARE mice were produced based on the

premise that dnSNARE expression was limited to astro-

cytes. However, more recent data have uncovered cortical

neuron expression of dnSNARE mice (Fujita et al., 2014),

which could have implications for how we believe astrocyte

adenosine regulates neuronal processes.
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Figure 6 Sporadic ALS induced astrocyte inosine supplementation increases motor neuron survival in co-culture. Induced

astrocytes were treated with 0.4–13.5mM inosine for 24 h prior to 72-h co-culture with EGFP motor neurons (MN). (A) Number of motor

neurons with axons after 72-h incubation with sporadic ALS-9 expressed as a percentage of the number alive at the start of the assay. (C) Number

of motor neurons with axons after 72-h incubation with sporadic ALS-12 expressed as a percentage of the number alive at the start of the assay.

(E) Number of motor neurons with axons after 72-h incubation with sporadic ALS-17 expressed as a percentage of the number alive at the start

of the assay. (B, D and F) Representative images of the motor neurons after 72 h in glucose or glucose plus inosine. All data were transformed

Y = 1/Y and Y = Logit(Y) prior to Kruskal Wallis analysis with a Dunn’s post-test and are presented with mean and standard deviation. *P4 0.05,

**P4 0.01, ***P4 0.001, ****P4 0.0001. (G) The effect of induced astrocyte ADA expression on motor neuron cell survival in the presence of

glucose or inosine. Pearson’s correlation analysis performed on the data, which is presented as the mean of cell survival with standard deviation.

For Pearson’s analysis results see Supplementary Table 3.
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An increase in spinal cord A2a-R levels has been

observed in the SOD1-G93A mice and in post-mortem

ALS samples (Ng et al., 2015). Contradictory studies

have been published however, suggesting that both

A2a-R antagonism and agonism are beneficial in

mouse models of ALS, reducing motor neuron toxicity

and delaying disease onset (Mojsilovic-Petrovic et al.,

2006; Impellizzeri et al., 2011; Komaki et al., 2012; Ng

et al., 2015). Blocking A2a-Rs would not primarily deal

with the large pool of potentially toxic extracellular ad-

enosine that may accumulate. Furthermore, due to bidir-

ectional nucleoside transporters, this pool of adenosine

could enter the cell and be reconverted back to ATP

through the action of adenosine kinase (ADK).

Historically, astrocytic ADK has been proposed to play

the key role in the metabolic reuptake of adenosine in the

adult brain (Pak et al., 1994; Studer et al., 2006; Ren

et al., 2007). However, in a model or state of neurode-

generation, intracellular ADK metabolism of adenosine,

would propagate a cycle of increasing toxicity as more

intracellular ATP would be formed, released and con-

verted back into adenosine (Boison et al., 2010). An al-

ternative route of metabolism for adenosine is

deamination to inosine by ADA. If ADA levels were

reduced, too little adenosine would be removed from

the cycle and this could lead to accumulation of toxic

levels of adenosine over time.

In this present study, inhibiting ADA activity in control

induced astrocytes by pentostatin led to decreased adeno-

sine metabolism (Fig. 3F) and increased motor neuron

death in co-culture (Fig. 7). This suggests that ADA levels

and efficient adenosine to inosine deamination in the CNS

may be important for astrocyte-motor neuron cross talk

and that disruption of this process in astrocytes may in-

crease motor neuron death. The fact that we have obtained

a motor neuron death phenotype independently of a gene

mutation has important implications not only for genetic

models of ALS, but also sporadic ALS where we observe a

similar loss of ADA.

ADA is a ubiquitous enzyme found both intracellularly

and extracellularly, playing a role in purine homeostasis

(Lindley and Pisoni, 1993). There are two isoforms of

ADA and multiple mutations have been described that

lead to disease (Whitmore and Gaspar, 2016). In cases of

ADA loss, patients suffer from severe combined immuno-

deficiency due to a defect in T cell development. However,

a clinical spectrum exists, including adult onset combined

immunodeficiency and partial ADA deficiency. In general,

enzyme activity in most identified ADA pathogenic mis-

sense and splice site variants correlate with a metabolic

phenotype (Whitmore and Gaspar, 2016).

The role of ADA in ALS is unclear. In the SOD1 mouse

model CD4+ /CD25+ /FoxP3 lymphocytes produce

increased IL-4 early in the disease course, which in turn

induces M2 protective microglia, indicating that T-cell

deficiency could influence disease progression rates

(Beers et al., 2008; Chiu et al., 2008; Liao et al., 2012).

Furthermore, oestradiol, which has been shown to activate

ADA mRNA in breast cancer cells (Xie et al., 2001) plays a

protective role in ALS in pre-menopausal women (Klemann

et al., 2018) potentially via anti-inflammatory and neuronal

protection mechanisms (Heitzer et al., 2017). Our results

suggest that loss of ADA activity in low levels of adenosine

is not sufficient to cause toxicity. However, as soon as ad-

enosine levels rise, the astrocytes become susceptible

(Fig. 3). This may suggest that lower ADA levels in patients

only become an issue in the presence of neuronal stress or

disease pathology. ADA levels may however; affect disease

progression rates in patients, as higher levels would poten-

tially confer greater protection from adenosine-mediated

toxicity in the CNS.

In this study, inosine was not toxic and in four of six

patient lines (as well as all control lines) significantly

reduced the induced astrocyte-mediated toxicity towards

motor neurons. Inosine production via effective ADA ex-

pression has multiple cellular benefits. Production of uric

acid from inosine via xanthine (Fang et al., 2013) may

confer neuroprotective effects including as an antioxidant

(Chen et al., 2012, 2013) with some studies pointing to-

wards a positive relationship between serum uric acid con-

centrations and ALS disease progression/survival rates in

males (Paganoni et al., 2012; Oh et al., 2015). We observed

an increase in uric acid levels in induced astrocytes supple-

mented with inosine (Fig. 4K), including those from Patient

183, which showed no motor neuron survival increase.

This indicates that the primary mechanism of reduced

induced astrocyte-mediated toxicity towards motor

neuron is not through increased uric acid production.

Inosine can also be converted to ribose-1-phosphate by nu-

cleoside phosphorylase, which feeds into the glycolytic

pathway via the pentose phosphate pathway, producing

NADH, ATP and subsequently lactate (Jurkowitz et al.,

1998; Balestri et al., 2007). Lower induced astrocyte

ADA levels may reduce the level of inosine in the cells

leading to a decrease in the carbon flow into glycolysis,

which may be crucial in the presence of an ATP deficit.

Therefore, the decrease in induced astrocyte-mediated

motor neuron toxicity we observed with inosine supple-

mentation is likely due to the increased glycolytic capacity

observed in induced astrocytes that perhaps leads to

increased lactate production (Fig. 4H–J). Lactate deficiency

has been linked to motor neuron toxicity in previous stu-

dies (Ferraiuolo et al., 2011a, 2016).

Our metabolic screening approach has identified further

points in the metabolic pathway in these patient-derived

cells where dysfunction is evident (Fig. 1, Supplementary

Figs 4 and 6) and these pathways will be investigated in

detail in future work. It is evident from our data that the

level of dysfunction is patient specific as would be expected

in patient-derived cell lines with different genetic back-

grounds, taken at different points during disease progres-

sion (Allen et al., 2017). Our data suggest defects in

pyruvate, glycogen, fructose and adenosine metabolism.

Defects in pyruvate and glycogen metabolism have been
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Figure 7 Inhibition of adenosine deaminase with pentostatin increases control induced astrocyte mediated toxicity towards

motor neurons in the presence of adenosine. (A) Number of motor neurons (MN) with axons alive after 48 h, expressed as a percentage of

the number alive at the start of the assay. (B) Number of motor neurons with axons at the start of the assay, expressed as a percentage of the

glucose control. (C) Representative images of the three controls tested in triplicate. Control induced astrocytes were treated with pentostatin for

18 h prior to incubation with 4mM adenosine for 24 h and then addition of EGFP motor neurons. All data were transformed Y = 1/Y and

Y = Logit(Y) prior to Kruskal Wallis analysis with a Dunn’s post-test and are presented with mean and standard deviation. *P4 0.05, **P4 0.01,

***P4 0.001.
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observed previously in ALS models (Wiedemann et al.,

1998; Dodge et al., 2013; Valbuena et al., 2016; Tefera

and Borges, 2018), inferring that common mechanisms of

metabolic dysfunction potentially exist between C9orf72-

HRE models of ALS and other genetic subtypes, as well

as sporadic ALS models. Moreover, we can use the data

generated to offer an explanation as to why one C9orf72

patient and one sporadic ALS patient did not respond in

the same way to inosine supplementation as in the other

four patients. C9orf72 Patient 183 showed the lowest level

of NADH-production in the presence of pyruvic acid

(Supplementary Fig. 4H), significantly lower than Patient

78. This was confirmed functionally, as no significant in-

crease in glycolytic flux or lactate production was observed

with this patient after inosine supplementation, which feeds

into this pathway (Fig. 4G, H and J). Similar results were

observed with Patient sALS-9, although it did not have the

lowest NADH production in pyruvic acid (comparable to

Patient sALS-17 but significantly lower than Patient sALS-

12, Supplementary Fig. 6F), it had the lowest NADH pro-

duction in the presence of lactic acid (Supplementary Fig.

6G). NADH production in Patient sALS-9 was signifi-

cantly lower than Patient sALS-12 and 65% lower than

Patient sALS-17 at the end-point of the assay. Furthermore,

Patient sALS-9 showed no glycolytic ATP response to in-

osine supplementation (Supplementary Fig. 6J).

Our data have uncovered a common pathway of dysfunc-

tion that exists between C9orf72 and sporadic ALS pa-

tients. The mechanism that triggers loss of ADA and the

disease stage at which the defect occurs are unclear at this

point. One possibility is that the level of ADA in patients

may be protective and although no obvious correlation was

observed between ADA levels and C9orf72 expansion size

or clinical characteristics, our data suggest a correlation

between ADA level and extent of adenosine mediated tox-

icity in our six C9orf72 and sporadic ALS patients (Fig.

7G). Furthermore, we observed a positive correlation be-

tween induced astrocyte ADA levels and extent of motor

neuron survival in the presence of inosine (Fig. 6G). Purine

feedback mechanisms have previously been reported in

cancer cells with both inosine and hypoxanthine being re-

converted to inosine monophosphate and eventually adeno-

sine via AMP (Tolstikov et al., 2014). A higher level of

ADA could therefore feed into this system, producing

more inosine, which could be shuttled into the ribose path-

way. Work is underway in our laboratory to further inves-

tigate the role of ADA in ALS.
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