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Abstract  

In sedimentological investigations, the ability to conduct comparative analyses between deep-marine 
depositional systems is hindered by the wide variety in methods of data collection, scales of 
observation, resolution, classification approaches and terminology. A relational database, the Deep-
Marine Architecture Knowledge Store (DMAKS), has been developed to facilitate such analyses, 
through the integration of deep-marine sedimentological data collated to a common standard. DMAKS 
hosts data on siliciclastic deep-marine system boundary conditions, and on architectural and facies 
properties, including spatial, temporal and hierarchical relationships between units at multiple scales. 
DMAKS has been devised to include original and literature-derived data from studies of the modern 
sea-floor, and from ancient successions studied in the sub-surface and in outcrop.  
The database can be used as a research tool in both pure and applied science, allowing the 
quantitative characterisation of deep-marine systems. The ability to synthesise data from several case 
studies and to filter outputs on multiple parameters that describe the depositional systems and their 
controlling factors enables evaluation of the degree to which certain controls affect sedimentary 
architectures, thereby testing the validity of existing models. In applied contexts, DMAKS aids the 
selection and application of geological analogues to hydrocarbon reservoirs, and permits the 
development of predictive models of reservoir characteristics that account for geological uncertainty.    
To demonstrate the breadth of research applications, example outputs are presented on: (i) the 
characterisation of channel geometries, (ii) the hierarchical organisation of channelised and terminal 
deposits, (iii) temporal trends in the deposition of terminal lobes, (iv) scaling relationships between 
adjacent channel and levee architectural elements, (v) quantification of the likely occurrence of 
elements of different types as a function of the lateral distance away from an element of known type, 
(vi) proportions and transition statistics of facies in elements and beds, (vii) variability in net-to-gross 
ratios among element types. 
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1. Introduction 

Deep-marine siliciclastic systems remain an attractive topic of study, due in large measure to their 
importance for the hydrocarbon industry (Posamentier & Kolla, 2003; Prather, 2003; Hadler-Jacobsen 
et al., 2005; Mayall et al., 2006; Weimer & Slatt, 2007a; Zhang et al., 2017). In particular, a 
considerable research effort has been made to better understand the architectural and facies 
properties of such systems, and especially the role that external controls play in influencing their 
development (e.g., Shanmugam & Moiola, 1988; Reading & Richards 1994; Stow & Mayall 2000; 
Prather, 2003 and Picot et al., 2016). System analogue and classification approaches to 
understanding such controls have been influential (e.g., Reading and Richards, 1994), but are 
necessarily oversimplified as they can only be undertaken with consideration of a limited number of 
controlling factors. In principle, comparative analyses exploiting the large number of studies on deep-
marine systems should enable better characterisation of system architecture (and associated facies 
distributions) under a range of combinations of controls, together with an improved understanding of 
the geological processes they record. However, the synthesis of sedimentological data from deep-
marine systems is hindered by the fact that studies differ with regard to aims, methods of data 
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collection (e.g., outcrop versus seismic), scales of observation and resolution, classification 
approaches (in relation to architecture, facies and unit hierarchy), and nomenclature (cf. Mutti & 
Normark, 1987; Mulder & Alexander, 2001; Weimer & Slatt, 2007a; Cullis et al., 2018).  

To facilitate comparative analysis a relational database, the Deep-Marine Architecture Knowledge 
Store (DMAKS), has been developed. This database allows data collation to be carried out in a 
systematic and standardised manner and can handle large datasets, allowing meaningful 
comparisons to be made between the different datasets that it stores. The capacity to integrate 
different datasets from different deep-marine depositional systems would therefore facilitate 
subsurface prediction, in part by improving the process of analogue selection via quantitative analysis. 
The database extends an approach originally proposed by Baas et al. (2005) and is aligned with 
similar endeavours for fluvial and shallow-marine systems (Colombera et al., 2012, 2016). The fluvial 
and shallow-marine database methodologies have proven the benefits of this approach in 
sedimentary geology through quantitative outputs (Colombera et al., 2012, 2015, 2016). The aim of 
this paper is to demonstrate the value of DMAKS as both a fundamental and applied research tool. 
This will be achieved by:  

1- outlining the structure and content of DMAKS, showing how it enables the 
synthesis and analysis of diverse sedimentological data; 

2- demonstrating potential database applications, through showcasing its 
capabilities in facilitating characterisation of deep-marine systems. 

2. Database purpose, design and standard 

The Deep-Marine Architecture Knowledge Store (DMAKS) is a relational database that hosts data on 
deep-marine siliciclastic depositional systems, recording their architectural properties and facies 
characteristics with consideration of spatial and hierarchical organisation. These data are derived 
from peer-reviewed publications and also unpublished sources (theses, original field studies), and are 
coded in a consistent manner through adoption of a database standard that outlines definitions of 
database entities and data-entry workflows. DMAKS allows digitisation of both the sedimentary 
architecture of ancient successions and the geomorphological organisation of modern environments. 
These data are coded as entries within tables organized in a relational schema implemented in a 
MySQL database management system. DMAKS accounts for geological entities at different scales of 
observation (e.g., from lithofacies to stratigraphic intervals), which are commonly investigated through 
different approaches (e.g., facies and architectural analysis of outcropping successions, bathymetric 
surveying of modern sea floors). A summary of the geological entities considered in DMAKS and their 
relationships is presented in Fig. 1. 
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Fig. 1. Conceptual model showing the geological entities stored in DMAKS. Elements are digitised at 
multiple scales and organised hierarchically. Transitions between units are recorded laterally along 
strike, down-dip (downstream) and vertically. No scale intended. 

 

 

Fig. 2. Representation of the relational schema of DMAKS, showing tables (boxes) and their 
relationships (connecting lines). For simplicity, look-up tables are not included. The type of data these 
tables characterise (i.e., geological units, spatial relationships or metadata) are labelled in italics and 
colour coded. Geological units are arranged in order of descending size. 
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 Database entities and their relationships  

DMAKS currently hosts 18 tables, some of which act as look-up tables for attribute classification. 
Collectively, these tables store:  

i) data on geological units (i.e., sedimentary packages and geomorphological surfaces); 
ii) data on spatial relationships between units, in the form of spatial transitions between 

geological entities of a given type in three dimensions;  
iii) associated metadata (e.g., original data types, descriptors of data quality).  

Each table contains entries representing multiple instances of a particular type of entity. For example, 
the ‘Element’ table digitises multiple architectural bodies or geomorphic surfaces, characterised by 
many attributes. Each entry in a table is given a unique numerical identifier, known as a ‘primary key’, 
which can be used to link the same entries in other tables as ‘foreign keys’. A graphical summary of 
the tables and their relationships is presented in Fig. 2. 

Data are organised in case studies. A case study can refer to a system, or to a portion thereof, which 
has been the subject of study by a group of authors, or by more than a group if the studies were 
intended to be complementary. Alternatively, a case study might include data from multiple deep-
marine systems, if such data cannot be unravelled and related to single system entries.  

Case studies that include data from one sedimentary system are linked to an entry in the ‘System’ 
table. In DMAKS, a deep-marine ‘system’ is defined so as to span sedimentary fairways extending 
from the slope-break to the most distal point of gravity-flow deposition (see Fig. 1). This definition is 
applied flexibly, in view of the possible need to capture features for which this definition may not apply 
(e.g., bottom-current deposits); multiple fairways that terminate in the same receiving basin (i.e., 
topographic depression) are also classified as a single system, e.g., the Santa Monica basin deposits 
(Normark et al., 2009). In systems that possess a geomorphological expression on the present-day 
seafloor, active fairways can be readily recognised (e.g., the Zaire fan, Congo-Angola margin; 
Babonneau et al., 2002). In ancient successions, because of the difficulty in discerning individual 
fairways, systems generally reflect lithostratigraphic or informal divisions that are commonly accepted 
in the published literature. DMAKS stores data on the dimensions of a system, its geographic position 
(and palaeo-position, if applicable), as well as attributes that describe external controls and the 
geological context (e.g., tectonic setting, source area, shelf width, dominant grain size, feeder type). 

A case study can be divided into a number of subset entries. A subset is a set of data that might 
represent a stratigraphic or planform window or a part of a case study that can be distinguished on 
the basis of the information it provides. These entries are used to capture the variability in the 
geological attributes on which a system can be classified and the suitability of the data in a case 
study. A different subset may be assigned to reflect geographic or stratigraphic subdivisions (e.g., 
attribution to slope, ramp, or basin-plain settings), variation in attributes that describe external 
controls, changes in data type, as well as variability in the suitability of the data for certain types of 
analyses (e.g., for deriving output on unit dimensions, proportions, transition statistics). Ultimately, 
subsets aid database interrogation. A subset can be linked to data on geological entities directly, or 
via additional tables (‘2D data’ and ‘1D data’ tables) containing specific metadata when the data are 
sourced from a 2D or 1D dataset (e.g., cross-sections or logs). 

Information on sedimentary basins, smaller sub-basins and individual depocentres is also stored in 
DMAKS. Attributes include tectonic setting, mechanisms of formation, and geological evolution (e.g., 
subsidence rates, basin type according to the classification of Ingersoll, 2012) and basin 
physiography (e.g., basin dimensions, slope gradient, topographic confinement). Through time, 
different systems might accumulate into the same sedimentary basin (e.g., the Cerro Toro and Tres 
Pasos Formations into the Magallanes Basin, Romans et al., 2011). However, each ‘basin’ record is 
created to allow description of the characteristics of the receiving basin during the lifetime of a specific 
system (see Table 1). In DMAKS, a system may be associated with a number of basins, in cases 
where the system accumulates over sub-basins consisting of multiple coalescing topographic 
depressions or depocentres (e.g., the Brazos-Trinity in the Gulf of Mexico, Prather et al., 2012). 
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Parent-child relationships between basins, sub-basins and depocentres can be recorded in the ‘Basin’ 
table. 

Currently, DMAKS stores 40 case studies from 29 systems, and 3 multi-system case studies (Table 1, 
Fig 3).  

 

Fig. 3. Map showing the locality of the 40 case studies which relate to a single system, currently 
included in DMAKS. Numbers correspond to identifiers in Table 1. Image from Stöckli et al. (2005). 

 
  Case study System Basin Literature  
1 Late Pleistocene 

deposits offshore East 
Corsica, Golo Turbidite 

System 

Golo Turbidite 
System Golo Basin 

Pichevin et al ., 2003; Gervais et al., 
2006(a; b); Deptuck et al., 2008; 
Prélat et al., 2010; Sømme et al., 
2011 

2 Ross Sandstone at Loop 
Head Peninsula and 
Ballybunnion, Ross 

Formation 

Ross 
Sandstone 
Submarine 
Fan System 

Shannon Basin Pyles 2007; MacDonald et al., 2011 

3 Channel-levee system in 
the DeSoto canyon, NE 
Gulf of Mexico, Joshua 

System  

Joshua 
Channel 
System 

- Posamentier, 2003 

4 Channel Complex, Popo 
Fault Block, Brushy 
Canyon Formation 

Brushy 
Canyon Delaware Basin  

Beaubouef et al., 1999; Gardner & 
Borer, 2000; Gardner et al., 2003; 
Beaubouef et al., 2007; O’Byrne et 
al., 2007(a) 

5 Channel dimensions  
based upon data type 

taken from McHargue et 
al., 2011a 

- - McHargue et al., 2011(a) 

6 Channel gradients, 
continental slope of the 
Niger Delta taken from 
McHargue et al., 2011 

- - 
McHargue et al., 2011(a); 
McHargue et al., 2011(b) 

7 Channel element 
thickness based upon 
gradient taken from 

McHargue et al., 2011b 

- - McHargue et al., 2011(b) 
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8 
Isaac Unit 5, Castle 
Creek area, Isaac 

Formation 

Isaac 
Formation - 

Arnott, 2007(a; b); Arnott & Ross., 
2007; Barton et al., 2007(a); 
Navarro et al., 2007(a; b); O’Byrne 
et al., 2007(b); Ross & Arnott, 2007; 
Schwarz & Arnott, 2007; Khan & 
Arnott, 2011 

9 Turbiditic sandstones in 
the Sierra Contreras, 
Tres Pasos Formation 

Tres Pasos 
Deep-Water 

Slope System 
Magallanes Basin  

Barton et al., 2007(b; c); Armitage et 
al., 2009; Romans et al., 2011 

10 Pleistocene basin-floor 
offshore E Kalimantan, 
Kutai Turbidite System 

Kutai 
Pleistocene 

System 
Kutai Basin  

Saller et al., 2004; Saller et al., 
2008; Sugiaman et al., 2007; Prélat 
et al., 2010 

11 Basin-floor deposits at 
Willow Mountain, Bell 

Canyon Formation 

Bell Canyon 
Turbidite 
System 

Delaware Basin  Barton & Dutton, 2007 

12 Quaternary Amazon Fan 
offshore N Brazil, 
Amazon Turbidite 

System 

Amazon 
Turbidite 
System 

- 
Flood et al., 1991; Piper & Normark, 
2001; Jegou et al., 2008 

13 Channel-levee deposits 
Lago Nordenskjold and 
Laguna Mellizas Sur, 
Cerro Toro Formation 

Cerro Toro 
Deep-Water 

System 
Magallanes Basin  

Bouma, 1982; Barton et al., 2007(b; 
c) 

14 Turbidite lobe 
architecture from the 

Oman margin, Al Batha 
Turbidite System 

Al Batha 
Turbidite 
System 

- Bourget et al., 2010 

15 Modern Deep Sea Fan, 
offshore Congo-Angola 
margin, Zaire Turbidite 

System 

Zaire Fan - 
Babonneau et al., 2002; Droz et al., 
2003;  Marsset et al., 2009; 
Babonneau et al., 2010 

16 Submarine canyons and 
fans offshore California, 

Santa Monica Basin 
Santa Monica  Santa Monica Basin 

Normark et al., 1998;  Piper et al., 
1999; Piper & Normark, 2001; 
Normark et al., 2009 

17 G-series turbiditic 
sandstones in the NE 
Bay of Bengal, Shwe 

Fan 

Bengal Fan - 
Barnes & Normark, 1985; Pickering 
et al., 1989; Yang & Kim, 2014 

18 Condor Channel Belt in 
the Parque Nacional 

Torres del Paine, Cerro 
Toro Formation 

Cerro Toro 
Deep-Water 

System 
Magallanes Basin  

Bouma, 1982; Barton et al., 2007(b; 
c) 

19 Black's Beach channel 
system, La Jolla, 

California, Scripps & 
Ardath Formations 

Black's Beach San Diego Basin 
May & Warme, 2007; Stright et al., 
2014 

20 San Clemente slope 
channel system, 

California, Capistrano 
Formation 

Capistrano 
Formation 

Capistrano 
Embayment 

Li et al., 2016 

21 Channel complexes, 
Drabber Dhora, 

Pakistan, Pab Formation 

Lower Pab 
Turbidite 
System 

Pab basin 
Eschard et al., 2004; Euzen et al., 
2007(a; b);  Albuoy et al., 2007 

22 Gendalo 1020 Fan, 
offshore Kalimantan, 

Miocene System 
Gendalo Field Kutai Basin  

Sugiaman et al., 2007; Saller et al., 
2008 

23 Pleistocene submarine 
canyon fill, eastern 
central Italy, Monte 
Ascensione system 

Monte 
Ascensione 

system 
Peri-Adriatic Basin Di Celma et al., 2014 
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24 Outcrop 5 levee-channel 
turbidites, Papar 

Highway NW Borneo, 
West Crocker Formation 

West Crocker 
Fan System 

Northwest Sabah 
Basin  

Crevello et al., 2007(a; b; c); Hall, 
2013 

25 
Morillo 1 member 

channel systems, Ainsa, 
Morillo Formation 

Morillo 
Turbidite Sub-

System 
Ainsa Basin 

Moody, 2010; Moody et al., 2012; 
Bayliss & Pickering, 2015 

26 Pleistocene canyons, 
NW Niger Delta, Benin 
major & Benin minor 

systems 

Continental 
slope NW 

Niger Delta 
- 

Damuth, 1994; Deptuck et al., 2007; 
Olabode & Adekoya, 2008; Deptuck 
et al., 2012; Hansen et al., 2017(a) 

27 Beacon Channel 
Complex, Delaware 
Mountains, Brushy 

Canyon Formation (data 
from Beaubouef) 

Brushy 
Canyon Delaware Basin  

Beaubouef et al., 1999; Gardner & 
Borer, 2000; Gardner et al., 2003; 
O' Byrne et al., 2007(a); Beaubouef 
et al., 2007 

28 Beacon Channel 
Complex, Delaware 
Mountains, Brushy 

Canyon Formation (data 
from Pyles) 

Beaubouef et al., 1999; Gardner & 
Borer, 2000; Gardner et al., 2003; 
O' Byrne et al., 2007(a); Pyles et al., 
2010 

 
29 

Slope channel system, 
San Fernado, Mexico, 

Rosario Formation 

San Fernando 
Turbidite 
System 

San Quintin Sub-
basin 

Morris & Busby Spera, 1988; Morris 
& Busby Spera, 1990; Dykstra & 
Kneller, 2007; Kane et al., 2007; 
Kane et al., 2009; Kane & Hodgson, 
2011; Callow et al., 2013(a; b); 
McArthur et al., 2016; Hansen et al., 
2017(b); Li et al., 2018 

30 
 Isaac channel 3, Castle 

Creek area, Isaac 
Formation 

Isaac 
Formation - 

Arnott, 2007(a; b); Arnott & Ross., 
2007; Barton et al., 2007(a); 
Navarro et al., 2007(a; b); O’Byrne 
et al., 2007(b); Ross & Arnott, 2007; 
Schwarz & Arnott, 2007; Khan & 
Arnott, 2011 

31 
Channel-levee 

complexes, Antarctica, 
Himalia Ridge Formation 

Himalia Ridge 
Formation 
Turbidite 
System 

Fossil Bluff Group 
Basin 

Butterworth et al., 1988; MacDonald 
et al., 1995; Miller & MacDonald, 
2004; Butterworth & MacDonald, 
2007; Riley et al., 2012 

32 

Deep-water clastic 
succession, Taranaki, 

Urenui Formation 

Late Miocene 
North Taranaki Taranaki Basin 

King & Trasher, 1992; King et al., 
1994;  King et al., 1996; Arnot et al., 
2007(a; b); Browne et al., 2000; 
Browne et al., 2005; Browne et al., 
2007(a; b); King et al., 2007(a; b; c); 
King et al.,2011; Rotzien et al., 
2014; Masalimova et al., 2016 

33 Ainsa-1 & Ainsa-2 
channel complexes, 

Huesca, San Vincente 
Formation 

Ainsa Turbidite 
System Ainsa Basin 

Arbues et al., 2007; Falivene et al., 
2010; Pickering & Cantalejo, 2015; 
Pickering et al., 2015; Scotchman et 
al., 2015 

34 

Isaac channel complex 
2, S Castle Creek area, 

Isaac Formation 

Isaac 
Formation - 

Arnott, 2007(a; b); Arnott & Ross., 
2007; Barton et al., 2007(a); 
Navarro et al., 2007(a; b); O’Byrne 
et al., 2007(b); Ross & Arnott, 2007; 
Schwarz & Arnott, 2007; Khan & 
Arnott, 2011 

35 
Champsaur sandstones, 

Haute Alpes, Grès du 
Champsaur Formation 

Grès du 
Champsaur 

Turbidite 
System 

Western 
Champsaur Basin 

Waibel, 1990; McCaffrey et al., 
2002; Brunt, 2003; Brunt & 
McCaffrey, 2007; Brunt et al., 2007; 
Vinnels et al., 2010 
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36 Active channel-mouth 
lobe complex, Congo-
Angola margin, Zaire 

turbidite system 

Zaire Fan - 
Droz et al., 2003;  Marsset et al., 
2009; Dennielou et al., 2017 

37 Tanqua Karoo basin 
floor fan complex 

(studied by Prélat et al., 
2009) 

Tanqua Karoo 
Turbidite 
System 

Tanqua depocentre  

Goldhammer et al., 2000; Hodgson 
et al., 2006; Bouma et al., 2007; 
Bouma & Delery, 2007; Prélat et al., 
2009; Prélat et al., 2010; Kane et 
al., 2017 

38 
Unit A proximal basin 

floor system, Laingsburg 
Formation 

Laingsburg 
Karoo 

Turbidite 
System 

 

Laingsburg 
depocentre   

 

Sixsmith et al., 2004; Fildani et al., 
2007; King et al., 2009; Flint et al., 
2011; Prélat & Hodgson, 2013; 
Hofstra et al., 2015; Spychala et al., 
2017; Spychala et al., 2017 

39 
Unit B & A/B interfan 

base-of-slope system, 
Laingsburg Formation 

Grecula et al., 2003; Sixsmith et al., 
2004; Pringle et al., 2010; Flint et 
al., 2011; Brunt et al., 2013; Hofstra, 
2016 

40 
Unit C & B/C interfan 
lower-middle slope 
system, Fort Brown 

Formation 

Grecula et al., 2003; Sixsmith et al., 
2004; Pringle et al., 2010; Di Celma 
et al., 2011; Flint et al., 2011; Brunt 
et al., 2013; Morris, 2014; Morris et 
al., 2016 

Table 1. Case studies currently stored in DMAKS and the original source works from which the data 
have been derived. Basin and system records (if applicable) are also shown. Numbering relates to the 
order of case study input in DMAKS. 

2.1.1 Elements 

An ‘element’ is a geological unit (sedimentary package or geomorphic surface) with a distinct 
architectural or geomorphological expression, which reflects a particular suite of processes occurring 
in a specific deep-marine sub-environment. Elements can be nested hierarchically. They are typically 
discerned in the original sedimentological studies by a combination of descriptive features: geometry, 
scale, internal facies (characterised in the ‘Facies’ table, see Section 2.1.2) and relationships with 
bounding surfaces (e.g., Mutti & Normark, 1987; Pickering et al., 1995; Gardner et al., 2003; 
Posamentier & Walker, 2006; Terlaky et al., 2016) – characteristics that form the basis of the 
‘architectural-element analysis’ (cf. Miall, 1985).  

Architectural units are commonly organised in a hierarchical manner and a variety of hierarchical 
classification schemes exist in the literature (see review in Cullis et al., 2018). To permit synthesis of 
different datasets, hierarchical relationships between elements in DMAKS are recorded either by: i) 
tracking parent-child element relationships, i.e., the containment of a lower-scale element within a 
higher-scale parent element; ii) tagging the highest-order elements (the largest element unit of a 
particular ‘general’ type, see below) and iii) recording the hierarchical assignment made in the source 
work (see review in Cullis et al., 2018 of the range of approaches that exist); bespoke hierarchical 
classifications can also be accommodated.   

Different element ‘types’ can be categorised on their interpreted sub-environment of formation, with 
reliance on interpretations by the authors of the original studies. DMAKS categorises element types in 
a three-tiered manner based upon the available data and specificity in sub-environment attribution. 
Element types can be classified according to the following schemes:- 

i) element ‘depositional style’, based upon the unit being either a ‘cut (and fill)’ or 
‘accretionary deposit’;  

ii) ‘general element type’, an interpretative classification of element sub-environments that 
largely relies on observational (geometrical and geological) characteristics, applicable 
over a range of hierarchical scales; all classes are mutually exclusive (Table 2); 
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iii) ‘detailed element type’, a more specific, interpretational classification of depositional sub-
environments; these classes are in some cases restricted to a particular hierarchical 
level; all classes are mutually exclusive (Table 3). 

Element boundaries might be marked by bounding surfaces, or by gradational facies changes (e.g., 
as an outer-levee deposit interdigitates into background deposition). Channel elements are defined as 
segments of a channel network bounded by points of channel avulsion or branching (e.g., tributary or 
distributary channel bifurcation); additionally, channels can be split into multiple channel elements if a 
change is observed in the depositional style (e.g., a canyon passing downstream to an accretionary 
channel). Spatial relationships between elements are stored in the ‘Element transition’ or ‘Channel 
network’ tables (see Section 2.1.4 for detail), the latter only applicable to dip transitions between 
channel elements. Elements are stored in DMAKS as ‘sedimentary bodies’, ‘geomorphic surfaces’ or 
‘mixed’ units (e.g., a parent unit which contains both sedimentary body and geomorphic surface 
components). Elements are characterised by many attributes, e.g., their 3D geometry, sinuosity, 
palaeoflow, gradient, age (absolute and relative), style of stacking of internal units, net-to-gross ratio.  

General Description 

Channel An elongate element with negative relief (modern form) or concave-up basal 
surface (deposit), often observed as the primary pathway of sediment transport 
in a deep-marine system. 

Levee An aggradational sediment wedge found adjacent to a genetically-related 
channel. The overbank element forms as sediment-laden flows over-spill their 
confined sediment pathways.  

Scour Erosional element with negative relief (modern form), or concave-up basal 
surface (deposit), usually displaying a semi-ellipsoidal (‘scoop’) cross-section, 
often interpreted as the result of rapid flow expansion or hydraulic jumps. 

Lateral splay An aggradational element formed as sediment-laden channelised flows overtop 
or breach their banks. This aggradational element can display a lobate or fan-
shaped plan-view geometry, expressing a flow direction transverse to the 
associated confined flow. 

Terminal deposit A depositional body that can display a lens, mounded or sheet 3D geometry. A 
terminal deposit is found at the terminus of a genetically-related channel 
architecture. 

Mass-transport 
deposit 

An element bound by unconformable surfaces and constituted by remobilised 
sediments. 

Background A laterally widespread accretionary element composed of very fine grained 
(clay to silt) sediments from hemipelagic and pelagic fallout.  

Table 2. General element type descriptions employed in DMAKS. A scale-independent nomenclature 
reflecting different sub-environments of deep-marine deposition based upon geometrical and 
geological (e.g., nature of contacts and facies associations) characteristics. Element types are 
mutually exclusive; new types can be added to meet available data.  

 

Detailed Description 

Aggradational 
channel fill 

A ‘channel’ element that records vertical accretion (aggradation), with no 
significant lateral shift in the ‘axial’ part of the deposit. 

Lateral-accretion 
package 

Sediment organised in packages that dip towards the axis of a genetically 
related channel. They are interpreted as the depositional product of the finite 
lateral migration of a channel. 

Master levee A ‘levee’ element which provides lateral confinement to a channel and is not 
itself contained within a larger channel. 

Overbank terrace A ‘levee’ element that is contained within a larger-scale channel-form, in some 
cases bounded by master levees. 

Terminal lobe A lobate or fan shaped plan-view ‘terminal deposit’ geometry. They are 
composed of multiple facies assemblages that display vertical offset in their 
stacking, typically in a compensational manner.  
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Table 3. Detailed element type descriptions used in DMAKS. All elements are mutually exclusive and 
the list can be expanded to account for new available data and interpretations. This nomenclature 
builds upon the ‘general element types’ (Table 2), using process interpretations to inform depositional 
deep-marine sub-environments. 

 

2.1.2 Facies and beds 

The ‘Facies’ table records the lithological and textural characters of lithofacies or 'facies', the smallest 
units characterised in the database; each facies unit is contained in a single element. Facies are 
distinguished where a change is observed in lithology (texture and grain size), grading style, 
sedimentary or biological structures, palaeoflow direction, or across hiatal surfaces and element 
boundaries. Each facies record can be tagged as being part of a bed unit, allowing information on 
‘beds’ to also be stored in the Facies table. A bed is defined as a layer of sedimentary rock bounded 
below and above by either accretionary or erosional bounding surfaces (sensu Campbell, 1967) and 
deposited by a single flow event, formed by either single- or multi-pulsed flows. The position of a 
facies within its parent element is recorded via lateral and dip position identifiers, see Section 2.2.2. 

Facies attributes include the original facies codes, grain size, sorting, roundness and clast support 
type (based upon common field notation, cf. Tucker et al., 2011). Grain-size is classified based upon 
the textural classes of Folk (1980). A textural class is assigned when measured or estimated grain-
size distributions allow it. Percentages of grain-size classes based upon granulometric analyses can 
also be stored when known. The grain size of a sand/sandstone (‘S’ facies type) can be specified as 
very coarse to very fine (Wentworth, 1922). The mud, ‘M’, class of Folk’s textural classification (1980) 
can be further specified into silt/siltstone (‘Z’) or clay/claystone (‘C’) categories if possible. When the 
level of detail for Folk’s classes is not provided, facies types can be classified as generic 
sand/sandstones (_S), mud/mudstones (_M), and gravel/conglomerates (_G). 

Sedimentary structures are characterised through a number of attributes. For instance, the general 
structure of a facies can be classified as ‘massive’, ‘laminated’, ‘slumped’ (when original bedding can 
be identified) or ‘chaotic’. Laminations can be further characterised on their type (planar parallel, non-
planar parallel, ripple cross-lamination, cross-stratification, hummocky or wavy), deformation 
(convoluted, growth structures, flames or unspecified), and clarity (well-developed or faint). In 
addition, a facies entry can also record information relating to grading, palaeoflow direction, 
overprinting structures, presence of amalgamation surfaces, trace fossils, clast characteristics (e.g., 
type, density and orientation), absolute age, etc. The dimensions of facies are also recorded. 

Most commonly, facies and their vertical transitions are derived from a measured 1D section (e.g., 
core, a stratigraphic column or wire-line log). The vertical ordering of facies is thus stored in the 
Facies table together with information on the facies basal contact (e.g., contact type and geometry).  

2.1.3 Aggregate data 

In some cases, data are available in the form of statistical summaries that cannot be related to an 
individual element, bed or facies unit. These data, which describe a group of likewise classified 
genetic units, are stored in the 'Subset statistics' table. The table records descriptive statistics of unit 
dimensions, net-to-gross ratios, and transition statistics, linked to a specific subset. 

2.1.4 Transitions and relationships 

Three-dimensional spatial relationships between adjacent units are stored in DMAKS, as transitions. 
Transitions between elements are stored in the ‘Element transitions’ table, except channel-to-channel 
dip relationships which are stored separately in the ‘Channel networks’ table. Transitions between 
facies can be captured in the ‘Facies’ table in the form of vertical ordering or are stored in the ‘Facies 
transitions’ table. 

Each transition entry contains the unique identifiers for the two units in question (cf. Colombera et al., 
2012, 2016). Transitions can be either vertical (younging), lateral (rightwards when facing 
downstream) or down-dip (downstream) of the system (Fig. 1). The style of contact across which 
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elements and facies transition can also be documented (e.g., as sharp, sharp erosional, or 
gradational). Transitions stored in the facies table may also be classed as ‘artificial’ or ‘inferred’, the 
latter used when a transition is deduced instead of seen. An artificial contact is employed when a 
facies entry needs to be ‘split’ artificially, for example to map its occurrence at multiple lateral or dip 
positions in the same element. Classifiers are used to indicate the position where elements are seen 
to transition, based on the way elements are subdivided along dip and strike (e.g., axis to margin, 
proximal to distal; see Section 2.2.2). Transitions are stored between all adjacent objects, regardless 
of hierarchical significance. 

The ‘Element transition’ table also accounts for the stacking style of elements, by recording their 
degree of vertical incision, as well as vertical and lateral offsets. The dip relationships between 
channel elements, stored in the ‘Channel network’ table, are used to track channel evolution, by 
recording avulsion nodes, bifurcation points, or confluences.  

Spatial relationships between datasets are also digitised in DMAKS. For instance, the ‘Subset 
relations’ table records transitions between subsets of the same case study, whereas the ‘1D 
relations’ table records the relative position of 1D datasets. 

 Database-wide definitions and common attributes 

DMAKS includes both quantitative (e.g., dimensions, sinuosity index) and qualitative data (e.g., basin 
type, element type). In order to allow comparative analysis, data standardisation is achieved by 
employing a consistent and repeatable process of data entry. Common attributes across different 
tables all use the same conventions and units of measure (see Section 2.2.1). Original source-work 
coding or naming conventions are also stored, allowing the data to be traced back to interpretations in 
the original source. Text-domain “note” attributes are also included for every table, to allow the 
inclusion of any additional information. 

Metadata are employed throughout the database to record the quality of data stored. For instance, a 
‘data quality index’ (DQI) attribute is used to rank the perceived data quality and reliability of 
interpretations (e.g., element-type classifications), using a three-tiered classification (from A, highest, 
to C, lowest quality; cf. Baas et al., 2005; Colombera et al., 2012; 2016). DQIs are used to rank the 
confidence with which attributes can be assigned, based on expert judgement. 

2.2.1 Dimensions 

Length, width and thickness are all taken with respect to a reference system orientated relative to the 
dominant local (palaeo-) flow direction, except for levee elements, whose dimensions are measured 
relative to (palaeo-) flow direction in their genetically related channel. Metadata characterising these 
measurements are also stored. For example, unit dimensions are classified on the type of 
measurement, as values may not represent the true maximum element width, length or thickness (see 
Fig. 4). Dimensions may be incomplete as a product of erosion or because of the spatial limits of the 
dataset (e.g., outcrop termination). The completeness of element dimensions can be classified as 
either true, apparent, partial or unlimited, sensu Geehan & Underwood (1993). A ‘spatial type’ 
attribute classifies the spatial constraints of the dataset from which the measurements have been 
taken (e.g., whether a ‘true’ value has been recorded from observations in 1D, 2D or 3D). 
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Fig. 4. Dimensional parameters used to characterise element dimensions with respect to a) type of 
measurements and b) spatial coverage offered by a dataset. The ‘true restored’ measurement type is 
only applicable to thicknesses, while the ‘unlimited correlated’ class is only applicable to width and 
length values. 

 

2.2.2 Position classifiers 

Position classifiers are used to record i) the position across which an element–to-element transition 
occurs, and ii) the position of a facies within its parent element, to account for lateral variations in 
facies architecture within elements. Intra-element divisions along strike and dip have therefore been 
established based upon geometrical rules (Fig. 5). An element is divided into 5 equal portions along 
its strike width, denoting margin/fringe, off-axis and axis (core) regions. Levee elements are divided 
into 3 portions based upon the position of their crest peak. The dip length of an element is divided into 
3 equal portions, denoting proximal, medial and distal regions. Descriptions of the internal partition of 
elements based on criteria of facies organisation and as adopted in the source work can be 
additionally recorded in the ‘Facies’ table. 
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Fig. 5. Position classifiers applicable in the ‘Facies’, ‘Facies transition’ and ‘Element transition’ tables. 
Lateral intra-element divisions for a) channel, levee and b) terminal deposit architectures are shown. 
A general ‘crest’ classifier is used when the levee crest peak is unknown or unclear. The outer crest to 
margin/fringe boundary is defined as the half-distance between the crest peak and the elements outer 
termination point. Dip positions in a channel and terminal deposit are shown in part c). 

 

3. Database applications 

DMAKS is interrogated through Structured Query Language (SQL). Seven example applications are 
presented here, based upon quantitative outputs derived from the current database content (Table 1). 
These examples demonstrate some of the types of analyses that are feasible, and how these can be 
applied to further our understanding of deep-marine systems. Data upload is ongoing. 

 Quantification of element geometries 

The ability to integrate data from seismic and outcrop enables dimensional data to be considered 
across multiple orders of magnitude, bridging the gap between studies conducted at different scales 
of observation and resolution. For example, Figs. 6 A and B show discrepancies between channel 
widths described in outcrop vs. seismic or bathymetric studies, which have mean widths of 746 and 
1,120 m, respectively. 

DMAKS output can be employed to assess trends between geometrical properties, leveraging a wide 
data pool. For instance, a 10:1 width-to-thickness aspect ratio (resulting in a constant linear 
relationship of y = 10x, where y is width and x is depth) is often cited to be typical for submarine 
channel-forms and channel bodies, based upon the study conducted by Clark & Pickering (1996; Fig. 
6 C). This result is based upon 50 measurements of channel and scour elements associated with a 
range of hierarchical scales. Weimer & Slatt (2007b) extended upon this proposed trend by 
suggesting that the channel aspect ratio changes in response to system gradient, resulting in a width-
to-thickness ratio of 50:1 down-dip compared to the 10:1 relationship up-dip. Data collected by 
Konsoer et al. (2013) from 23 modern submarine channels suggests that width-to-depth approximates 
the 50:1 ratio, whereby channel width (y) varies with depth (x) following a relationship of y = 47.4x0.94. 
However, these channel measurements are a mix taken from both slope and basin-plain 
environments (Fig. 6 C). DMAKS currently enables comparison of data from 196 channels of all 
hierarchical scales derived from multiple studies (Fig. 6 C). Based on DMAKS, a positive relationship 
between channel width and thickness (or depth, in the case of modern forms) is also identified (r2 = 



14 
 

0.50, Pearson’s coefficient = 0.91, p-value <0.001), but with a smaller exponent (y = 73.7x0.61) in 
comparison to the previously proposed trends.  

Outputs can be filtered on any boundary conditions, to test relationships between element geometries 
and possible predictors or controlling factors. For instance, channel elements from sand-rich systems 
are associated with thinner and narrower channel geometries (Fig. 6 C), supporting the role of 
controlling factors on which depositional models have been categorised by Reading & Richards 
(1994) and Normark & Piper (1991). Additionally, channel elements from sand-prone systems show a 
larger aspect ratio, on average, compared to channels from systems dominated by fine-grained 
deposits, challenging the findings of Delery & Bouma (2003). 

Scatter is observed, over an order of magnitude, about the line of best fit (Fig. 6 C). The geometric 
variability of channels has been related to the variability that can be found in turbidite flow properties 
(Wynn et al., 2007; Konsoer et al., 2013; Jobe et al., 2016 and Qin et al., 2016). For example, high-
aspect-ratio channel outliers identified in Fig. 6 C are typically associated with weakly confined 
environments (c.f. spill phases sensu Gardner et al., 2003, or distributary channels sensu 
Posamentier & Kolla, 2003). This association supports work by Brunt et al. (2013), suggesting that 
deep-marine channel geometry can be affected by the degree of flow confinement. 

 
Fig. 6. A-B) Histograms of the measured width of channel elements based upon outcrop (A) and 
seismic and bathymetric data (B). A lognormal distribution curve fitted to a merge of both datasets is 
plotted in both graphs (dashed line; population mean = 953 m). Note the logarithmic scale and thus 
the positive skewness of the data. C) Width vs thickness (or depth, in the case of modern forms) of 
channel elements. The 10:1 width-to-thickness aspect ratio proposed by Clark & Pickering (1996; red) 
is plotted, as well as power-law regression lines for the DMAKS dataset (black), and the study by 
Konsoer et al. (2013; orange). Channels are classified by the dominant grain size for the system, as 
sand dominated (green), mud dominated or mixed (blue) or unclassified (grey). Outliers above 
roughly 100:1 are mostly channels documented as showing weak confinement in the original source-
work. N = number of channel elements included in each plot. All measurements are true (maximum) 
values.  

 Comparisons of hierarchical organisation 

The geological significance of deep-marine hierarchical relationships is not yet fully understood, and 
its comprehension is in part hindered by the inconsistent use of terminology (Cullis et al., 2018). The 
interpretational difficulties become evident when element dimensions are plotted against the 
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terminology adopted in the original sources, as in Fig. 7, which demonstrates the size range observed 
in channel and lobate features sharing the same nominal architectural classification. A large spread in 
the element dimensions can be seen for each term, even when hierarchical parent-child relationships 
are considered, as terminology can be associated with multiple ‘parent’ hierarchical orders. 
Hierarchical terminology reported in source works can therefore be seen to provide no consistent 
dimensional constraint to element dimensions.  

Often, comparisons between units occurring in different deep-marine systems and associated with 
hierarchical categories involve re-assignment of reported hierarchical classifications to an alternative 
scheme (e.g., Sprague et al., 2005; Prélat et al. 2010; Straub & Pyles 2012). These comparisons are 
arguably largely subjective and inherently uncertain. DMAKS permits assessment of how the original 
terminology relates to nested parent-to-child relationships between elements, and how these 
hierarchical relationships are reflected in the relative size of the elements (e.g., Fig. 7). Scaling 
relationships between child and parent elements of both channels and terminal deposits range 
between 1:1 and 10:1 (Fig. 8). Such information can improve our understanding of the hierarchical 
organisation of deep-marine systems and has the potential to help inform reservoir models.  

DMAKS enables comparisons between architectural elements to be undertaken in a consistent 
manner, by querying on any combination of empirical attributes, related for example to scale, stratal 
trends, bounding-surface relationships (Figs. 7 and 8), or facies and architectural characteristics 
associated with a particular sub-environment. Therefore, DMAKS can be used to make objective 
comparisons between case studies that use different terminologies or hierarchical definitions. This 
arguably results in more meaningful analyses of the organisation of sedimentary architecture in deep-
marine clastics than what can typically be attempted on the basis of terminologies or the re-
assignment of data to classification schemes. 
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Fig. 7. Channel-element thickness (A) and terminal-deposit width (B) ‘true (maximum)’ measurements 
classified by the original source-work terminology. The number of parent elements encapsulating an 
element is indicated, starting from a known highest-order element (zero). 
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Fig. 8. Relationships between the geometry of ‘child’ elements and the geometry of the ‘parent’ 
elements in which they are contained, for channel elements (blue diamonds, A-B) and terminal 
deposits (orange circles, C-D). Data are plotted for element thickness (A, C) and width (B, D). Only 
true (maximum) measurements are considered.  

 Characterisation of architectural spatial arrangements 

DMAKS allows spatial relationships between architectural units to be recorded in 3D, along the 
vertical, strike and dip directions. These data can be used to produce information on scaling 
relationships between co-genetic deposits. For example, Fig. 9 describes the scaling relationship 
between the width of channel elements and the width of genetically-related laterally adjacent levees. 
A positive relationship between master levees (i.e., a levee not contained in a larger channel body, 
see Table 3) and their adjacent channels is depicted (r2 = 0.62), in agreement with the findings of 
Skene et al. (2002) and Nakajima & Kneller (2013). Filtering the data by physiographic setting 
suggests that basin-plain environments are associated with wider master levees and channels 
compared to their slope counterparts, supporting the notion that steeper slopes result in narrower 
master levees (Nakajima & Kneller 2013). These outputs can be utilised as predictive tools, for 
example for prediction of thin-bedded volumes and in reservoir modelling. 

Additionally, DMAKS can produce outputs that describe the likelihood of occurrence of a certain 
architectural element away from a known point, as in Fig. 10. Such outputs serve as predictive 
models that can be used to support conceptual models of the subsurface and guide reservoir-
development planning, especially in data-poor situations. 
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Fig. 9. Cross-plot of the width of channel elements and genetically-related laterally adjacent levees. 
Levees are further categorised as master levees or overbank terraces (see detailed element type 
descriptions, Table 3). Elements are classified by depositional setting (red: slope; blue: basin plain). 
All widths are ‘true (maximum)’ values. A power-law regression line associated with master levee-
channel relationships is shown (bold black line; y =1.6x1.16), as well as a power law regression line for 
master levee-channel relationships located on the basin plain (blue dashed line; y=356.2x0.43, r2 = 
0.22). 
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Fig. 10. Plot showing the frequency of different element-type occurrences as a function of the lateral 
(strike) distance away from the axis of a channel. The channel elements at the origin do not include 
modern channel forms and are not described in the source-work as a ‘complex’ or ‘storey’. Lateral 
along-strike transitions (in both directions away from the channel axis) are counted between highest-
order elements. N records the total number of element transitions. Grey dashed lines mark the 
distances at which frequencies were calculated. 

 Temporal variations in architecture 

Geochronological dating of deep-marine deposits is usually limited with respect to sampling density 
and resolution, limiting the ability to constrain absolute ages of individual elements. However, the 
relative depositional age of deposits can often be inferred based upon geological principles of 
succession. Data on the relative timing of deposition are stored for elements in DMAKS, allowing 
derivation of outputs that describe how architectural attributes vary in a relative time frame. For 
example, Fig. 11 shows the change in lobate terminal deposit geometry in terms of length-to-width 
ratio over time for a number of different subsets. An oscillation through time between more elongate 
and more equant deposits can be seen in some of the examples, e.g., the South Golo lobe and Kutai 
basin-plain fan, Fig. 11 A-B. Additional data might provide the basis for testing whether this apparent 
cyclicity is common in the architecture of turbidite lobes and sheets, and might elucidate whether this 
could reflect a form of autogenic organisation.   
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Fig. 11. Changes in lobate terminal deposit length-to-width ratios (vertical axes), over relative time 
scales (horizontal axis). Each box corresponds to a different subset, where terminal deposits are 
either i) contained in a larger parent terminal deposit (i.e., the South Golo fan, Kutai fan and Shwe 
fan) or ii) are the largest known lobate terminal deposits on the basin-floor in the entire fan (i.e., the 
Amazon and Zaire deposits). For each subset, the comparison only includes ‘true’ widths and lengths 
of deposits of the same hierarchical order. Each point reflects a terminal deposit; lines are broken 
where intervening deposits exist but suitable data on their dimensions are lacking. Total duration of 
deposition for each subset is typically over 104 yr timescales, except for the Zaire (105 yr); the time 
scale is unknown for the Shwe fan. Absolute age is shown for the youngest terminal deposit of the 
South Golo lobe (A). 

 Synthetic facies models 

Synthetic facies models that account for the proportion of deposits of different types and for trends 
and distributions in lithologies can be built at a variety of geological scales, i.e., for bed, element or 
depositional environments. Figure 12 shows the relative proportion of sedimentary structures found in 
the sandstone intervals of different element types. Output on the proportion of sedimentary units can 
be generated based on the synthesis of data from many elements, and with consideration of biases 
related to variations in size and representativeness of the available samples. For example, in Fig. 12 
facies proportions are presented based on both (i) scaled averages that assign equal weight to each 
element to account for sampling biases (darker), and (ii) the total sum of their thickness (lighter). 

Facies models can be tailored to specific environmental scenarios, e.g., system parameters, 
architectural or facies characteristics, bed relationships, or position in a sub-environment. For 
example, Fig. 13 compares the grain size and sedimentary structures of the sandstone intervals found 
in channel-related detailed element types (see Table 3) associated with sandy systems. Similar 
proportional grain-size and sedimentary structure trends can be identified for both lateral accretion 
packages (LAPs) and aggradational channel fills. For example, over 50% of the classified facies units 
for both element types are ‘massive’. LAPs are seen to contain a higher proportion of gravel, as well 
as of cross-stratification compared to aggradational channel fills (Fig. 13). This trend is also identified 
when considering only systems that include data for both LAPs and aggradational channel fills. In 
these systems, the total proportion of gravel is equal to 47% in LAPs (N = 1224 facies, 10 elements), 
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compared to 36% in aggradational channel fills (N = 1061 facies, 30 elements), whereas the 
proportion of cross-stratified sands is equal to 17% in LAPs (N = 791 facies, 10 elements), compared 
to 6% (N= 547 facies, 23 elements). As new data is added to the database and the sample size is 
increased, further investigation can take place to verify the statistical significance of these results, as 
well as use them to analyse experimental or numerical process models. Quantified facies models of 
this type can also be used as ‘synthetic analogues’ for interpretations and predictions in subsurface 
studies. 

 
Fig. 12. Bar chart showing the different sedimentary structures found in sandstone intervals observed 
in different general element types (see Table 2 for element type descriptions). Two different 
proportional measures are shown: i) scaled averages of proportions, where each element is given an 
equal weight (darker bars) and ii) proportions based on the total sum of facies thickness in all 
elements (lighter bars). F = number of facies, El = number of elements. 
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Fig. 13. Facies proportion models for deep-marine channel-related architecture. Scaled average 
proportions based on facies thicknesses are shown for grain size (gs.) and sedimentary structure, 
including lamination types from sand/sandstone facies (ss.). Note that the drawing is for illustration 
only and it does not imply that the element proportions shown are based upon spatial relations. F = 
number of facies, El = number of elements. 

 Vertical organisation of facies 

Quantitative descriptions of the vertical distribution of facies can be built using facies transitions and 
1D facies ordering information stored in DMAKS. For instance, Fig. 14 shows high probability (>60%) 
for fining upwards grain size trends in sandstones and gravels in channel elements of sandy systems. 
Silty facies, however, are more likely to transition upwards to coarser fractions, suggesting that 
complete fining upwards sequences are rarely deposited or preserved in the considered dataset. 
Such outputs on quantitative facies analysis can be used to inform stochastic facies models (e.g., 
Markov chain analysis), similar to the deep-marine facies studies of Falivene et al. (2006) and Li et al. 
(2018). 

The recurrence of specific facies trends in beds can also be investigated. For example, Fig. 15 
depicts facies trends identified in the San Clemente slope channel-system case study (Capistrano 
Formation, Li et al., 2016). The modelling of facies distribution within beds can be used to improve 
characterisation of reservoir quality at the bed scale. Facies distributions can also be used to model 
the cyclicity of depositional patterns, which in turn can be used to inform geological modelling efforts. 
For instance, DMAKS could be used to evaluate, statistically, the occurrence and distribution of facies 
as represented in proposed facies models (e.g., in the classification of hybrid event beds; Haughton et 
al., 2009; Fonnesu et al., 2018); such approaches would help inform process interpretations via the 
analysis of large sets of standardised data. 
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Fig. 14. Vertical transition probability for grain-size classes of in-channel facies units, from the starting 
(lower) facies type indicated on the horizontal axis. Transitions between facies of the same grain size 
are not included. Only facies from channel elements in sandy systems are considered. The vertical 
transition grain size classes are presented in a manner whereby coarser classes are at the top. A 
continuous black line marks the position of the grain size of the lower facies and therefore facies 
transitions counts above the line indicate a transition to coarser sediments (coarsening-upward), while 
facies transition counts below the line show the probability of vertically passing to a finer sediment 
(fining-upward), see illustration in bottom-right corner. F = number of facies, El = number of elements. 
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Fig. 15. Facies proportions derived from beds contained in channel deposits of the San Clemente 
case study (Li et al., 2016; Table 1). A) Facies-type vertical transitions contained in units described as 
beds in the original source. Transitions across bedding surfaces are excluded (see illustration in key). 
X-axis categories represent the lower facies and colours represent the upper facies. Capping (B) and 
basal (C) facies-type proportions calculated based upon their sum thickness. Only beds containing 
more than one facies are included in B, while C also includes beds with only one facies. Facies types 
are classified based upon grain size, sedimentary structures and lamination type, if applicable. 

 Net-to-gross ratios 

Outputs on the proportion of facies in specific types of elements can be used to calculate sandstone 
proportions or net-to-gross ratios, and the variability in these values can be quantified through 
consideration of multiple elements. For example, Fig. 16 shows the distribution in the proportion of 
sand observed in different element types. Net-to-gross values can be tailored to user-defined ‘net’ 
specifications and obtained by filtering data based on the attributes on which the systems are 
classified, to enable consideration of relevant analogues. For instance, Fig. 17 considers only 
channels found on the slope and in sandy systems (i.e., in which the dominant grain size was 
reported as mixed or sand-rich in the original sources). Metrics of this type can inform predictions 
relating to total reservoir volume and, when paired with information on spatial variations in lithological 
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heterogeneity (e.g., transition data, or position classifiers), its distribution. For example, Fig. 17 
depicts a base case for the decrease in net-to-gross ratio seen from the axis of channel elements to 
their margin – supporting the slope models of Richards & Bowman (1998) and Hubbard et al. (2014), 
as well as the outcrop studies of Campion et al. (2000; Capistrano Formation) and Macauley & 
Hubbard (2013; Tres Pasos Formation). The ability to link facies records (and their bed bounding-
surface relationships; demonstrated in Section 3.6) to a position within their sub-environment could 
further be used to characterise likely process-product relationships. 

 

 

Fig. 16. Proportion of sand and gravel found in different element types. Proportions are calculated 
based on the thickness of sandstone and conglomerate intervals divided by the full thickness of each 
element. A facies may be counted more than once if contained in elements that are organised 
hierarchically. Each box represents the interquartile range and includes a median line. Crosses show 
mean values; stars denote outliers. F = number of facies; El = number of elements. 

 

 

Fig. 17. Relative proportion of sand and gravel vs mud specified by lateral position in channel 
elements. Proportions calculated by averaging the sum of the thicknesses of a grain size against each 
facies sequences total vertical thickness. Only facies descriptions with a DQI rating of ‘A’ or ‘B’ have 
been considered. ‘Mud’ includes silt and clay. Data are filtered to include only slope channels found in 
dominantly sandy systems. F = number of facies; El = number of elements. 
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4. Discussion 

DMAKS enables the effective integration of data from the modern seafloor, ancient subsurface and 
outcropping deep-marine successions, facilitating a comprehensive characterisation and comparison 
of deep-marine systems (e.g., Fig. 6 A and B; Slatt, 2000; Gamberi et al., 2013). The scope of this 
databasing effort is deliberately wide, aiming to cover both the broad range of environmental settings 
found in deep-marine systems, together with associated hierarchical and spatial relationships 
between and within geological entities; this breadth of scope distinguishes it from other approaches 
(e.g., Cossey & Associates Inc., 2004; Baas et al., 2005; Moscardelli & Wood, 2015; Clare et al., 
2018). DMAKS facilitates the characterisation of deep-marine systems by producing quantitative 
information on the geometries, spatial arrangements and lithological organization of modern 
landforms and preserved deposits, which can be derived from single or multiple case studies. It can 
therefore be used to conduct fundamental research, based upon meta-analysis and synthesis of 
legacy data, or be employed as a resource in subsurface applications that benefit from quantification 
of sedimentological properties. DMAKS demonstrates the benefits of data standardisation in deep-
marine sedimentology, as data integration from multiple sources improves the significance of 
statistical outputs. The wide range of geological parameters considered allows data to be filtered by 
multiple variables, to produce outputs that are relevant to specific academic research questions or 
that can act as synthetic analogues to particular hydrocarbon reservoirs. Through quantification of 
intra- and inter-system variability in sedimentary architecture, DMAKS enables the geological 
uncertainties affecting subsurface workflows to be accounted for, and to some extent, reduced.  

The database is designed to be refined and extended, in response to scientific progress in the field of 
deep-marine sedimentology. It complements existing databases for fluvial (Colombera et al., 2012) 
and paralic and shallow-marine depositional systems (Colombera et al., 2016); a longer-term goal is 
database integration, to facilitate linked analysis of sedimentary architectures across a range of 
connected clastic environments. 

5. Summary  

DMAKS is a database storing field- and literature-derived standardised sedimentological data 
pertaining to siliciclastic deep-marine depositional systems. DMAKS integrates data from multiple 
studies, and considers the geometry, spatial and hierarchical arrangements, and internal facies 
properties of deposits and landforms, assigned to systems and case studies classified on boundary 
conditions, descriptions of the context of deposition, and other metadata. DMAKS can be queried 
flexibly to produce quantitative outputs that can be used to (i) undertake quantitative comparative 
analyses between multiple studies and to (ii) produce syntheses of datasets that act as quantitative 
facies models or composite analogues. DMAKS finds application in both pure and applied research, 
particularly for testing process-product relationships via a meta-analytical approach, and for enabling 
subsurface predictions that are realistic and effectively account for geological uncertainty.  
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