UNIVERSITY OF LEEDS

This is a repository copy of An Integrated 3.5-THz QCL Optical Breadboard System for the LOCUS Atmospheric Sounder.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/140609/</u>

Version: Accepted Version

Conference or Workshop Item:

Valavanis, A orcid.org/0000-0001-5565-0463, Auriacombe, O, Rawlings, T et al. (12 more authors) An Integrated 3.5-THz QCL Optical Breadboard System for the LOCUS Atmospheric Sounder. In: 8th International Quantum Cascade Lasers School and Workshop (IQCLSW), 02-07 Sep 2018, Cassis, France.

This article is protected by copyright.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

An Integrated 3.5-THz QCL Optical Breadboard System for the LOCUS Atmospheric Sounder

<u>A. Valavanis^{1,*}</u>, O. Auriacombe², T. Rawlings², Y. Han¹, S. P. Rea², M. Crook², D. Brooks³, C. Arena³, D. Walker⁴, G. Yu⁴, L. H. Li¹, A. G. Davies¹, G. Savini³, E. H. Linfield¹ and B. N. Ellison²

¹ School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK ² STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK

³ Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK

⁴ National Facility for Ultra Precision Surfaces, OpTIC Centre, St. Asaph, LL17 0JD, UK

*Contact Email: a.valavanis@leeds.ac.uk

Introduction

An "elegant breadboard" system has been developed, which demonstrates the integration of terahertz-frequency (THz) sources, optics and compact cryocooler technology for the LOCUS satellite (Linking Observations of Climate, the Upper Atmosphere and Space Weather) [1]. This proposed satellite instrument has the aim of providing the first global mapping of key molecular species within the mesosphere and lower thermosphere (MLT) from low-earth orbit (LEO), using compact radiometers operating in the 0.8–4.7-THz band and a set of infrared detectors. The LOCUS THz radiometers will incorporate planar-Schottky-diode (SD) mixers, driven using waveguide-integrated local-oscillators (LOS). The LOS will be based on SD multipliers operating at 0.8 and 1.1 THz, and THz quantum-cascade lasers (QCLs) operating at 3.5 and 4.7-THz. A key technological challenge, addressed by the LOCUS elegant breadboard, is the integration of these components into a compact and robust satellite payload, including space-qualified cryocooler technology, and suitable fore-optics. In this paper, we discuss recent progress in QCL integration within the 3.5-THz channel.

Fig. 1: (Left) Top-down CAD illustration of LOCUS breadboard: A, B = telescope optics, C = cryocooler. (Right) Photograph of fully-constructed system.

1. System architecture

Figure 1 shows a CAD illustration and photograph of the LOCUS elegant breadboard system, which is constructed on a custom-machined aluminium supporting plate. A Cassegrain telescope configuration (A,B) is used for the fore-optics to yield a compact instrument envelope ($< 1 \text{ m}^3$). A 480-mm-diameter diamond-turned concave primary mirror, and 100-mm convex secondary were designed to yield 2-km atmospheric-layer resolution from an 800-km altitude, and onto a 25-mm focal plane diameter. The optical focal-plane lies within a compact, space-qualified Sterling-cycle cryocooler. Within a flight-ready system, the mixer and LO for each channel will

be mounted within the cooler. In the present configuration, however, the LO source under-test has been mounted individually, and used as an emitter to test the optical system integration.

Fig. 2: (Left) 3.5-THz QCL mounted within a 150-µm-wide waveguide channel. (Centre) Complete assembled QCL/waveguide enclosure, with diagonal feedhorn aperture visible. Inset: Simulated far-field beam pattern. (Right) Measured near-field profile from Cassegrain optics showing location of primary and secondary mirrors (large and small circles, respectively).

For the LO, a 3.5-THz QCL, based on the active region in [2] has been processed into a doublemetal ridge waveguide with 75- μ m width, and the substrate reduced through mechanical and chemical etching to a thickness of 90 μ m. The device was cleaved to a length of 980- μ m and diced into a 110- μ m-wide chip. The QCL was subsequently solder-mounted within a precision micro-machined 130- μ m-wide × 75- μ m-deep channel within an oxygen-free copper enclosure (Fig. 2:left), and ribbon-bonded to an integrated SMA connector. A second, symmetrical copper section was attached above the QCL to form a rectangular waveguide enclosure around the device. In contrast to our previous work [3], a single QCL ridge has been used, and a diagonal feedhorn (Fig. 2:centre) has been integrated into the waveguide structure to improve free-space coupling.

2. Results and conclusion

The QCL waveguide block was mounted within the cryocooler and driven in continuous-wave (cw) operation using a dc current source. The cryocooler was found to provide sufficient heatlift at the optimal QCL bias (3 W) and maintained a stable temperature of 60 K. The THz output power was measured using a photoacoustic power meter as > 8 mW, and the beamwidth was found to be $5-8^{\circ}$, using a raster-scanned Golay detector positioned in the far-field of the feedhorn antenna. The telescope optics were positioned and aligned on the breadboard, and the THz beam was measured, using the same technique, in the near-field of the primary mirror. Absorbing media were placed adjacent to the beam-path to eliminate stray reflections. Fig. 2:right shows that successful propagation of the 3.5-THz signal along the complete optical path has been achieved. Subsequent alignment optimisation is expected to eliminate the slight field-truncation caused by the positioning of the secondary mirror, and beam-spillover from the QCL source.

In conclusion, we have integrated a 3.5-THz QCL-LO, waveguide and feedhorn within a spacequalified cooler, and demonstrated successful propagation of radiation through a custommachined Cassegrain optical system. This is a key step in raising the technology-readiness level of core system components for the proposed LOCUS satellite instrument.

References

- [1] S. P. Rea *et al.*, "The Low-Cost Upper-Atmosphere Sounder (LOCUS)," in 26th international symposium on space terahertz technology, Cambridge, MA, 2015.
- [2] G. Scalari *et al.*, "Far-infrared ($\lambda \approx 87 \mu m$) bound-to-continuum quantum-cascade lasers operating up to 90 K," *Appl. Phys. Lett.*, vol. 82, no. 19, pp. 3165–3167, May 2003.
- [3] A. Valavanis *et al.*, "Mechanically robust waveguide-integration and beam shaping of terahertz quantum cascade lasers," *Electron. Lett.*, vol. 51, no. 12, pp. 919–921, Jun. 2015.