
This is a repository copy of Use of a hand-held gaming platform to teach object-oriented 
programming to embedded systems students.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/140726/

Version: Accepted Version

Conference or Workshop Item:
Evans, CA and Valavanis, A orcid.org/0000-0001-5565-0463 Use of a hand-held gaming 
platform to teach object-oriented programming to embedded systems students. In: HEA 
STEM Conference 2018, 31 Jan - 01 Feb 2018, Newcastle Upon Tyne, United Kingdom. 

This is the author's version of a poster presented at the HEA STEM Conference 2018. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


School of Electronic and Electrical Engineering
FACULTY OF ENGINEERING

Craig A. Evans* and Alexander Valavanis

Use of a Hand-held Gaming Platform for Teaching Object-oriented

Programming to Embedded Systems Students

Overview

Embedded systems modules feature in all Electronic and

Electrical Engineering degree programmes. Many of these

courses will involve programming microcontrollers (MCUs). 

C has historically been the most commonly used language

for embedded systems programming; however, the growth

of development platforms such as Arduino1 and Mbed2

has seen an increasing use of C++ and its object-oriented

features. 

Many software libraries (classes) are now available that

make interfacing with different types of hardware (such as

sensors and displays) very simple. It is therefore important

that students are familiar with object-oriented

programming (OOP).

With this in mind, our Embedded Systems Project module

was re-designed. We use the online Mbed™ compiler

along with an Arm® Cortex™ MF4-based MCU

development board. 

We use an engaging project-based learning approach in

which students develop a game for a hand-held gaming

device. This allows students to develop their creativity as

well as learning important software engineering principles

that are embedded within the curriculum.

Version Control

The online Mbed compiler has a built-in version control

system. As well as being useful for distributing example

and template code during the taught laboratory sessions, 

it is also used for the assessment and submission of

project code.

During the project, students are encouraged to regularly

commit changes to their code. This allows them to

implement new features into the game without the risk of

breaking the overall functionality of the code and means

that they always have an up-to-date backup on the Mbed

servers. 

The commit logs are studied on completion of the project. 

This allows the module staff to easily observe the

development of the code and makes it easier to spot

potential plagiarised code (i.e. large amounts of code that

suddenly appears between commits).

Delivery

The module is made up of 11 three-hour laboratory

sessions. There are 7 taught laboratory sessions covering

Printed Circuit Board (PCB) design, PCB assembly, tasks and

interrupts, finite state machines, software libraries, joystick

and LCD interfacing and an introduction to game design

patterns. 

The remaining laboratory sessions are used for

independent project work with students developing an

Atari-style game e.g. Pong, Asteroids, Pac-Man or Snake. 

Game Development

Developing a game provides an engaging and creative

project for students to work on.

A game also provides a good base for introducing OOP

concepts. Characters, levels, vehicles, weapons etc. map

nicely into classes and offer a more tangible way in which

to picture objects and understand how they interact via

methods. This is in stark contrast to the more abstract

ways in which OOP can be taught in terminal-based

programs.

It also offers a nice balance between writing the game

logic and low-level hardware interfacing (e.g. Joystick, LCD, 

LEDs, Piezo, Accelerometer).

Assessment

A range of assessment is used to reflect the broad range

of skills and knowledge that are required in order to

complete the project. 

An in-course test is used to assess the understanding

gained during the taught laboratory sessions. The code

developed during the game project is submitted to assess

the use of correct software engineering techniques and

the level of creativity demonstrated. 

The students also write a technical report which details

their approach to the software design and

implementation. Finally, a project exhibition is held in

which the students demonstrate their completed projects.

Hardware

During the taught laboratory sessions, the students follow

a screen-cast and learn how to design PCBs using EAGLE

software3. During this activity, they create a hand-held

gaming platform (the ‘Gamepad’). 

The Gamepad contains a MCU development board, LCD, 

joystick, several push buttons, LEDs, a potentiometer and a

piezo buzzer.

They assemble the designed Gamepad (including some

surface-mount soldering) and this is used in all subsequent

taught laboratory sessions. Prototyping boards

(‘breadboards’) are often used in embedded systems

courses but circuits built on these are liable to loose

connections making them hard to transport without

requiring them to be re-built. 

The use of a robust PCB-based platform (with a protective

carry-case) makes it trivial to safely transport and better

allows students to work on their projects outside of

scheduled laboratory time.

Software Engineering

Software engineering is often taught in modules separate

from embedded systems. In this module re-design, we

took the opportunity to embed software engineering

within the curriculum. 

The taught laboratory sessions introduce software

engineering techniques such as:

• Object-orientation

• Code structure

• Version control

• Code documentation

The assessment criteria for the project then explicitly

covers these aspects, encouraging students to follow best

practice through the course of the project and not just

focus on the final deliverable, as often can be the case.

Object-orientation

During the taught laboratory sessions, students are

introduced to the concept of C++ classes through the

development of software libraries for the I2C

accelerometer and magnetometer that is on-board the

MCU development board.

They are also provided with software libraries (C++ classes) 

for the Gamepad and LCD which allows easy interfacing

with the peripherals and enables them to better focus on

the game implementation.

A sample project (Pong) is also provided for reference

which demonstrates how to break down a game into

appropriate classes (e.g. Paddle, Ball, Physics Engine).

Code Structure

The taught laboratory sessions introduce concepts such as

functions, arrays, structs, finite state machines and

common game design patterns to help enable the

students to write better structured code.

To further encourage improvements to the structure of the

project code, limits on the length of functions and depth

of nested if-statements were imposed with penalties

applied for exceeding these suggested lengths. It is very

common to see students use deeply nested if-statements

when implementing game logic with the code becoming

extremely difficult to debug and maintain.

Code Documentation

The online Mbed compiler has a built-in documentation

system based on Doxygen4. 

Commenting and documenting software is often a task

neglected by students, who instead prefer to focus on the

functionality of the software, in the belief that it will lead

to higher marks. This is understandable as they are rarely

exposed to a situation in which they must rely on

documentation in order to maintain or debug code that

has been developed by others.

The assessment criteria for the project requires a fully-

documented Application Programming Interface (API) for

every class along with useful and through in-line

commenting.

References

[1] Arduino, arduino.cc

[2] Mbed, os.mbed.com

[3] EAGLE, 

https://www.autodesk.com/products/eagle/overview

[4] Doxygen, doxygen.org

*C.A.Evans@leeds.ac.uk

Outcomes

Since the re-design of the module, there has been a

noticeable improvement in the quality of the code

submitted by students. Feedback from students has been

very good, with many noting how engaging they found the

project. In addition, their understanding of OOP improved

as they saw how the classes interacted as the game played

out on the LCD.


