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Abstract 

 

Icefishes characteristically lack the oxygen-binding protein haemoglobin and therefore 

are especially reliant on cardiovascular regulation to augment oxygen transport when 

oxygen demand increases, such as during activity and warming. Using both in vivo and in 

vitro experiments, we evaluated the roles for adrenaline and adenosine, two well-

established cardio- and vasoactive molecules, in regulating the cardiovascular system of 

the blackfin icefish, Chaenocephalus aceratus. Despite increasing cardiac contractility 

(increasing twitch force and contraction kinetics in isometric myocardial strip 

preparations) and accelerating heart rate (H), adrenaline (5 nmol kg-1 bolus intra-arterial 

injection) did not significantly increase cardiac output (Qǚ ) in vivo because it elicited a 

large decrease in vascular conductance (Gsys). In contrast, and despite preliminary data 

suggesting a direct negative inotropic effect of adenosine on isolated atria and little effect 

on isolated ventricle strips, adenosine (500 nmol kg-1) generated a large increase in Qǚ  by 

increasing Gsys, a change reminiscent of that previously reported during both acute 

warming and invoked activity. Our data thus illustrate how Qǚ  in C. aceratus may be much 

more dependent on peripheral control of vasomotor tone than direct regulation of the 

heart. 
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Introduction 

 

Icefishes (Family: Channichthyidae) distinctively lack the expression of haemoglobin ȋRuudǡ ͳͻͷͶǢ Sidell and OǯBrienǡ ʹͲͲȌ and the high values reported for cardiac output 

(Qǚ ) are thought of as a compensatory mechanism for the associated ~10-fold reduction 

in arterial carrying capacity for oxygen. However, we have recently demonstrated, with 

direct measurements of ventral aortic blood flow in the blackfin icefish Chaenocephalus 

aceratus, that routine Qǚ  (26.6 ml min-1 kg-1; Joyce et al., 2018a) is much lower than the 

majority of previous estimates in this species (60 Ȃ 150 ml min-1 kg-1; Hemmingsen et al., 

1972; Holeton, 1970), which means that icefishes have a considerable scope in which to 

increase Qǚ . Indeed, during acute warming (0 to 8oC) and moderate activity, the blackfin 

icefish substantially increased Qǚ  up to a maximum of 86.3 ml min-1 kg-1 (Joyce et al., 

2018a). This increase was also associated with an up to five-fold increase in systemic 

vascular conductance (Gsys) from 15 to 75 ml kPaǦͳ minǦͳ kgǦͳ (i.e., systemic vascular 

resistance, Rsys, decreased)Ǥ In the absence of haemoglobin, these large cardiovascular 

changes are crucial to augment oxygen transport when oxygen consumption increases 

(Joyce et al., 2018a) because it is not possible to greatly change the arterio-venous oxygen 

difference, nor is it possible to increase haematocrit, as occurs prominently in other 

Antarctic fishes (Axelsson, 2005; Franklin et al., 1993; Joyce et al., accepted). The aim of 

the present study was to address the mechanisms responsible for cardiovascular 

regulation in icefish. We chiefly focussed on adrenaline and adenosine, two well-

established cardio- and vasoactive molecules, as potential mediators of the 

cardiovascular response to stressors such as warming and activity. 

 

The importance of adrenergic modulation of cardiovascular performance in Antarctic 

fishes remains ambiguous. Plasma catecholamines (i.e., adrenaline and noradrenaline) 

are not elevated during moderate exercise in C. aceratus, or the red-blooded species 

Notothenia coriiceps and Trematomus bernacchii (Davison et al., 1995; Egginton, 1997). 

However, in two red-blooded Nototheniids, Pagothenia borchgrevinki and Trematomus 

bernacchii, plasma noradrenaline and adrenaline increased in response to severe 

hyperthermia (10oC; Forster et al., 1998). Likewise, Whiteley and Egginton (1999) 

observed high catecholamine levels in both red- and white-blooded Antarctic fishes 

immediately following capture by trawling, suggesting adrenergic control may be 



recruited in extremis (Whiteley and Egginton, 1999). This study nonetheless revealed a 

low capacity for catecholamines synthesis in Antarctic fishes (Whiteley and Egginton, 

1999). 

 

Catecholamines characteristically increase heart rate (fH) and cardiac contractility in 

teleost fishes via direct stimulation of cardiac Ⱦ-adrenoceptors, either via sympathetic 

autonomic innervation of the heart or humoral release into the circulation (Farrell and 

Smith, 2017). Nevertheless, in in situ perfused hearts, maximum adrenergic stimulation 

had little or no effect on maximum Qǚ ǡ VS or fH in icefish (C. aceratus and Chionodraco 

rastrospinosus) (Egginton et al., submitted). Skov et al. (2009) revealed a positive 

inotropic effect of adrenaline in C. aceratus, in isometric ventricular strip preparations, 

while atrial preparations were insensitive to adrenaline (Skov et al., 2009). 

Catecholamines are also potent modulators of vasomotor tone and decrease Gsys,, but 

typically increase branchial vascular conductance (Gbranch) in teleost fishes (Pettersson 

and Nilsson, 1980; Sandblom and Gräns, 2017; Wood, 1974), offering the potential for 

dynamic cardiorespiratory coupling. 

 

The capability of the cardiovascular system to respond to adrenergic stimulation has 

largely been elucidated by pharmacological interventions. Indeed, adrenaline injection in 

P. borchgrevinki elevated Qǚ , exclusively by increasing stroke volume (VS) without 

changing fH (Axelsson et al., 1994; Sandblom et al., 2012). Because ventral (Pva) and 

dorsal (Pda) aortic pressure increased in proportion to the increase in Qǚ , it was revealed 

that Gsys did not change and branchial conductance (Gbranch) increased only modestly 

(Axelsson et al., 1994; Sandblom et al., 2012). In T. bernacchii, adrenaline injection 

increased both VS and fH, as well as total vascular resistance (Rtot, the sum of Rsys and 

Rbranch) (Axelsson et al., 1992). In C. aceratus, noradrenaline injection increased Pda 

without affecting fH (Egginton, 1997), but as this response was not measured 

simultaneously with blood flow the effects of adrenergic stimulation on Qǚ  and vascular 

conductance in vivo remain unknown.  

 

Adenosine is also capable of exerting diverse cardiovascular effects when it is released 

from cells as oxygen demand increases or oxygen supply decrease (Mubagwa et al., 

1996), such as may occur during exercise and/or warming. In this way, Qǚ  is controlled 



peripherally rather than centrally by the autonomic nervous system. In fishes, including 

the red-blooded Antarctic nototheniod P. borchgrevinki, adenosine injection slowed the 

heart, increased Gsys and decreased Gbranch (Sundin et al., 1999; Sundin and Nilsson, 1996). 

In both N. coriiceps and C. aceratus, exposure to high temperature (critical thermal 

maximum; CTmax) resulted in decreased cardiac ATP and increased cardiac ADP levels ȋOǯBrien et alǤǡ ʹͲͳͺȌ, which is a signature for adenosine release (Mugabwa et al., 1996), 

making adenosine a potential driver of the increased Gsys observed during warming in C. 

aceratus (Joyce et al., 2018a). In the present study, we used a pharmacological approach 

to provide insight into the adrenergic and adenosinergic control of the cardiovascular 

system in C. aceratus, using a combination of in vivo and in vitro experiments.  

 

 

Materials and Methods 

 

Experimental animals 

 

Adult Chaenocephalus aceratus of both sexes were captured at 100-200 m depth using an 

otter trawl deployed from the ARSV Laurence M. Gould in Dallmann Bay ȋͶιͳͲԢSǡ ʹι͵ͷԢWȌ and off the south-western shore of Low )sland ȋ͵ιʹͶǯSǡ ʹιͳͲǯWȌ. The fish 

were held on the ship in aerated sea water at ambient temperature for up to 2 days during 

transportation to Palmer Station, Antarctica. Full details of animal husbandry are 

described elsewhere (Joyce et al., 2018a). Briefly, the fish were maintained in 700 or 1700 

L tanks in aerated seawater at 0 ± 1oC. The fish did not feed in captivity. The fish were 

allowed to recover from transportation for at least 72 hours prior to experiments. All 

experiments were approved and permitted by the University of Alaska, Fairbanks 

Institutional Animal Use and Care Committee (570217-9). 

 

The in vivo data reported here were acquired from 12 fish (body mass: 0.87 ± 0.18 kg, 

mean ± SD) instrumented for our study on the cardiovascular effects of activity and 

warming (Joyce et al., 2018a). All of the data in the present manuscript were acquired 

approximately 12 h (overnight) after a heating protocol, during which environmental 

temperature had been raised to 8oC (i.e., substantially lower than CTmax: 12 Ȃ 14 oC (Beers and Sidell ʹͲͳͳǢ Joyce et alǤ ʹͲͳͺaǢ OǯBrien et alǤ ʹͲͳͺȌȌ.  A rapid cooling was used to 



restore ambient water temperature to 0-1oC within 1-2 h.  All cardiovascular variables 

stabilized at or close to baseline values overnight, suggesting the fish were fully 

recovered before the present study commenced.  

 

In vivo pharmacological study 

 

Surgery and Instrumentation for the in vivo measurements 

 

The surgery was described previously in detail (Joyce et al., 2018a). Briefly, fishes were 

anaesthetised in cold (0±1oC) seawater containing MS-222 (140 mg lΫ1) and maintained 

in an anaesthetized state (gills irrigated with 70 mg lΫ1 MS-222) on a surgery table. 

Surgery was performed in a cold room at ~2-3°C. A Transonic flow probe (4PSB or 

2.5PSL) was placed around the ventral aorta to measure total cardiac output (Qǚ ). The 

efferent branchial artery was occlusively cannulated using PE-50 with a 2F polyurethane 

tip to measure dorsal aortic pressure (Pda) and, in some of the fish, the afferent branchial 

artery in the same gill arch was cannulated using a PE-50 cannula for the measurement 

ventral aortic pressure (Pva).  The cannulae and leads from the flow probe were sutured 

to the skin and the ventral incision was closed with 3-0 surgical silk. Post-surgery, the 

gills were irrigated with fresh seawater until voluntary ventilation resumed and each fish 

was then placed individually in a triangular 12.4 l respirometer. 

 

The flow probe was connected to a Transonic flow meter (T402; Transonic Systems, 

USA). The cannulae were attached to pressure transducers (Medizintechnik, Kirchseeon, 

Germany), which were calibrated against a static water column before every experiment, 

and output signals pre-amplified by a Senselab 4CHAMP amplifier, (Somedic sales, Hörby, 

Sweden). The flow meter and 4CHAMP amplifier were connected to a PowerLab data 

acquisition system (ADInstruments, Castel Hill, Australia), interfaced to a computer 

running LabChart Pro (version 7; ADInstruments, Bella Vista, Australia).  

 

Pharmacological Protocol 

 

All experiments were conducted on resting fish at ambient temperature (0-1oC). 

Adrenaline (5 nmol kg-1; equivalent to that previously used in bald rockcod (P. 



borchgrevinki) by Sandblom et al. (2012) and less than the 10 nmol kg-1 used by Axelsson 

et al. (1994) also in P. borchgrevinki) was injected into the dorsal aorta (n=8). Once all 

parameters had returned to baseline levels, adenosine (500 nmol kg-1; intermediate 

between levels previously used in epaulette sharks (Hemiscyllium ocellatum; Stensløkken 

et al., 2004) and rainbow trout (Oncorhynchus mykiss; Sundin and Nilsson, 1996), both 1 

µmol kg-1; and bald rockcod (P. borchgrevinki; 10 nmol kg-1, Sundin et al., 1999) was 

likewise injected into the dorsal aorta (n=8). Once all cardiovascular parameters 

returned to baseline levels, subsequently (or in some cases independently in another 

cohort of resting fish) the icefish were treated with the muscarinic cholinergic antagonist 

atropine (n=12). When all parameters had stabilised ~25 min post-injection, the 

atropinised animals were subsequently treated with the Ⱦ-adrenergic antagonists sotalol 

(N=8) or propranolol (n=4). We opted to use both Ⱦ-adrenergic antagonists, in different 

animals, to mitigate for their possible respective side effects (e.g., Altimiras et al., 1997). 

All antagonists were administered as 2 mg kg-1 boluses injected into the dorsal aorta 

(Altimiras et al., 1997; Axelsson et al., 1992; Campbell et al., 2009). The adenosine but not 

the adrenaline injection was repeated after double-autonomic blockade (n=7).   

Calculations  

Stroke volume (VS) was calculated as: 

VS = Qǚ  / fH  

 

Given that central venous pressure is negligible in C. aceratus (Joyce et al., 2018a), we 

assumed it to be zero in the calculation of systemic conductance (Gsys): 

Gsys= Qǚ  / Pda  

 

Branchial conductance (Gbranch) was calculated as: 

Gbranch = Qǚ  / Pva - Pda 

 

Autonomic tones on fH were calculated using the equations provided by Altimiras et al. 

(1997), using R-R interval (i.e., 60/fH): 

Cholinergic tone (%) = ((R-R)cont Ȃ (R-R)atr) / (R-R)db)*100 



Adrenergic tone (%) = ((R-R)db Ȃ (R-R)atr) / (R-R)db)*100 

Where: 

(R-R)cont = control R-R interval 

(R-R)atr = R-R interval after cholinergic blockade with atropine 

(R-R)db = R-R interval after double autonomic blockade (atropine and propranolol or 

sotalol) 

 

In vitro myocardial preparations 

 

The in vitro heart strip data used 5 additional C. aceratus (body mass: 1.53 ± 1.54 kg, 

mean ± SD) that were killed by a sharp blow to the head followed by pithing before the 

heart was dissected. Excised hearts were placed in ice-cold physiological saline 

(composed of (mM): NaCl (250), KCl (2.5), MgCl2 (0.9), CaCl2 (2.5), TES acid (3.1), TES 

sodium salt (6.1), glucose (5.6), pH 7.95-8) (Egginton et al. submitted) and carefully 

dissected. The saline solution was based on that previously published for marine fishes 

(Farrell et al., 2013) and modified to allow for the higher Na+ concentration that 

characterises Antarctic teleosts (Egginton, 1994). Each fish provided one atrial strip 

(length: 9.7 ± 2.6 mm; mass 32.6 ± 22.4 mg, mean ± SD); also included are preliminary 

data from one ventricular strip preparation (length: 13.5 mm; mass 29.3 mg). Each strip 

was vertically suspended between a hook and metal rod attached to a force transducer 

(model P/N 730; Somedic SenseLab AB, Hörby, Sweden) using 4/0 surgical silk. The 

signal from the force transducer was preamplified using a 4CHAMP amplifier, (Somedic 

sales, Hörby, Sweden) and processed by a PowerLab data acquisition system and 

LabChart Pro v.7 (ADInstruments, Bella Vista, Australia).  The preparations were 

immersed in 10 ml physiological saline in water-jacketed organ baths maintained at 1oC 

for 10 min before stimulation started, then stabilised for 60 min at low tension before 

being stretched, over a second period of 60 min, to produce maximum force. The 

preparations were initially stimulated at 0.2 Hz with 15 ms pulses at 150% the 

threshold voltage required to elicit contraction (50 Ȃ 100 V) using a Grass S9 stimulator 

(Quincy, MA, USA).  



During the experimental protocol, we performed a force-frequency trial, increasing 

stimulation frequency from 0.2 to 0.5 Hz, thus covering most of the in vivo fH range for 

this species. The preparations were then exposed to a saturating concentration of 

adrenaline bitartrate (5 µM), which was given 10 min to take full effect, before another 

force frequency trial. This adrenaline dose exceeded the plasma concentration invoked 

in our in vivo investigation but was chosen to stimulate a maximum response in vitro. A 

preliminary experiment using one atrial and one ventricular strip preparation investigated the effects of adenosine ȋͳͲͲ ɊMȌ  (Aho and Vornanen, 2002) at the end of 

the adrenaline protocol (i.e., still in the presence of adrenaline) to provide illustrative 

data until a dedicated study can be performed. 

 

Statistical Analysis 

For the in vivo study, all cardiovascular parameters were analysed in 20-s blocks 

immediately before and following the injections of adrenaline and adenosine. The effects 

of atropine, sotalol and propranolol (Ⱦ-adrenergic blockade) were given 20 min to take 

full effect. A one-way ANOVA was used to investigate the cardiovascular effects of 

adrenaline and adenosine (both before and after double blockadeȌ over timeǤ Dunnettǯs 
multiple comparison post-hoc test was used to reveal significant changes from the pre-

injection period (60 s prior to recording). Because adrenaline elicited complex 

interactions between fH and VS, linear regressions were used to investigate the 

relationship between how fH and VS changed (relative to pre-injection values) at 20-s 

intervals for the period 100 s after an adrenaline infusion. A repeated-measured one-way 

ANOVA and Tukeyǯs post-hoc test was also used to compare cardiovascular parameters 

in control conditions, following muscarinic receptor blockade and following double 

autonomic blockade. An unpaired t-test was used to investigate differences in Ⱦ-

adrenergic tone achieved with propranolol and with sotalol. 

 

For the in vitro experiments, contractile performance was analysed using twitch force, 

time to peak, maximum rate of contraction and the maximum rate of relaxation with the 

LabChart Pro Peak Analysis plug-in. Forces were normalised to cross-sectional area 

(assuming a density of 1.0 mg mm-3 and uniform thickness of the strips). A two-way 



ANOVA, followed by a Sidakǯs post-hoc test, investigated the effects of adrenaline and 

frequency on contractile parameters.  

 

Statistical analysis was performed with GraphPad Prism (v. 7.0d). Statistical significance 

was assigned when P ζ ͲǤͲͷ and data are presented as means ά sǤeǤm, unless stated 

otherwise. 

 

 

Results 

 

In vivo effects of adrenaline  

 

The mean cardiovascular changes in response to adrenaline are presented in Figure 1. Qǚ  

initially decreased from 34.4 to 26.2 ml min-1 kg-1 but quickly recovered to above 42 ml 

min-1 kg-1, although this delayed increase was not significantly higher than pre-treatment 

(Fig. 1a). Neither fH (Fig. 1b) or VS (Fig. 1c) was solely responsible for the initial decrease 

in Qǚ . Because both Pda and Pva increased (Fig. 1d) with the decrease in Qǚ , the decrease in 

fH was most likely a hypertensive bradycardia baroreflex. The most typical response to 

adrenaline was transient bradycardia (Fig. 2a), although in some cases this consisted of 

only occasional prolonged beats (Fig. 2b), in others it lasted for several minutes (Fig. 2c). 

Consequently, mean fH did not significantly change for the initial few minutes. The overall 

cardiovascular response was also influenced by VS, which tended to decrease with 

increasing cardiac afterload (i.e., an increase in Pva), with fH and VS changing reciprocally. Thereforeǡ to quantify this interactionǡ we present the relationship between ο fH and ο VS 

over the first 100 s following an adrenaline injection (Fig. 3). In fish displaying a strong 

bradycardia, VS did not significantly decrease, i.e., VS was presumably compensated by an 

increase in cardiac filling time. Subsequently, a tachycardia developed (likely a direct 

action of adrenaline) and fH maximally reached 12.1 beats min-1, greater than the control 

value of 8.8 beats min-1 (P<0.05). Adrenaline significantly decreased Gsys from 16.9 to 

<10.0 ml kPaǦͳ minǦͳ kgǦͳǡ without affecting Gbranch, thereby indicating systemic vasoconstriction (Fig. 1). 

 

In vivo effects of adenosine before and after autonomic blockade 



 

Adenosine injection significantly decreased Pda and Pva, and significantly increased Qǚ  and 

Gsys (Figs. 4 and 5), while Gbranch was unchanged. Qǚ  peaked at 65.2 ml min-1 kg-1 while Gsys 

reached 64.6 ml kPaǦͳ minǦͳ kgǦͳ.  fH exhibited a delayed, but large increase from 8.3 to 14.7 

beats min-1 (P<0.05), a response that was abolished by double autonomic blockade, 

which suggested that this tachycardia was likely a hypotensive baroreflex exerted 

through withdrawal of vagal tone and/or sympathetic drive. Indeed, injection of 

adenosine after double blockade elicited a small but significant bradycardia (Fig. 4d). 

 

Muscarinic blockade (atropine injection) increased Qǚ  through an increase in fH despite a 

modest decrease in VS (Table 1). Pda and Pva increased in proportion to Qǚ , demonstrating 

that Gsys was unaffected by muscarinic blockade. In contrast, Gbranch increased 

substantially in 4 out of 5 fish following muscarinic blockade (in two fish it doubled, but 

in one animal there was a small decrease, thus it was statistically unchanged overall). After atropinisationǡ Ⱦ-adrenergic blockade significantly decreased fH and increased VS 

but had no other effects (Table 1), supporting the earlier suggestion that an adrenaline 

injection could have a direct (but slowed) chronotropic cardiac effect. 

 

Cholinergic tone was calculated to be 103.0 ± 10.3 % and adrenergic tone 19.5 ± 1.0 %. 

There was no significant difference between adrenergic tonus calculated using either 

sotalol or propranolol (P=0.70). 

 

In vitro effects stimulation frequency, adrenaline and adenosine in atrial preparations 

 

Increasing stimulation frequency in atrial preparations revealed a negative force-

frequency effect (Fig. 6A), shorter time-to-peak force (Fig. 6B) and a slowing of maximum 

contractile kinetics (Fig. 6C and D) (P<0.05). Adrenaline significantly (P<0.05) increased 

maximum isometric force by approximately 30% (Fig. 6A), a positive inotropic effect that 

reached statistical significance only at 0.2, 0.3 and 0.4 Hz. Adrenaline decreased (P<0.05) 

time-to-peak only at 0.3 Hz (Fig. 6B) but increased the maximum rate of contraction at all 

frequencies (Fig. 6C) (P<0.05). Adrenaline also invoked a significant (P<0.05) positive 

lusitropic effect at 0.2 and 0.3 Hz (Fig. 6D).  

 



The preliminary data for adenosine on one atrial strip revealed a clear 50% decrease in 

maximum isometric force at all frequencies (Fig. 7A) but the ventricular strip did not 

respond to adenosine (Fig. 7B). 

 

Discussion 

 

The effects of adrenaline 

 

The role of catecholamines in the regulation of the cardiovascular system in 

notothenioids, including icefishes, has proven controversial (Egginton, 1997; Skov et al., 

2009; Whiteley and Egginton, 1999), in part because plasma catecholamine levels are 

normally unchanged during the stress associated with exercise (Egginton, 1997), unlike 

the more typical teleostean response (Reid et al., 1998). Nevertheless, plasma 

catecholamines can increase under extreme conditions, such as following capture by 

trawling (Whiteley and Egginton, 1999). Therefore, to provide further insight into the 

likely functional relevance of circulating catecholamines, our pharmacological study 

investigated the effects of adrenaline on the cardiovascular system of C. aceratus.   

 An Ƚ-adrenoceptor-mediated vasoconstriction of the systemic circulation is a well-

established mechanism for regulating Gsys and central arterial blood pressure in fishes 

(Farrell, 1981; Wahlqvist, 1980; Wood, 1976; Wood and Shelton, 1975), including in 

Antarctic notothenioids (Sandblom et al., 2010, 2009). Thus, the immediate increase in 

both Pda and Pva as a result of a fall in Gsys (with no change in Gbranch) when adrenaline was 

injected into the dorsal aorta of C. aceratus is consistent with such a mechanism. Indeed, 

the hypertensive response to adrenaline is also in accordance with previous brief reports 

for C. aceratus (Egginton, 1997; Hemmingsen et al., 1972). Nevertheless, the 

hypertension in C. aceratus was considerably more pronounced than that reported in P. 

borchgrevinki (Axelsson et al., 1994; Sandblom et al., 2012), but more akin to that in T. 

bernacchii (Axelsson et al., 1992), despite similar doses of adrenaline being used in all 

three studies.  This increase in arterial blood pressure with adrenaline injections and the 

well-established barostatic reflex in fishes (Jones and Milsom, 1982; Randall and Stevens, 

1967; Stevens et al., 1972) helps with our interpretation of the variable cardiac responses 

of C. aceratus to an injection of adrenaline. 



 

A hypertensive bradycardia following adrenaline injection is typical of temperate fish 

(Helgason and Nilsson, 1973; Stevens et al., 1972; Wood and Shelton, 1980), although it 

was absent in the Antarctic notothenioids P. borchgrevinki and T. bernacchii, despite the 

fact that the former does develop bradycardia in response to the hypertension elicited by 

angiotensin (Axelsson et al., 1992; 1994). In C. aceratus, we observed a biphasic response 

to adrenaline, consisting of an initial decrease in Qǚ  followed by a recovery that matched 

or in some cases exceeded baseline conditions. The initial decline in Qǚ  was due to a 

combination of hypertensive bradycardia and a direct decrease in VS (due to increased 

afterload). However, in animals with a pronounced bradycardia, the increased cardiac 

filling time compensated for the increase in afterload, meaning that VS was maintained 

(Fig. 3). In Figure 3 the lines of best fit always intersect the x-axis at negative VS, 

confirming that in the theoretical absence of chronotropic changes, the primary response 

to the increase in afterload is a decrease in VS. This is consistent with the results of 

perfused heart studies that have demonstrated that icefish hearts are exceptionally 

sensitive to afterload (Egginton et al., submitted; Acierno et al., 1997; Tota et al., 1991).  

 

The delayed recovery in Qǚ  we observed was probably attributable to the slowly 

developing positive inotropic (and chronotropic) action of adrenaline, which took 5-10 

minutes to reach maximal effect in the in vitro cardiac strip preparations. The vascular 

response (increase in Pda and Pva) may also have been quicker to develop because the 

adrenaline bolus was injected into the dorsal aorta and hence perfused the systemic 

circulation before reaching the heart. The positive chronotropic action we observed 

contrasted with the finding that maximum adrenergic stimulation did not increase fH in 

perfused C. aceratus hearts (Egginton et al., submitted). However, this earlier work 

required hearts to be perfused with a relatively high tonic adrenaline concentration 

during control conditions (50 nM), which may have saturated the sino-atrial Ⱦ-

adrenoceptors before the effects of additional adrenaline were investigated.  

 

Skov et al. (2009) reported no effect of stimulation frequency or adrenaline treatment on 

contractile performance in C. aceratus atria, although this was not supported by the 

present data. This is remarkable because most previous investigations on fish atrial 

preparations have revealed clear positive inotropic effects of adrenergic stimulation 



(Fløysand and Helle, 1994; Gesser, 1996; Keen et al., 1992; Lennard and Huddart, 1992; 

Meghji and Burnstock, 1984). Given the important role that atria have in filling the fish 

ventricle (Farrell, 1991), we re-evaluated the effect of adrenaline on C. aceratus atrial 

tissue.  In contrast to Skov and colleagues, we observed a clear negative force-frequency 

effect and positive inotropic effect of adrenaline. The discrepancy may be ascribed to the 

higher concentration used in the present study (5 as opposed to 1 µM), which 

unequivocally demonstrated that adrenaline has the potential to modulate atrial 

contractility in this species. Plasma catecholamines after trawling have not been 

measured in C. aceratus, but in another icefish, Champsocephalus gunnari, total plasma 

catecholamine concentration (noradrenaline and adrenaline) slightly exceeded 1 µmol l-

1 (adrenaline: 826 nmol l-1, noradrenaline 238 nmol l-1), and in another notothenioid 

(Dissostichus mawsoni), reached even higher levels (adrenaline: 2601 nmol l-1, 

noradrenaline 841 nmol l-1) (Whiteley and Egginton, 1999), suggesting that 1 µM may not 

have been high enough to represent the physiological extreme. 

 

The effects of adenosine 

 

In fish (Sundin et al., 1999; Sundin and Nilsson, 1996), as well as mammals (Mubagwa et 

al., 1996) and reptiles (Joyce and Wang, 2014), adenosine typically dilates the systemic 

vasculature. In C. aceratus, we confirmed that adenosine elicited a large peripheral 

vasodilatation, as evidenced by the several-fold increase in Gsys following injection. 

Quantitatively, the effect of adenosine on the systemic vasculature was similar to that in 

P. borchgrevinki, although we did not observe an effect on Gbranch, in contrast to the 

decreased Gbranch seen in P. borchgrevinki (Sundin et al., 1999).  

 

Most striking was the a large increase in Qǚ  with adenosine infusion that peaked at 65.2 

ml min-1 kg-1, thereby exceeding peak Qǚ  evoked during moderate burst activity 

demonstrated previously at the same temperature (53 ml min-1 kg-1; Joyce et al., 2018a). 

Before autonomic blockade, a delayed but prominent tachycardia was observed after adenosine infusionǤ Because this was abolished by atropine and Ⱦ-adrenergic 

antagonists, we deduce that it was a hypotensive baroreflex (mediated by the autonomic 

nervous system) and not a direct effect of adenosine or other non-adrenergic non-

cholinergic mechanisms. This response developed relatively slowly (> 2 min) in 



comparison to that observed temperate teleosts, in which a baroreflex appears almost 

immediately following hypotension (Sandblom and Axelsson, 2005). This difference may 

be attributable to the low temperature slowing the responsiveness in the icefish, and is 

consistent with the slow positive chronotropic effect we observed in response to 

adrenaline infusion. Following double-blockade, adenosine elicited a slight bradycardia 

(1.3 beats min-1/ 8.7% fall), which was smaller than that previously reported in P. 

borchgrevinki (~5 beats min-1/ 21.7% fall) (Sundin et al., 1999).  

 

In rainbow trout (Oncorhynchus mykiss), adenosine exerts a clear negative inotropic 

effect on atrial tissue, and a smaller negative inotropic effect on the ventricle (Aho and 

Vornanen, 2002; Meghji and Burnstock, 1984). This is similar to the response in other 

animals, including most mammals (Hollander and Webb, 1957) and reptiles (Joyce et al., 

2014). However, in carp, a positive inotropic effect of adenosine has been reported in 

ventricular tissue (Vornanen and Tuomennoro, 1999). It was therefore instructive to 

perform a preliminary experiment to determine the effect of adenosine on the icefish 

heart, while urging caution given the low sample size. As adenosine exerted a clear 

negative inotropic on atrial tissue, and apparently little effect on ventricular tissue, this 

indicates that the increase in Qǚ  observed in vivo was unlikely to be a result of a positive 

inotropic effect on the heart. Therefore, the increase in Qǚ , in both blocked and unblocked 

fish, is likely attributable to a peripheral vascular effect. It has been similarly argued, by 

comparing the effects of exercise and vasodilators, that Qǚ  is largely determined by 

peripheral vascular conductance in humans (Bada et al., 2012; González-Alonso et al., 

2008). The finding that large changes in Qǚ  were attained after double-blockade, in the 

absence of any change in fH, is consistent with the view developed by pacing studies that 

the control of fH per se is of little importance in determining Qǚ  (Joyce et al., 2018b; Munch 

et al., 2014). 

 

The effects of dual autonomic blockade 

 

The teleost fish heart operates under dual (i.e., cholinergic and adrenergic) autonomic 

control  (Burnstock, 1969; Farrell and Smith, 2017; Vornanen, 2017; Wang, 2012). 

Cholinergic tone is especially pronounced in red-blooded Antarctic fishes, which, in 

conjunction with the near-freezing temperatures, results in low resting fH (< 15 beats 



min-1 (Axelsson et al., 1992; Campbell et al., 2009; Lowe et al., 2005; Sandblom and 

Axelsson, 2011)). In C. aceratus, Hemmingsen et al. (1972) observed that atropine elicited 

only a small increase in fH from 16 to 18 beats min-1, implying that cholinergic tone could 

be relatively weak in this haemoglobinless species. However, in ECG-instrumented fish 

(a minimally invasive surgery) we recently reported cholinergic tone of 55% and 

adrenergic tone of 12% (Joyce et al. 2018a), which are similar to those reported in red-

blooded relatives (Sandblom and Axelsson 2011; Egginton and Campbell 2016). In the 

present study, the cholinergic tone was even higher (103.0%), whilst adrenergic tone was 

more similar (19.5%). Given that stress is characteristically associated with reduced or 

loss of cholinergic tone in fish (Sandblom and Axelsson, 2011; Wahlqvist and Nilsson, 

1980), this supports our contention that by the time this protocol was conducted the fish 

had sufficiently recovered from the warming protocol on the previous day. The large 

increase in fH following atropinisation was associated with an increase in Qǚ , although VS 

decreased, likely due to the tachycardia decreasing cardiac filling time (Altimiras and 

Axelsson, 2004).  

 

Conclusions  

 

Adrenaline induces a range of cardiovascular effects including decreased Gsys, increased 

fH, and increased atrial contractility. However, effects on the vasculature appears 

inconsistent with cardiovascular changes (i.e., increased Gsys) observed during activity 

and warming in vivo (Joyce et al., 2018a). This suggests that circulating adrenaline is of 

little importance in regulating cardiovascular physiology in vivo, and helps explain why 

plasma catecholamines do not increase during exercise in this species (Egginton, 1997).  

Sympathetic innervation of the heart may provide an alternative route for adrenergic 

control of cardiac performance. Although this was not detected in the red-blooded 

nototheniid P. borchgrevinki (Sandblom et al., 2010), it remains to be investigated in 

icefishes. 

 

Adenosine elicited a several-fold increase in Gsys that approached the maximum 

previously observed at high temperature (8oC) during activity (65 vs. 75 ml kPaǦͳ minǦͳ kgǦͳȌ ȋJoyce et alǤǡ ʹͲͳͺaȌǤ Proof that adenosine is involved in the reported responses would 

require evidence that adenosinergic-receptor antagonists attenuate the activity- and 



warming-induced vascular response. However, such an experiment may prove futile 

because other vasodilators (such as nitric oxide, bradykinin, and prostacyclin) likely act 

in synchrony (Hellsten et al., 2012; Joyner, 2013; Joyner and Dempsey, 2018; Lamb et al., 

2018). Nevertheless, our data clearly illustrate that Qǚ  may be largely determined by 

peripheral factors, distinct from direct autonomic cardiac control (Guyton, 1968). It may 

nevertheless be fruitful for future studies to further investigate how adrenergic 

stimulation affects blood flow in combination with potentially sympatholytic 

vasodilators, as opposed to their independent effects.  
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Figure Legends 

Figure 1: The effects of adrenaline (5 nmol kg-1) on cardiovascular parameters in C. 

aceratus. Intra-arterial adrenaline infusion is marked with an arrow (ADR). (a) Qǚ , cardiac 

output (n=8); (b) fH, heart rate (n=8); (c) VS, stroke volume (n=8); (d) Pva, ventral aortic 

pressure (n=6); Pda, dorsal aortic pressure (n=8); (e) Gbranch, branchial conductance (n=6); 

(f) Gsys, systemic conductance (n=8). All values are means ± s.e.m. Asterisks denote 

significant (P<0.05) changes from the first (control) measurement within a given variable 

(repeated measures one-way ANOVA followed by Dunnettǯs multiple comparison test). 

 

Figure 2. Original traces from 3 icefish depicting the variable cardiovascular effects of 

adrenaline. Arterial infusion is marked with an arrow (ADR). Qǚ , cardiac output; Pva, 

ventral aortic pressure; Pda, dorsal aortic pressure; fH, heart rate. Fish 1 (a,d,g) represents 

a typical biphasic response consisting of an initial hypertensive bradycardia and 

subsequent tachycardia; Fish 2 (b,e,h) exhibits a near absence of bradycardia; Fish 3 (c,f,i) 

depicts a persistent bradycardia. 

 

Figure 3: Mutual dependency of heart rate and stroke volume 20 Ȃ 100 seconds following adrenaline infusionǤ The change in heart rate ȋοfHȌ and change in stroke volume ȋοVS) are 

calculated relative to pre-injection values for each individual fish. In animals in which 

heart rate increased, stroke volume fell and vice versa. This resulted in a universal 

decrease in Qǚ ǡ despite the changes in fH and VS alone not being statistical significant.  

 

Figure 4: The effects of adenosine (500 nmol kg-1) on cardiovascular parameters in C. 

aceratus. Arterial infusion is marked with an arrow (ADO). (a) Qǚ , cardiac output (n=8 

before double blockade, n=7 after double blockade); (b) fH, heart rate (n=8, n=7 after 

double blockade); (c) VS, stroke volume (n=8, n=7 after double blockade); (d) Pva, ventral 

aortic pressure (n=6, n=5 after double blockade); Pda, dorsal aortic pressure (n=8, n=7 

after double blockade); (e) Gbranch, branchial conductance (n=6, n=5 after double 

blockade); (f) Gsys, systemic conductance (n=8, n=7 after double blockade). All values are 

means ± s.e.m. Asterisks denote significant (P<0.05) changes from the first (control) 

measurement within a given variable (repeated measures one-way ANOVA followed by Dunnettǯs multiple comparison test). 



 

Figure 5: The effect of adenosine on cardiovascular dynamics in a representative icefish 

before and after double-autonomic blockade. Intra-arterial adenosine infusion is marked 

with an arrow (ADO). Qǚ , cardiac output; Pva, ventral aortic pressure; Pda, dorsal aortic 

pressure; fH, heart rate. 

 Figure Ǥ The effect of adrenaline ȋͷ ɊMȌ and stimulation frequency on in vitro contractile 

performance of atrial strips from C. aceratus. Asterisks show significant differences after 

adrenaline treatment at a given frequency. Dissimilar letters represent stimulation 

frequency-dependent changes within a given treatment (lower case: control; capital 

letters: adrenaline treated; two-way ANOVAs followed by Sidak post-hoc test.). Values 

are mean + s.e.m. (n=5). 

 Figure Ǥ Preliminary data showing the effects of adenosine ȋͳͲͲ ɊMȌ on in vitro 

contractile performance (force-stimulation frequency response) in one atrial and one 

ventricular preparation from C. aceratus.  
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Figure 6. 
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Figure 7. 
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Qǚ   

(ml min-1 kg-1) 

fH  

(beats min-1) 

VS  

(ml kg-1) 

Pda  

(kPa) 

Pva  

(kPa) 

Pcv  

(kPa) 

Gsys  

(ml kPa-1 min-1 kg-1 ) 

Gbranch 

(ml kPa-1 min-1 kg-1 ) 

control 35.1 (±3.0)a 8.5 (±0.5)a 4.16 (± 0.35)a 2.15 (± 0.35)a  2.49 (± 0.06)a 0.27 (± 0.2)a 17.1 (± 1.7)a 86.0 (±19.7 )a 

muscarinic 

blockade 

43.9 (±4.3)b 

18.9 (±0.6)b 2.32 (±0.24)b 2.84 (± 0.24)b 3.16 (± 0.06)b 0.00 (±0.01)a 

15.5 (± 1.5)a 114.6 (±22.4)a 

double-

blockade 

42.3 (±4.3)b 

15.2 (±0.5)c 2.78 (±0.29)c 2.71 (± 0.29)b 3.16 (± 0.09)b 

 

  0.06 (±0.05)a 

16.2 (± 1.9)a 87.0 (±16.7)a 

  

  

Table 1. The effects of muscarinic blockade (atropine; 2 mg kg-1) and double autonomic blockade (atropine and propranolol or sotalol; 2  

mg kg-1) on cardiac output (Qǚ , n=10), heart rate (fH, n=12), stroke volume (VS, n=10), dorsal aortic pressure (Pda, n=12), ventral aortic  

pressure (Pva, n=7), central venous pressure (Pcv, n=3), systemic conductance (Gsys, n=10) and branchial conductance (Gbranch, n=5) in  

icefish at ambient temperature. Dissimilar letters denote significant differences (P<0.05; repeated measures one-way ANOVA and Tukeyǯs  

post-hoc test)  

  

  


	Cholinergic tone (%) = ((R-R)cont – (R-R)atr) / (R-R)db)*100
	Adrenergic tone (%) = ((R-R)db – (R-R)atr) / (R-R)db)*100
	Where:
	(R-R)cont = control R-R interval

