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Subgroup by treatment interaction assessments are routinely performed when analysing 

clinical trials and are particularly important for Phase 3 trials where the results may affect 

regulatory labelling.   Interpretation of such interactions is particularly difficult, as on one 

hand the subgroup finding can be due to chance, but equally such analyses are known to have 

a low chance of detecting differential treatment effects across subgroup levels, so may 

overlook important differences in therapeutic efficacy.  EMA have therefore issued draft 

guidance on the use of subgroup analyses in this setting.  Although this guidance provided 

clear proposals on the importance of pre<specification of likely subgroup effects and how to 

use this when interpreting trial results, it is less clear which analysis methods would be 

reasonable, and how to interpret apparent subgroup effects in terms of whether further 

evaluation or action is necessary. 

 

A PSI/EFSPI Working Group has therefore been investigating a focused set of analysis 

approaches to assess treatment effect heterogeneity across subgroups in confirmatory clinical 

trials which take account of the number of subgroups explored, and also investigating the 

ability of each method to detect such subgroup heterogeneity.  This evaluation has shown that 

the plotting of standardised effects, bias<adjusted bootstrapping method and SIDES method 

all perform more favourably than traditional approaches such as investigating all subgroup<

by<treatment interactions individually or applying a global test of interaction.  Therefore, 

these approaches should be considered to aid interpretation and provide context for observed 

results from subgroup analyses conducted for Phase 3 clinical trials.  

Key words: Subgroup analysis, regulatory labelling, bias adjustment, late<phase clinical 

programs  
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It is common to conduct subgroup analyses in clinical trials during all phases of drug 

development, and to try to understand heterogeneity in treatment effect across various levels 

of subgroup factors of interest.  This is of relevance in early phase studies in order to better 

understand which patients to study in future trials, whilst for late stage clinical trials is 

applied in order to understand the effects of a given treatment across a range of baseline 

factors.  Consistency of treatment effect across trial subgroups indicates that the conclusions 

made regarding treatment benefit are applicable across various baseline characteristics and 

associated subpopulations, whilst substantial heterogeneity in treatment effect may suggest 

clinically relevant differential treatment effects across subpopulations.  At the extreme, the 

presence of substantial heterogeneity may imply that the conclusion of beneficial treatment 

effect is only relevant for a subset of the population. 

 

Interpretation of subgroup analyses is difficult 
[1]

 as any apparent heterogeneity can be due to 

chance, which is particularly likely when a large number of subgroup analyses are 

undertaken.  Conversely, clinical trials are generally not designed for detecting subgroup 

heterogeneity, so statistical tests may miss important interactions due to low power 
[2]

.  This 

is particularly challenging as approaches need to account for both issues simultaneously, as 

illustrated by Gonnermann 
[3]

 who also concluded that further work was needed to understand 

alternative statistical approaches in this area. Despite these issues, potential subgroup 

differences cannot be ignored, so it is still necessary to understand potential subgroup 

heterogeneity 
[4]

, and as such, consideration needs to be given for how such effects are to be 

analysed and interpreted.   

 

Given these issues, EMA proposed draft guidance in February 2014
 [5]

 and held a Workshop 

in November 2014 to address these considerations.  This guidance was generally well 

received, but a key area of further work related to providing information on methodological 

approaches and criteria to conclude consistency of effect.  Two European Pharmaceutical 

industry statistical organizations, the European Federation for Statisticians in the 

Pharmaceutical Industry (EFSPI) and Statisticians in the Pharmaceutical Industry (PSI) 

therefore formed a working group to further explore possible analysis approaches in order to 
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inform subgroup evaluation in a regulatory environment.  As this work is prompted by the 

EMA draft guidance and possible regulatory labelling, approaches have focused on assessing 

heterogeneity of treatment effect across subgroup levels in a Phase 3 trial.  As such, this 

paper assumes the situation where the analysis of the overall population showed a positive 

effect before any subgroup effects were explored. 

 

This paper summarises the key activities of the working group, and their possible 

implications for future regulatory evaluation.  As the focus is to understand whether 

heterogeneity of treatment effect across subgroup levels is real, any reference to subgroup 

analysis or subgroup effects will be in relation to this heterogeneity.  This paper discusses 

predictive effects only (factors driving a differential effect across treatments) and does not 

consider prognostic factors (factors predictive of outcome, regardless of treatment). However, 

factors that are known to be prognostic for the disease of interest would be a more plausible 

set of candidate variables to explore for treatment effect heterogeneity. 

�

����������������
�����
����
�����������

When conducting subgroup analyses it is often necessary to assess the heterogeneity of 

treatment effect across various levels of a number of subgroup factors.  When conducting late 

stage clinical trials there are a variety of reasons for this, ranging from a standard regulatory 

authority requirement, their importance in a particular clinical setting, or to address key 

reimbursement questions.  Indeed, FDA requires that subgroups defined by gender, age and 

race are to be analysed and dosage modifications to be identified for specific subgroups 
[6]

, 

and in 2014 the agency issued an action plan “to enhance the collection and availability of 

demographic subgroup data” 
[7]

.  Given the multiplicity challenges associated with 

interpreting a large number of subgroup analyses, the first objective for regulators and 

sponsors alike is to attempt to minimize the number of subgroups analysed wherever 

possible, and regulators at both EMA and FDA have recommended that the focus should be 

on the subgroups of primary interest 
[5, 8]

.   

 

All subgroups to be analysed in this way must be pre<specified, and it will often still be 

necessary to choose a fairly large number of subgroups within a confirmatory clinical trial. 

Therefore, it is also important to provide a clear justification for the plausibility of a 
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particular subgroup by treatment interaction.  This will ease interpretation and will also make 

for a stronger argument in relation to any subgroup effect found.  Any prior evaluation of 

plausibility should be based on historical data, external trial data obtained from literature or 

the labels of approved products, or data from earlier trials in the clinical program (Phase I or 

II) for the project under study.  Further, it is important to specify the nature of the interaction 

(direction of impact on overall outcome), and to state which changes are clinically relevant 

and would impact labelling.  From such pre<specification, it is possible to consider the 

subgroups in 3 categories.  The following categories below are similar to those outlined in the 

EMA guidance: 

 

Confirmatory (strong reason to expect a significant, clinically relevant heterogeneous 

response): 

In this case it is necessary to address the differential levels of effect for a specific factor 

explicitly and is addressed in the design and interpretation of the trial (for example, through 

type I error adjustment).  This category will not be covered further in this paper. 

 

Biologically plausible (existing biological rationale or external evidence of heterogeneous 

response):  

In this case, a heterogeneous response would be a differential treatment effect across 

subgroups levels considered clinically meaningful, and as such would impact product 

labelling.  There are likely very few subgroups in this category, and EMA guidance states 

that it is relevant to discuss and plan for an assessment of consistency of effects.   This could 

well be a situation where subgroups may have some prognostic effect, but there has been no 

evidence of a treatment by subgroup interaction to date.  

 

Hypothesis generating only (no prior evidence to expect a heterogeneous response):  

This would include all other subgroups necessary for study based upon standard regulatory 

requirements, or clinical practice.  As these subgroups are not anticipated to show any 

differential treatment effect, approaches to understand the effects in the context of the large 

number of subgroups evaluated can be considered. 

 

This categorization of subgroup analyses is helpful both when planning subgroup analyses 

and when interpreting the results.  For a subgroup to have some plausibility there must be a 
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prior hypothesis regarding a potential treatment<by<subgroup interaction.  In particular, the 

“biologically plausible” category represents hypothesized subgroup factors or baseline 

covariates which may govern differential treatment response.  These factors may be simple 

(e.g., based on a single baseline characteristic) or complex (i.e., based on multiple baseline 

characteristics simultaneously.)  The number of proposed factors in this category is expected 

to be small and identification of these factors, along with specific hypotheses regarding 

direction and magnitude of anticipated differences are key to evaluating the robustness of any 

subgroup findings once the results are available.   

�
���
�������������

At present, it is common to conduct a statistical test for treatment<by<subgroup interaction by 

adding these terms to the primary analysis model.  This can involve assessing subgroup by 

treatment interactions for a large number of subgroups, which inflates the chances of a false 

positive finding 
[9]

. 

 

Further, interaction tests have low power, a point raised within the EMA guidance which 

states that lack of statistical significance of an interaction is not sufficient to conclude 

subgroup by treatment homogeneity.  An approach to improve the power when testing for an 

interaction is to use arbitrary criteria such as p<0.10. Whilst this makes it easier to detect an 

interaction, this also increases the chances of false positive findings.  Indeed, if 10 

independent subgroup factors are explored in a trial, none of which have an actual effect, the 

probability of observing at least one significant interaction at p<0.10 is 1 – (1 < 0.10)
10

, or 

approximately 65%.  It is acknowledged that it could equally be argued that a more stringent 

type I error rate should be applied as a result of the multiple testing of many subgroups 
[10]

.  It 

is for this reason that the simulation exercise described has explored the type I error rate, 

defined as the number of times a subgroup by treatment interaction is incorrectly identified 

under the “null” that no such interaction is present. 

 

An alternative approach is to perform variable selection in regression models, where 

parameters associated with various interaction effects are added or removed from the model 

depending upon variable importance.  However, interpretation of this approach can be 

challenging as very different conclusions can be reached dependent upon the selection 
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method applied (e.g., backward or forward selection). Furthermore, variable selection is 

unstable where small perturbations in the data may lead to selection of different variables. 

Inference has often been done without consideration of model selection, i.e., as if the selected 

model had been pre<specified.  Only recently exact methods have been developed for type I 

error control or confidence intervals for parameter estimates after selection 
[11]

. These 

methods are still under debate. Therefore, this approach has not been explored further. 

 

One way of providing some type I error control when investigating multiple subgroups is to 

perform a global test of interaction (comparing model fit of models with no interaction terms, 

and all interaction terms of interest), and this is justified when there is no biological rationale 

to expect an interaction for the subgroups studied. 

 

It is also common practice to produce univariate forest plots for each subgroup to help 

understand the effect of an individual subgroup on overall response, and forest plots 

including a reference line indicating the point estimate for the overall effect 
[12]

 will provide 

information on any subgroups whose 95% CI excludes this point estimate for the overall 

treatment effect.  When interpreting such forest plots, those subgroup levels with a 95% CI 

looking very different from the overall result would often require further discussion and 

investigation of whether the overall result applies equally to all levels of this subgroup.  EMA 

guidance specifically addresses the use of forest plots but suggests caution as a formal rule 

for interpretation that is “both sensitive enough to detect heterogeneity …and specific 

[enough to detect true subgroups] is not available”.  Further, as such plots do not include 

information on confounding of key covariates, they should generally be interpreted alongside 

other methods to understand the likelihood of such findings in the presence of other important 

factors. 

�����
����������������
��������

There is a wealth of literature describing possible approaches to subgroup analysis.  

Lipkovich et al 
[13]

 have recently provided a review of the literature, much of which is 

focused on the exploratory setting.  Similarly, given the importance of subgroup analysis, the 

whole of issue 24 of the Journal of Biopharmaceutical Statistics in 2014 was dedicated to 

subgroup analysis in clinical trials 
[14]

 and prominent authors have provided a tutorial on the 
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statistical considerations of such analyses 
[15]

.   There have also been other papers which have 

described ideas related to the use of permutation distributions in other settings, such as that to 

assess regression to the mean 
[16,17]

, which although not directly related do show the approach 

has a wide applicability for generating “null” distributions in the context of data driven 

subgroup evaluation.  

 

Given the purpose of this paper has been to identify approaches that could be used in the 

setting of a confirmatory clinical trial and for regulatory labelling, approaches were explored 

that were consistent with current practice, but also addressed the concerns regarding the 

power to detect true subgroup heterogeneity, whilst controlling the rate of incorrect 

identification of a subgroup due to multiplicity.  As such, we consider a new method which 

produces a plot of standardised effects and will provide context for the magnitude of 

subgroup heterogeneity seen in relation to what would be expected by chance.  This approach 

is motivated by the desire to find an approach akin to a forest plot, but which takes account of 

the number of subgroups analysed and the correlation between these subgroups.  In addition, 

we present approaches that either control type I error or provide estimates of treatment effect 

after adjusting for subgroup selection, both of which are important when providing 

information to regulatory agencies, treating physicians or for reimbursement.   

 

This section will outline these approaches, whilst the following sections will describe a 

simulation study used to evaluate the operating characteristics of these methods in different 

scenarios. 

 

(a)�Plot of Standardised effects 

A resampling based graphical method to present Standardised Effects Adjusted for Multiple 

Overlapping Subgroups (SEAMOS) is proposed by Dane 
[18]

. SEAMOS is intended to 

provide a graphical presentation of the results for all pre<specified subgroups, and to illustrate 

how extreme the results are expected to be by chance, given the number of subgroups 

analysed and the correlation between the subgroups.  This approach can be used when it is 

possible to clearly divide a subgroup into categories, as would be expected in an evaluation 

used to assess pre<specified subgroups likely to impact regulatory labelling.  Briefly, 

observed standardised effects for the difference between the subgroup level and overall effect 
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are ordered from largest to smallest to highlight the statistically most extreme standardised 

effects in either direction.  These are then compared to a “null” distribution of standardised 

effects, or the distribution of effects expected by chance when there are no subgroup<by<

treatment interactions.  This is calculated by using a resampling algorithm and is achieved by 

randomly permuting the rows of covariates many times against the vector made up of the 

response variable and the treatment identifier.  This has the effect of removing any subgroup 

by treatment effects but preserves the overall treatment effect and the correlation between 

subgroups.  The smallest and largest standardised effects from each permutation are taken 

and used to produce a probability interval of extreme effects.  If there were no subgroup 

heterogeneity, we would expect the largest standardised effect to lie within this probability 

interval 95% of the time.  Similarly, we would expect the smallest standardised effect to lie 

within the interval 95% of the time.  These intervals can be used to assess the highest and 

lowest observed values, with points lying outside these probability intervals requiring further 

evaluation, as shown in Figure 1, controlling the chances of incorrectly identifying a 

subgroup when there is no subgroup heterogeneity at ≤10%.  Similarly, probability intervals 

can be constructed for all ordered subgroups as described in Dane 
[18]

. 

 

Given there are often challenges in using a formal method which makes firm conclusions 

regarding statistical assessment criteria, the intention is to provide a method which places the 

results into context in addition to providing a basis for further exploration of subgroups.  

There are some approaches available that take a similar approach, but only work when the 

subgroup levels are all fully independent (for example, when exploring the effects by country 

in the clinical trial) 
[19,20,21,22]

.   

 

(b)�Adjusted subgroup estimates via bootstrapping 

This bootstrapping method proposed by Rosenkranz 
[23,24]

 is primarily based on estimation.  

The method fits a reference model containing treatment and all factors as main effects. For 

each factor defining a subgroup, the method fits a model containing in addition the treatment 

by factor interaction effect and picks the factor/model leading to the best fit to the data.  As it 

is acknowledged that the estimates provided for subgroup are exaggerated, particularly when 

a large number of subgroups are investigated, this selection process is repeated on a series of 

bootstrap samples of the original data to account and adjust for such bias, with the degree of 

adjustment being dependent upon the amount of times the factor in question is selected from 

Page 10 of 27

http://mc.manuscriptcentral.com/pst-wiley

Pharmaceutical Statistics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

10 

 

the bootstrap samples (for example, if a factor is picked in every bootstrap sample very little 

adjustment would occur, whilst much more adjustment would occur if the factor were 

selected less frequently).  The bootstrap samples are then used to calculate an interaction 

effect estimator (and its standard deviation) adjusted for selection bias and model uncertainty.  

 

The method allows for all data types and in principle also for continuous variables. Instead of 

selecting only the factor with the best fit in most bootstrap samples, all factors selected more 

often than expected by chance could be selected. Furthermore, the full population (i.e., the 

model containing no treatment by factor interaction term) is part of the selection process such 

that all subgroups compete with the full population in terms of goodness<of<fit, meaning it is 

possible to select the model with no treatment effect heterogeneity. 

 

(c)�SIDES 

The SIDES method (Subgroup Identification based on Differential Effect Search) 
[25,26]

 

applies the following simple search strategy combined with a resampling approach in order to 

adjust any significance level (or p<value) for the model selection approach.  This method was 

originally developed for controlling type I error in a more exploratory setting, (with 

subgroups possibly defined as “signatures” of up to 3 continuous variables with data<driven 

cut<offs) but could equally be applied (as a special case) to the setting where the search is 

restricted to subgroups based on a single binary factor selected from a candidate set. This 

method can also be used for all response types and is applied as follows: 

•� All candidate subgroups are evaluated and the covariate with the larger differential effect 

across subgroup levels is selected.   The subgroup level requiring further evaluation is 

that which has the larger treatment effect.  

•� Then the null reference distribution for the treatment effect p<value of the selected 

subgroup is constructed by randomly permuting the treatment labels and applying the 

above procedure to the resulting data.  

•� This is repeated 1000 times and the adjusted p<value is determined as the proportion of 

reference sets where the selected subgroup’s p<value is less than or equal to that found in 

the observed data.  

•� For the purposes of this evaluation, a subgroup is selected if the adjusted p<value is below 

the pre<specified cut<off of 0.1. Thus, the procedure ensures that the type I error of the 

entire selection strategy is within 10%.  
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•� To make the null distributions of p<values insensitive to the overall treatment effect the 

analysis data set is standardised before applying the procedure.  This is achieved by 

subtracting the respective treatment arm’s mean and dividing by the arm<specific standard 

deviation.  

���
�����
�����������������
������������
������������������

���
�����
����
������
�����������
�����������
������������������

When investigating the performance of various methods, two broad simulation scenarios have 

been used, the first (“simple set”) where all subgroup factors were simulated independently 

and the second (“complex set”) where some correlation higher than that expected by chance 

was generated.  For both approaches the operating characteristics will focus on the situation 

with a total of 10 binary subgroup factors.  Note that we have not considered scenarios where 

the number of subgroup factors is much less than this (2 or 3 factors, for example), as this is 

not felt to be a realistic scenario for Phase 3 confirmatory trials where it is necessary to 

address a number of regulatory and clinical questions regarding subgroups.  Similarly, we 

have not considered scenarios of an interaction between two subgroups and with treatment, as 

we aimed to simulate a situation where a Phase 3 trial is to be conducted and no subgroup 

effects are anticipated, so such a scenario seems unlikely.  

 

Given all of these approaches have the potential to identify more than one subgroup as part of 

the procedure this may involve identifying both a correct and an incorrect subgroup.  For the 

purposes of operating characteristic calculation, a second step is performed which explores 

which subgroup has the most compelling result < this “primary subgroup” is used to define 

whether a correct (or incorrect) subgroup identification has occurred.  The only exception is 

for SEAMOS.  As this approach presents information on both levels of each subgroup factor 

there is a small chance that two different subgroup factors will be identified as the most 

extreme positive and most extreme negative effects. In this case they have both exhibited 

results beyond those expected by chance and would both need to be explored further.  As 

such, it is possible to identify both a correct and incorrect subgroup in this case.�
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The methods used for the simulation scenarios are similar to those described with full details 

in Dane 
[18]

.  Briefly, this involved performing 1,000 simulations for each scenario and 

assessing how often a true subgroup was identified (in scenarios with true treatment effect 

heterogeneity for one subgroup factor), or how often a subgroup was incorrectly identified 

when there was no treatment effect heterogeneity across subgroups.  This number of 

simulations was chosen as a balance between time taken for the simulation exercise and 

achieving sufficient precision, and is considered reasonable as the standard deviation around 

a 10% error rate and 1,000 simulations is estimated to be 0.95% = ��	.
∗	.�


			 .  This was felt 

sufficient for ensuring the error rates were reasonably well controlled. 

 

The simulations used assumptions regarding an overall treatment effect and an enhanced 

effect for one level of the subgroup (S+ group), defined as k, where k took possible values of 

1<, 2< or 4<times the overall treatment effect).   Individual patient outcomes were simulated 

from a normal distribution using the mean based on the allocation to treatment arm and to 

subgroup �� or ��. In the “simple set” of simulations, for all other subgroups, defined by the 

other 9 factors, the overall effect, θ, is assumed.  Using these assumptions, 4 different sized 

trials were considered by varying the magnitude of effect and size of study, and within each, 

separate simulations were performed according to the proportion of patients in the subgroups.  

Subjects had either a 0.1, 0.25 or 0.5 probability of being in the �� subgroup based on the 

first factor, and this same proportional split was used for all other factors.  This magnitude of 

effect was assessed under ”high power” and ”normal power” scenarios, where ”normal 

power” is defined as 90% power to detect p<0.05 (2<sided) for the overall effect, and  ”high 

power” as 90% power to detect an effect with p<0.01.  Further, each method was assessed 

when a smaller or larger trial was required for these scenarios to understand whether the 

ability to detect heterogeneity was affected by having a smaller number of patients within the 

subgroup.  This resulted in sample sizes of 200 and 270 patients per group for smaller sample 

size and the normal and high<power scenarios respectively, and 760 and 1080 patients per 

group for the larger sample sizes.     

 

 The previous text describes the simple simulations, in which the 10 subgroup factors were all 

generated independently.  The “complex set” of simulations were produced which introduced 

some inter<relationship between the true factor and one correlated “noise” factor.  In this case 
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the correlation of these two binary variables was calibrated in order to achieve 50% overlap 

(See details in the Appendix). 

 

Results for the “simple” and “complex” set of simulation scenarios were very similar. 

Therefore, the following section presents plots of the operating characteristics for only the 

complex scenario as we feel this is likely to be closer to real data observed in a clinical trial.  

Similar plots using a “subject level” evaluation which estimates how well the identified 

subgroup from the data captures the patients belonging to the “ideal” subgroup (see Appendix 

for further details) gave similar conclusions to those described in this paper. 

 

When considering these scenarios, it is also important to consider the size of treatment effect 

in the remaining population (���), and hence whether the interaction is qualitative or 

quantitative.  This is important as it can have implications for regulatory labelling and will 

depend upon the proportion of subjects in the subgroup positive group (PS+) and the 

magnitude of differential effect in this positive subgroup level (�).  Some examples are 

presented when the overall treatment effect is 5 units (see Table 1).  As can be seen in Table 

1, when one subgroup level has a very large positive effect (e.g., �=4), the effect in the 

remainder of the population may be either zero (for ���=0.25) or negative (for ���=0.5).  

This must be considered alongside a review of the performance of the analysis methods, as 

there are key implications regarding benefit<risk and whether a new treatment should be 

approved in all patients. 

���
����������
�����
����������

In order to understand the performance of the methods outlined in this paper it is necessary to 

assess how often a given approach correctly identifies subgroup heterogeneity and how often 

a subgroup is incorrectly identified when there is no heterogeneity. Using the simulation 

scenarios described, operating characteristics were calculated for traditional interaction 

testing, the global interaction test and the methods outlined in the “Alternative methods” 

section. Because traditional interaction testing is the only one of these methods which does 

not attempt to correct for multiple testing, the results for this method are presented separately 

in the “Performance of traditional interaction testing” section, whilst the evaluation of the 
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remaining methods are included in the section summarising “Performance of methods which 

account for the evaluation of multiple subgroups”. 

 

Performance of traditional interaction testing 

The performance of the more traditional approach of fitting a multivariate model including all 

subgroups involved defining a subgroup of interest if any of the subgroup<by<treatment 

interaction terms from the statistical model were statistically significant using the criteria 

p<0.1.  Table 2, below demonstrates that, as expected, when 10 subgroups are explored and 

criteria of p<0.1 is applied the type I error is very high. Table 2 also demonstrates that even 

when there is true heterogeneity within one subgroup, other subgroups without this 

heterogeneity are incorrectly identified on many occasions.  This characteristic is concerning 

when no subgroups interactions are anticipated, particularly when decisions are required 

regarding labelling for such subgroups.  The performance characteristics for the alternative 

methods are presented in the next section and show that these methods perform more 

favourably than the approach of assessing all interactions individually in this way. 

�
�

Performance of methods accounting for the evaluation of multiple subgroups 

The operating characteristics for the scenarios with 10 subgroup factors, where one of the 

“unimportant” factors has an overlap of 50% with the one for which the “true” effect was 

generated are given in Figure 2. The panels a<d show the results for four sample size and 

overall effect size combinations. 

 

The evaluation of the various approaches for the scenarios with 10 subgroup factors, both 

with independent subgroups (not shown) and with an enhanced correlation between the true 

subgroup and one other subgroup showed that the global interaction (GI) test controlled the 

type I error at approximately 10%.  SEAMOS also controlled the type I error at 10% for 

subgroup sizes 0.1 and 0.25, and at a slightly lower rate for a subgroup size of 0.5.  The 

bootstrapping method tended to result in higher type I error with the smaller sample sizes of 

200 or 270 patients, but this higher type I error was not seen with larger sample sizes.  

Meanwhile, SIDES showed lower type I error than the other approaches across all scenarios 

explored.  
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For each method, the power to detect true subgroup heterogeneity increased with true 

subgroup size (���), subgroup effect (�) and sample size (for the same true effect size), as 

would be expected. Comparing the power of the different methods, for the scenarios where 

the true treatment effect in one subgroup level was twice as large as the treatment effect for 

the population as a whole (�=2), the bootstrapping method and then SEAMOS had the 

highest power, whilst SIDES had lower power along with the lower type I error stated 

previously. However, SIDES performs more preferably than the GI test at the lower 

subgroups sizes of 0.1 and 0.25. When the true treatment effect within the better performing 

level of the subgroup was 4<times the treatment effect in the population as a whole (k=4), all 

three of the newer methods had similar power to detect the subgroup by treatment interaction 

and performed better than the GI test.    

 

When many subgroups are analysed simultaneously and there is a subgroup with a truly 

heterogeneous effect it is also possible to incorrectly identify another subgroup as exhibiting 

treatment effect heterogeneity.  As a result, we also explored the number of times an incorrect 

subgroup was identified within the simulation scenarios when there was true subgroup 

heterogeneity for one subgroup factor.  The results from this exploration were similar to those 

presented previously, in that the SIDES method tended to give the lowest rates of incorrect 

identification and SEAMOS also tended to give lower values than the GI test.  Regarding the 

bootstrapping method, the degree of incorrect identification again tended to depend on the 

parameters of the simulation scenario. In the scenario with subgroup effects twice that of the 

overall effect, where the overall effect size was 0.33 and subgroup size was 0.1 or 0.25, this 

method gives comparatively high incorrect identification rates, whilst for other simulations 

the results are similar to SEAMOS. 

��
��
���
���
������
����
�

The EMA draft guidance is a great advancement in terms of the pre<specification and 

interpretation of subgroup analyses.  The work adopted by this Working Group is looking to 

add guidance on how to best analyse the data when a reasonably large number of subgroups 

are considered, and when the results have the potential to impact regulatory labelling and 

patient access to medicines.   
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With any subgroup analysis, pre<specification of the more plausible subgroup<by<treatment 

interactions is key to effective interpretation.  This is a point EMA have stated very clearly in 

their guidance 
[5]

, and a paper by FDA authors 
[8]

 also talks of reducing the number of 

subgroups.  Our paper considers the situation where effects are, a priori, assumed to be 

consistent (or sufficiently consistent to apply the overall result to that subgroup), and this 

premise would ideally be agreed with regulatory agencies at the design stage of a trial. By 

this we mean that the subgroups to be explored can be pre<specified in the “Biologically 

plausible” or “Hypothesis generating only” categories.   This investigation would be 

performed separately within these two categories.  Situations where there is a stronger belief 

regarding subgroup heterogeneity have not been considered, as this should lead to a different 

study design, and not be addressed at the analysis stage. 

When exploration of the “Biologically plausible” or “Hypothesis generating only” categories 

is required, methods such as SEAMOS, SIDES and the adjusted effect size estimates via 

bootstrapping provide useful context when interpreting subgroup analyses and compare 

favourably with traditional approaches which test all subgroups independently and have very 

high error rates.   

The graphical SEAMOS method and bias<adjustment methods presented should be 

considered key tools to help quantify whether subgroup findings are real. They have benefits 

over traditional methods of analysis such as assessing all interactions separately, stepwise 

regression or a global test of interaction, as they appropriately account for the number of 

subgroups analysed and the correlation between subgroups. It should be noted that we do not 

advocate the use of any of these methods in isolation, but rather suggest presenting their 

results along with the observed effects to provide context when assessing the likelihood that 

any subgroup heterogeneity is real. 

 

The situation when each of these three methods will be most useful will depend upon the key 

aims for the specific analysis in question.  For example, the number of subgroups being 

explored, or the degree of focus on type I error control will affect when each method should 

be adopted. Similarly, whether the subgroups are categorical or continuous (or whether there 

is an established method of categorizing continuous various) will be critical.  This is 

particularly true of SEAMOS which, although providing very useful context for the observed 
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results, can only be undertaken when a clear method of dividing a subgroup into categories is 

possible.  However, such categorization is most likely in the case of the late phase 

confirmatory clinical trials considered here.  Finally, the most appropriate method will also 

depend upon whether the aim of additional subgroup work is to provide context for the 

observed results (SEAMOS), provide adjusted estimates of treatment effect (bias<adjusted 

bootstrapped estimates) or provide adjusted p<values of subgroup effects (SIDES). 

 

The simulation scenarios investigated have included a set of independent subgroups and those 

with a degree of overlap above that expected by chance.  It is acknowledged that there are 

many other possible scenarios with respect to the overlap (or correlation) between subgroups, 

and it has not been possible to assess all of these.  However, we have no reason to believe we 

would see differences with regard to the conclusions regarding type I error and power.  

Additional simulation scenarios could be the subject of further work, but it would also be 

important for anybody applying these approaches to demonstrate the type I error control 

based upon observed subgroups and the relationship between them. 

 

The approach to error control in this setting is a balance between controlling the rate of 

incorrect subgroup identification (or incorrect labelling restrictions), with incorrectly 

allowing a broad label.  The approaches explored have looked to control the incorrect 

subgroup identification error at ~10%.  Other values could be used in discussion with 

regulatory agencies, and would depend upon the magnitude of overall effect, the therapeutic 

index and number of other therapeutic options in that particular situation.  

Bayesian methods have been considered extensively when evaluating subgroups 

[27,28,29,30,31,32]
 and are appealing as they incorporate prior beliefs regarding subgroup 

heterogeneity into the evaluation.  In our preliminary work we considered the “Simple 

Regression” and “Dixon and Simon” methods reviewed in Jones 
[28]

 as these methods 

appeared promising in the setting we have outlined in this paper.  We encountered issues 

related to model fitting and did not to pursue this further at that time, but additional work is 

ongoing exploring a range of Bayesian approaches to provide recommendations on how such 

methods may be applied to the regulatory setting with pre<defined subgroups. 

This paper has focused on the situation when only one confirmatory Phase 3 trial has been 

conducted, as any unexpected subgroup heterogeneity is most challenging to interpret in that 
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setting.  When a number of studies have been conducted, this will provide additional, critical 

information in terms of whether the heterogeneity of treatment effect is replicated, or whether 

the magnitude of differential treatment effect is consistent across trials.  When heterogeneity 

is not replicated this casts more doubt on the likelihood of a differential effect and should be 

used alongside an assessment of biological plausibility when interpreting whether the 

heterogeneity is more likely to be real, or a chance finding.   

These methods could also be used for post<hoc evaluation of efficacy, or when the overall 

treatment effect is not positive.  This special case has not been addressed in this paper as this 

work is in the context of the regulatory setting where an overall treatment effect would be 

necessary before investigating consistency in subgroups.  Further, post<hoc subgroup analysis 

and/or analysis in the setting of a negative treatment effect can only be considered hypothesis 

generating as the implications for type I error are less clear, and the lack of pre<specification 

of likely subgroup effects (and hence plausibility) makes such results very difficult to 

interpret. 

In summary, the approaches investigated in this paper regarding SEAMOS, SIDES and the 

adjusted effect size estimates via bootstrapping all provide useful context when investigating 

and interpreting subgroup heterogeneity and, when presented alongside the observed data and 

used in conjunction with a clear pre<specification of more plausible subgroups, are useful 

tools for interpreting apparent subgroup effects.  Ongoing work is defining how these 

approaches can be used within the regulatory review setting, whether they can contribute in 

the review of reimbursement dossiers, and how such statistical approaches can be used to 

inform an assessment of the benefit risk profile of a new treatment. 

���
��������
�����
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Overall Treatment 

Effect/standard 

deviation 

N per 

arm 

Subgroup size  

(% of overall 

population) 

Type I error, 

% 

Probability of detecting true subgroup (power)  

[Probability of detecting incorrect subgroup], % 

2x overall effect 4x overall effect 

0.167 760 10% 64.3 20.7 [60.0] 81.1 [60.3] 

  25% 67.5 45.5 [62.0] 99.9 [61.2] 

  50% 65.7 90.9 [62.2] 100 [61.0] 

 1080 10% 64.8 26.7 [62.9] 91.3 [60.4] 

  25% 64.4 60.2 [63.3] 100 [61.4] 

  50% 63.5 97.8 [60.7] 100 [59.4] 

0.33 200 10% 66.4 21.9 [58.8] 76.4 [62.1] 

  25% 63.2 46.3 [57.5] 99.9 [60.8] 

  50% 67.5 91.7 [58.6] 100 [60.6] 

 270 10% 63.0 25.8 [60.7] 90.2 [61.3] 

  25% 66.4 56.7 [59.9] 100 [60.6] 

  50% 63.3 97.6 [59.2] 100 [64.1] 
Notes:  

1.� Estimates in this table are approximate, and are based upon 1000 simulations;  Simulations present number of significant  treatment x covariate interaction effects  

(p < 0.10) in traditional regression analysis based on 10 covariates (1 factor with “real” treatment interaction and 9 factors with no interaction).  

2.� The probability of at least 1 of 9 factors with no interaction showing a significant interaction effect is 1 – ((1 < 0.10)9) ≈ 61% (similar to squared brackets in columns “2x overall 

effect” and “4x overall effect”).  

3.� The probability of at least 1 of 10 factors with no interaction showing a significant interaction effect is 1 – ((1 < 0.10)10) ≈ 65% (similar to column “Type I error, %”). 

�
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Figure 1: Example SEAMOS plot with probability intervals for the most extreme effects. 
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Figure 2: Summary of operating characteristics comparing the subgroup analysis approaches under 

investigation. 

Panels present four sets of simulation results for sample sizes of 200 per group and 270 per group, both 

with an overall large treatment size; and 720 per group and 1080 per group, both with an overall small 

treatment size. 
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