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Quantum strong energy inequalities

Christopher J. Fewster∗ and Eleni-Alexandra Kontou†

Department of Mathematics, University of York,
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Abstract
Quantum energy inequalities (QEIs) express restrictions on the extent to which weighted averages

of the renormalized energy density can take negative expectation values within a quantum field

theory. Here we derive, for the first time, QEIs for the effective energy density (EED) for the

quantized non-minimally coupled massive scalar field. The EED is the quantity required to be

non-negative in the strong energy condition (SEC), which is used as a hypothesis of the Hawking

singularity theorem. Thus establishing such quantum strong energy inequalities (QSEIs) is a first

step towards a singularity theorem for matter described by quantum field theory.

More specifically, we derive difference QSEIs, in which the local average of the EED is normal-

ordered relative to a reference state, and averaging occurs over both timelike geodesics and space-

time volumes. The resulting QSEIs turn out to depend on the state of interest. We analyse the

state-dependence of these bounds in Minkowski spacetime for thermal (KMS) states, and show

that the lower bounds grow more slowly in magnitude than the EED itself as the temperature

increases. The lower bounds are therefore of lower energetic order than the EED, and qualify as

nontrivial state-dependent QEIs.
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† eleni.kontou@york.ac.uk

1



I. INTRODUCTION

Quantum energy inequalities (QEIs) were introduced by Ford [1] 40 years ago as an
explanation of why macroscopic violations of the second law of thermodynamics do not
occur in quantum field theories. They provide restrictions on the possible magnitude and
duration of any negative energy densities or fluxes within a quantum field theory. For a
recent introduction to QEIs and summary of known results see Ref. [2] and [3].

QEIs have been used extensively to constrain exotic spacetimes such as ones allowing
superluminal travel, traversable wormholes and closed timelike curves [4–6]. In this paper,
our main interest will be in whether QEI restrictions are sufficient to prove singularity
theorems for matter sources described by quantum fields. The classical singularity theorems
of Hawking and Penrose [7, 8] use pointwise energy conditions, which are easily violated by
quantum fields. In particular, Hawking’s theorem uses the strong energy condition (SEC),
which requires that the effective energy density (EED) [9] (cf., also [10])

ρU := TµνU
µU ν − T

n− 2
(1)

is non-negative. Here, Uµ is a timelike vector representing the observer’s velocity, T is the
trace of the stress-energy tensor, and n the number of spacetime dimensions.

Violations of the SEC do not necessarily mean that the conclusions of the singularity
theorems no longer hold and there has been some progress in proving suitably adapted sin-
gularity results under weaker hypotheses on the EED or energy density [11–17]. In Ref. [18]
it was shown that lower bounds on local weighted averages of the EED modelled on QEIs
are sufficient to derive singularity theorems of Hawking type (that is, establishing timelike
geodesic incompleteness) even if the EED is not everywhere positive or has a negative long-
term average. In our recent work [9], we established bounds on the EED of the classical
nonminimally coupled scalar field and deduced, by the methods of [18], a Hawking-type sin-
gularity theorem for the Einstein–Klein–Gordon theory. Similar methods have been applied
to prove an area theorem under weakened hypotheses [19].

Despite the progress made in proving singularity theorems with weakened energy con-
ditions, there has not been yet a singularity theorem for matter described by a quantum
field theory (QFT) based on QEIs. In the case of Hawking-type results, the first necessary
step is to establish a quantum strong energy inequality (QSEI) that provides bounds on the
renormalized EED. (We have chosen the name to be reminiscent of the SEC.) In this work
we establish, for the first time, various QSEIs for nonminimally coupled scalar fields, by
analogy with the analysis of Ref. [20] of (quantum) energy inequalities on the energy density
of the nonminimally coupled scalar field.

In particular, we derive difference QEIs, namely, lower bounds on the expectation value
of the locally averaged quantized energy density (or similar quantities) in Hadamard state ω,
normal ordered relative to a reference Hadamard state ω0. Recall that Hadamard states are
those whose two-point functions have a specific singularity structure, which will be described
later. Schematically, difference QEIs take the form

〈:ρ:ω0
(f)〉ω = 〈ρ(f)〉ω − 〈ρ(f)〉ω0

≥ −〈Qω0
(f)〉ω , (2)

where 〈ρ(f)〉ω is the Hadamard-renormalized energy density (or similar) in state ω, averaged
against f , which is a non-negative test function on spacetime, or singularly supported along a
timelike curve, and we speak of worldvolume or worldline averages accordingly. Here, Qω0

(f)
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is allowed to be an unbounded operator. In contrast, absolute QEI’s are lower bounds on
〈ρ(f)〉ω that do not require a reference state.

If Qω0
(f) is a multiple of the unit operator then the right-hand side of Eq. (2) does not

depend on ω (though it will generally depend on the reference state ω0) and the QEI is
called state-independent. More generally, if the right-hand side depends non-trivially on ω,
inequality (2) is described as state-dependent QEI. State-independent difference inequalities
for the usual energy density (known as quantum weak energy inequalities (QWEIs)) have
been proved in various situations: for example, they were proved for the minimally coupled
scalar field in two and four dimensions for Minkowski spacetime [21], in static spacetimes [22]
and, for all Hadamard states in spacetimes with general curvature in Ref. [23]. Meanwhile,
state-independent absolute bounds have been established, again for minimal coupling, in
two-dimensions for flat [24] and curved spacetimes [25] and subsequently for four-dimensional
curved spacetimes [26, 27]. We refer the reader to [3] for more references, including results
on Dirac, Maxwell and Proca fields and also some results on interacting QFTs.

On the other hand, it is known that the nonminimally coupled scalar field cannot obey a
state independent QWEI, as can be seen by explicit examples [20]; the same argument also
applies to QSEIs. However, as shown in Ref. [28], nonminimally coupled fields obey state
dependent QWEIs of both absolute and difference types. Here, we show that they also obey
state dependent difference QSEIs. While it is in principle possible to establish an absolute
QSEI, this is the objective of a future work.

This paper is organized as follows. In Sec. II we discuss the quantization procedure we use,
giving careful attention to the relation between quantizations based on equivalent classical
expressions. In Sec. III we show that the EED obeys a QEI of the form of (2) and explicitly
derive bounds for worldline and worldvolume averages. In Sec. IV A we study the simplified
form taken by the QSEI bounds in flat spacetimes. In Sec. V, through explicit calculations
for the family of KMS states, we are able to show that, despite being state-dependent, our
QSEI bounds are non-trivial in the sense that the lower bound is of lower energetic order
than the energy density itself. Finally, we conclude in Sec. VI with a discussion on how our
results inform the Hawking singularity theorem.

We employ [−,−,−] conventions in the Misner, Thorne and Wheeler classification [29].

That is, the metric signature is (+,−,−, . . . ), the Riemann tensor is defined as R µ
λην v

ν =
(∇λ∇η − ∇η∇λ)vµ, and the Einstein equation is Gµν = −8πTµν . The d’Alembertian is
written �g = gµν∇µ∇ν and work in n spacetime dimensions unless otherwise stated. We
adopt units in which G = c = 1.

II. QUANTIZATION

A. Quantization of the real scalar field and Hadamard states

Throughout the paper, we assume that the spacetime is a smooth n-dimensional Lorentzian
manifold (M, g) that is globally hyperbolic, i.e., there are no closed causal curves and the
intersection J+(p)∩ J−(q) of the causal future of p with the causal past of q is compact, for
all points p, q ∈ M . The nonminimally-coupled scalar field is described by the Lagrangian
density

L =

√−g
2

[(∇µφ)∇µφ− (m2 + ξR)φ2] , (3)
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and obeys the field equation

Pξφ = 0, Pξ := �g +m2 + ξR . (4)

It will be quantized using the algebraic approach, a thorough review of which is to be found
in [30]. Thus, quantization proceeds by the introduction of a unital *-algebra A (M) on
our manifold M , so that self-adjoint elements of A (M) are observables of the theory. The
algebra is generated by elements Φ(f), where f ∈ D(M), the space of complex-valued,
compactly-supported, smooth functions on M, also denoted C∞

0 (M). The assumption that
(M, g) is globally hyperbolic entails the existence of an antisymmetric bi-distribution Eξ(x, y)
which is the difference of the advanced and retarded Green functions for Pξ. The objects
Φ(f) represent smeared quantum fields and are required to obey the following relations:

• Linearity

The map f → Φ(f) is complex-linear,

• Hermiticity

Φ(f)∗ = Φ(f) ∀f ∈ C∞
0 (M),

• Field Equation

Φ(Pξf) = 0 ∀f ∈ C∞
0 (M),

• Canonical Commutation Relations

[Φ(f),Φ(h)] = iEξ(f, h)1 ∀f, h ∈ C∞
0 (M).

A state of the theory is a linear functional ω : A (M) → C with the interpretation that ω(A)
is the expectation value of A ∈ A (M) in state ω. Of particular interest is the associated
two-point function W : D(M) × D(M) → C,

W (f, h) = ω(Φ(f)Φ(h)) . (5)

However, the definition of a state includes many that have unphysical properties. More-
over, there is no single distinguished state associated to each spacetime that can act as a
generalization of the Minkowski vacuum state. Therefore, what is needed is a class of physi-
cally well-behaved states in each spacetime – a standard choice being the class of Hadamard
states. See [31] for a recent review of these issues.

Hadamard states were originally defined in terms of a short-distance series expansion [32],
but can also be described as those whose two-point functions are distributions with a given
singularity structure specified by its wave-front set, as was first realised by Radzikowski [33].

As we now briefly recall, the wave-front set WF(u) of a distribution u on a smooth
m-dimensional manifold X is a subset of the cotangent bundle T ∗X which encodes both
positional and directional information concerning the singularities of u. A coordinate-
independent definition may be given as follows (see [34, 35]) using the convention that,
for any smooth real-valued function ψ on X × Rm and any fixed a ∈ Rm, ψa denotes the
smooth function ψa(x) = ψ(x, a) on X.

Definition 1. A point (x, k) ∈ T ∗X, with k 6= 0, is said to be regular for u if for each
smooth real-valued function ψ on X × Rm with dψ0|x = k, there are open neighbourhoods U
of x ∈ X and A of 0 ∈ Rm so that

sup
(λ,a)∈(0,∞)×A

λN |u(eiλψaφ)| <∞ for all N ∈ N and φ ∈ C∞
0 (U). (6)
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(That is, u(eiλψaφ) decays faster than any inverse power of λ as λ → +∞, uniformly in
a ∈ A.) The wavefront set WF(u) is the set of all (x, k) ∈ T ∗X with k 6= 0 that are not
regular for u.

We remark that, if (x, k) is regular for u, then one may replace Rm by any Rp and the
same decay properties will continue to hold.

The Hadamard condition may now be stated as follows.

Definition 2. A state ω is Hadamard if its two-point functionW is a distribution onM×M
whose wavefront set obeys

WF(W ) ⊂ N+ ×N−, (7)

where N± ⊂ T ∗M is the set of positive/negative-frequency null covectors and we identify
T ∗(M ×M) with T ∗M × T ∗M . [The sign of the frequency of a null covector is given by the
sign of its contraction with any future-directed timelike vector].

A remarkable fact is that the Hadamard condition (7), together with the algebraic rela-
tions in A (M), fixes the two-point function up to smooth terms (see [30, 31] for reviews and
original references). In particular, the difference of any two Hadamard two-point functions
is smooth.

For some purposes, we will consider states that are both Hadamard and quasifree, meaning
that all odd n-point functions vanish and all even n-point functions can be expanded as sums
of products of the two-point function according to Wick’s theorem, giving in particular

ω(Φ(f)n) = i−n
dn

dλn
exp

(

−λ
2
W (f, f)

)∣

∣

∣

∣

λ=0

, f ∈ D(M) . (8)

Each quasifree state can be represented by the vacuum vector in a suitable Fock space
representation of the algebra.

B. Quantization of Wick polynomials and the stress tensor

The algebra A (M) does not contain elements that correspond to smeared local Wick
polynomials of degree 2 and above; in particular, it does not contain smearings of the stress-
energy tensor. These objects appear as elements of an extended algebra W (M) whose
construction is described in [36] and which contains A (M) as a subalgebra. We sketch
only the parts of the discussion needed here, suppressing many points of detail and slightly
changing conventions and notation.

To start, let ω be a quasifree Hadamard state with two-point function W . Then the
algebra A (M) contains elements of the form

:Φ⊗2:ω(f ⊗ f) = Φ(f)Φ(f) −W (f, f)1. (9)

for any test function f , with the property that 〈:Φ⊗2:ω(f ⊗ f)〉ω = 0. More generally,
the extended algebra W (M) contains elements :Φ⊗2:ω(t), where t is any symmetric, com-
pactly supported distribution on M ×M whose wave-front set does not contain any points
(x, k; x′, k′) ∈ T ∗(M ×M) in which k and k′ are causal covectors that both have positive
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frequency or both have negative frequency. For example, the elements given in Eq. (9) cor-
respond to the case in which f ⊗ f is regarded as acting on smooth functions S on M ×M
by

(f ⊗ f)(S) =

∫

M×M

dVolx dVoly f(x)f(y)S(x, y). (10)

Any quasifree Hadamard state ω extends to W (M) so that 〈:Φ⊗2:ω(t)〉ω = 0 for all t of the
type just described.

More generally, distributions that involve (derivatives of) δ-functions may be used to
define Wick polynomials. It will be enough for our purposes to introduce quadratic Wick
polynomials in the field and its derivatives. Let fµ1···µrν1···νs be a smooth compactly supported
tensor field and define a compactly supported distribution T r,s[f ] by

T (r,s)[f ](S) =

∫

M

dVol fµ1···µrν1···νs
[[

(∇(r) ⊗∇(s))Ssym
]]

µ1···µrν1···νs
. (11)

Here, we have written Ssym(x, y) = 1
2
(S(x, y) + S(y, x)) for the symmetric part of S ∈

C∞(M ×M), while ∇(r) is a symmetrised r-th order covariant derivative and the double
square brackets [[·]] in the integrand denote a coincidence limit. Then we obtain a smeared
Wick polynomial

:∇(r)Φ∇(s)Φ:ω(f) := :Φ⊗2:ω(T r,s[f ]), (12)

which depends on the reference state ω. As a matter of fact, one has

:∇(r)Φ∇(s)Φ:ω(f) = :∇(r)Φ∇(s)Φ:ω′(f) + T r,s[f ](W ′ −W )1, (13)

if ω′ is another quasifree Hadamard state with two-point function W ′. Taking expectations
in the state ω′ yields

〈:∇(r)Φ∇(s)Φ:ω(f)〉ω′ = T r,s[f ](W ′ −W ), (14)

which reproduces the usual point-splitting regularisation for normal ordering with respect
to ω.

Standard results concerning coincidence limits may be used to manipulate expressions of
the form T r,s[f ](S). For example, the identity

Y µZν [[C]]µν =
[[

Y µZν′Cµν′
]]

(15)

satisfied by continuous vector fields Y µ, Zµ and bi-covector field Cµν′(x, x
′) implies that

T 1,1[(Y ⊗ Z)f ](S) = T 0,0[f ]((∇Y ⊗∇Z)S). (16)

Similarly, if C is now a bi-tensor field Cµ′ν′(x, x
′) [i.e., scalar type with respect to x, and

second rank covariant with respect to x′], the identity

Y µZν [[C]]µν =
[[

Y µ′Zν′Cµ′ν′
]]

(17)

implies
T 0,2[(Y ⊗ Z)f ](S) = T 0,0[f ]((1 ⊗ Y µ′Zν′∇(µ′∇ν′))S). (18)
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The dependence of the above normal-ordered expressions on ω is unsatisfactory, because
of the lack of a canonical choice of a Hadamard state in a general curved spacetime. What
is needed, therefore, is a prescription for finding algebra elements that qualify as local and
covariant Wick powers. This might be done in various ways, reflecting finite renormalisation
freedoms. Hollands and Wald [36, 37] set out a list of axioms (labelled T1–T11) that
should be obeyed by any reasonable scheme and which moreover encompasses time ordered
expressions. Among their requirements is a form of Leibniz’ rule (T10) (related to the ‘action
Ward identity’ [38]) which in our case implies, for example, that

(∇µΦ2)(fµ) = 2(Φ∇µΦ)(fµ) (19)

and
1

2
(∇µ∇ν(Φ

2))(fµν) = (∇µΦ∇νΦ)(fµν) + (Φ∇(µ∇ν)Φ)(fµν), (20)

where in each case the left-hand side is understood distributionally, i.e.,

(∇µΦ2)(fµ) = −Φ2(∇µf
µ), (∇µ∇ν(Φ

2))(fµν) = (Φ2)(∇ν∇µf
µν). (21)

While the Leibniz rule must hold for all Wick ordering prescriptions, it is not gener-
ally true that the field equation can be imposed inside Wick ordered expressions. In fact,
Hollands and Wald showed [37] that one cannot consistently impose both ΦPξΦ = 0 and
(∇aΦ)PξΦ = 0 in n = 4 spacetime dimensions, and that the latter cannot be imposed in
n = 2 dimensions by any prescription obeying their axioms. However, these fields are at
least given by local curvature tensors (of an appropriate rank and engineering dimension)
multiplied by the identity element. For example, one has

(ΦPξΦ)(f) =

∫

M

dVol fQ 1, (22)

where Q is a scalar quantity, locally and covariantly constructed from the metric (including
curvature tensors and covariant derivatives thereof) and the parameters m2 and ξ, and with
overall engineering dimension of n− 2 powers of inverse length. The dependence on m2 and
ξ is restricted in certain ways.

Turning to the stress-energy tensor, the classical expression obtained by varying the
action derived from (3) with respect to the metric is

Tµν = (∇µφ)(∇νφ) +
1

2
gµν(m

2φ2 − (∇φ)2) + ξ(gµν�g −∇µ∇ν −Gµν)φ
2 , (23)

where Gµν is the Einstein tensor. The stress-energy tensor can be expressed in terms of φ2

and φ∇µ∇νφ, using Leibniz’ rule but without using the field equation. Therefore any Wick
ordering prescription gives a quantized stress-energy tensor in terms of the Wick ordered
expressions (Φ2) and (Φ∇(µ∇ν)Φ). Classically, Leibniz’ rule also gives ∇µTµν = (∇νφ)Pξφ,
so the conservation of the quantized stress-energy tensor requires that a prescription with
((∇µΦ)PξΦ) = 0 is adopted (and therefore, in this approach, the stress-energy tensor cannot
be conserved in n = 2 dimensions). It turns out that stress-energy tensor conservation (if
n > 2) is a consequence of the requirement (T11) imposed by Hollands and Wald [37],
which is inspired by a ‘principle of perturbative agreement’ and furthermore guarantees
conservation of the stress-energy tensor in perturbatively constructed interacting models.
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A prescription meeting the requirements discussed so far may be given as follows. First,
let H be a local, symmetric Hadamard parametrix, defined near the diagonal in M ×M .
(For the definition and properties of the Hadamard parametrix, see for example [30] and
references given there.) Then the prescription

(∇(r)Φ∇(s)Φ)H(f) = :∇(r)Φ∇(s)Φ:ω(f) + T r,s[f ](W sym −H)1 (24)

satisfies requirements (T1–10) but not (T11). Because the distribution T r,s[f ] is supported
on the diagonal in M ×M , the fact that H is only defined near the diagonal is harmless. In
this prescription, it is known [39] that

((∇µΦ)PξΦ)H =
n

2(n+ 2)
∇µQ1 (25)

if Q is defined as in (22) for (ΦPξΦ)H . Therefore, adopting a prescription in which (Φ2) =
(Φ2)H but

(Φ∇(µ∇ν)Φ) = (Φ∇(µ∇ν)Φ)H − n

n2 − 4
gµνQ1 (26)

will result in a stress-energy tensor that is automatically conserved.1 Of course, the definition
of (∇Φ∇Φ) must now differ from (∇Φ∇Φ)H in order to protect the Leibniz rule (20),

(∇µΦ∇νΦ) = (∇µΦ∇νΦ)H +
n

n2 − 4
gµνQ1 . (27)

Likewise, the prescription for a derivative (Φ∇Φ) is fixed by the Leibniz rule

(Φ∇Φ) =
1

2
∇(Φ2). (28)

Hollands and Wald showed that one can inductively modify the Hadamard prescription
so that all Wick and time ordered expressions are consistent with all their requirements [37].
There remain further finite renormalisation freedoms, for example, in selecting a length scale
that is needed in the construction of H. These result in the freedom to add multiples of 1

to Tµν , given by conserved local curvature terms.
This construction supplants the older viewpoint, see e.g. [40], in which one renormalises

the stress-energy tensor directly using point-splitting and a Hadamard subtraction and then
makes an ad hoc modification to fix the failure of conservation. Instead, conservation follows
from wider requirements on the time ordering prescription. If one is only interested in
defining the stress-energy tensor, one can proceed alternatively by modifying the classical
expression for Tµν , adding a term proportional to gµνφPξφ that vanishes on shell, as shown by
Moretti [39]. This gives identical results to the more general Hollands–Wald prescription [37]
in n = 4 dimensions, but not in n = 2.

When taking differences of expectation values, multiples of the unit cancel. Therefore, if
ω and ω′ are quasifree Hadamard states, the difference in expectation values of any quadratic
Wick expression is given by the point-splitting result

〈(∇(r)Φ∇(s)Φ)(f)〉ω′ − 〈(∇(r)Φ∇(s)Φ)(f)〉ω = 〈:(∇(r)Φ∇(s)Φ):ω(f)〉ω′

= T r,s[f ](W ′ −W ). (29)

1 Here, we have corrected the corresponding expression in [37] which contains some errors.

8



Furthermore, because the difference W ′ −W is a smooth bisolution to the operator Pξ, one
can use the field equation in the sense that

〈(∇(r)ΦPξΦ)(f)〉ω′ − 〈(∇(r)ΦPξΦ)(f)〉ω = 0. (30)

That is, while the quadratic Wick ordered expressions obey Leibniz’ rule, but not generally
the field equation, the differences in their expectation values obey both. This gives us the
freedom to quantise classical expressions in the most convenient fashion for proving quantum
energy inequalities.

C. Quantization of the effective energy density

The main observable of interest will be the EED, classically defined by (1), where Uµ is
the velocity field of a family of observers. As a quantum field, ρU may be defined by

ρU(f) = Tµν

((

UµU ν − gµν

n− 2

)

f

)

, (31)

where Tµν is the quantized stress tensor constructed as described above. Using the Leibniz
rule, ρU(f) may be written in various ways, which will be useful for different purposes. If the
second derivatives of Φ2 arising from Eq. (23) are expanded using Eq. (20), the expression

ρU(f) = (∇µΦ∇νΦ)

((

(1 − 2ξ)UµU ν − 2ξgµν

n− 2

)

f

)

− 2ξ(Φ∇(µ∇ν)Φ)(UµU νf)

+ Φ2

((

ξRξ −
1 − 2ξ

n− 2
m2

)

f

)

− 2ξ

n− 2
(ΦPξΦ)(f), (32)

is obtained, where we have also used the definition of Pξ (but not the field equation) to
absorb the Φ�gΦ term, and defined

Rξ =
2ξ

n− 2
R−RµνU

µU ν . (33)

Eq. (32) corresponds to a classical expression used in [9]. On the other hand, if Eq. (20) is
applied again, along with Eq. (21), to rewrite Eq. (32) in terms of the Wick polynomials Φ2,
∇µΦ∇νΦ and ΦPξΦ alone, we find

ρU(f) = (∇µΦ∇νΦ)

((

UµU ν − 2ξgµν

n− 2

)

f

)

− Φ2

(

ξ∇ν∇µ(UµU νf) +

(

1 − 2ξ

n− 2
m2 − ξRξ

)

f

)

− 2ξ

n− 2
(ΦPξΦ)(f) . (34)

Alternatively, the mass term in Eq. (34) may be traded for additional terms involving Pξ,
�g and the Ricci scalar, giving

ρU(f) = (∇µΦ∇νΦ)

((

UµU ν − gµν

n− 2

)

f

)

+
1 − 2ξ

2(n− 2)
Φ2(�gf)

− ξΦ2
(

∇ν∇µ(UµU νf) −R1/2f
)

− 1

n− 2
(ΦPξΦ)(f), (35)
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in which the mass parameter appears only in the last term. The curvature term R1/2 is
just Rξ with ξ = 1/2. The three expressions for ρU are all equivalent, but have different
advantages as starting points for quantum energy inequalities.

We will be interested in expectation values of the quantized EED in state ω′, normal
ordered relative to a reference Hadamard state ω,

〈:ρU :ω(f)〉ω′ = 〈ρU(f)〉ω′ − 〈ρU(f)〉ω . (36)

Each term in the above expressions (32), (34) or (35) may then be written in terms of distri-
butions T r,s[·] acting on the difference of the two-point functions S = W ′ −W . By further
manipulation, they may all be expressed in terms of T 0,0[f ] acting on suitable derivatives of
S. For instance, if V µ is any smooth vector field,

〈:∇µΦ∇νΦ:ω(V µV νf)〉ω′ = T 1,1[(V ⊗ V )f ](S) = T 0,0[f ]((∇V ⊗∇V )S) , (37)

where we have used the identity (16). Similarly, if eµa (a = 0, . . . , n− 1) is an n-bein defined
on the support of f with e0 timelike, we also find

〈:∇µΦ∇νΦ:ω(gµνf)〉ω′ = T 0,0[f ]((∇e0 ⊗∇e0)S) −
n−1
∑

a=1

T 0,0[f ]((∇ea ⊗∇ea)S). (38)

Finally, the identity (18) yields

〈(:Φ∇(µ∇ν)Φ:ω)(UµU νf)〉ω′ = T 0,2[(U ⊗ U)f ](S) = T 0,0[f ]((1 ⊗s U
µU ν∇µ∇ν)S)

= T 0,0[f ]((1 ⊗s U
µU ν∇µ∇ν)S)

= T 0,0[f ]((1 ⊗s (∇2
U −∇∇UU))S), (39)

where ⊗s is the symmetrised tensor product P ⊗s P
′ = [(P ⊗ P ′) + (P ′ ⊗ P )]/2. Note that

expectation values of :ΦPξΦ: vanish. In this way, the expectation values of normal ordered
quantities may be reduced to coincidence limits of certain differential operators acting on
the difference of two-point functions. For instance,

〈V µV ν :∇µΦ∇νΦ:ω〉ω′(x) = [[(∇V ⊗∇V )(W ′ −W )]] (x). (40)

This is just as in the traditional viewpoint of renormalisation by point-splitting [40], but with
the advantage that there is a systematic framework from which suitable differential operators
in question may be derived, rather than simply being asserted as Ansätze. Although we
used vielbeins to treat terms of the form :(∇Φ)2:, it would be equally valid to use parallel
propagators, leading ultimately to the same expectation values in the end.

III. QUANTUM STRONG ENERGY INEQUALITIES

Having described in detail how the EED may be quantised, we now turn to the derivation
of QSEIs for averaging along timelike worldlines or spacetime volumes.
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A. Worldline

Let γ be a smooth timelike curve parametrized by proper time τ . Choose any smooth n-
bein ea (a = 0, . . . , n−1) on a tubular neighbourhood T of γ, so that Uµ = eµ0 is everywhere
timelike and agrees with γ̇µ on γ. Fix a Hadamard reference state ω0 with 2-point function
W0 and, for brevity, denote all quantities normal-ordered relative to ω0 by :X:, rather than
:X:ω0

. Using the procedure described in the previous subsection, the expectation values
of the effective energy density :ρU : in Hadamard state ω can be written in terms of the
coincidence limits acting on :W : = W −W0. Eq. (32), together with identities (37), (38)
and (39)), gives

〈:ρU :〉ω = [[ρ̂1:W :]] + [[ρ̂2:W :]] +

(

ξRξ −
1 − 2ξ

n− 2
m2

)

[[:W :]] (41)

along γ, where the operators ρ̂i are given by

ρ̂1 =

(

1 − 2ξ
n− 1

n− 2

)

(∇U ⊗∇U) +
2ξ

n− 2

n−1
∑

a=1

(∇ea ⊗∇ea) , (42a)

ρ̂2 = −2ξ(1 ⊗s U
µU ν∇µ∇ν) . (42b)

We have used the fact that the field equation holds for normal-ordered expressions. Note
that Rξ vanishes for Ricci-flat spacetimes.

Our aim is to establish QEI lower bounds on the averaged EED along γ,

〈:ρU : ◦ γ〉ω(f 2) =

∫

dτf 2(τ)〈:ρU :〉ω(γ(τ)) , (43)

where f ∈ D(R,R) is a real valued test function. The contributions arising from the three
terms in (41) will be handled in differing ways. Note first that all the terms in ρ̂1 take
the form Q ⊗ Q for some partial differential operator Q with real coefficients, provided
ξ ∈ [0, 2ξc], where

ξc =
n− 2

4(n− 1)
(44)

is the value of ξ corresponding to conformal coupling. The contribution of the terms deriving
from ρ̂1 to the averaged EED can be bounded from below, uniformly in ω, using the methods
of [23] (see also Lemma 4 below). A key point here is that operators Q⊗Q map any positive
type bi-distribution to another positive type bi-distribution. By contrast, the the mass term
is negative definite for ξ < 1/2, while the geometric term Rξ has no definite sign in general
and for this reason cannot be bounded below by a state-independent QEI. (However, see the
remarks following Theorem 5.) This leaves ρ̂2, the contribution of which can be manipulated
to a more convenient form using the following lemma.

Lemma 3. If F is a smooth function on T × T and f ∈ C∞
0 (R) then

∫

dτf(τ)2 [[(1 ⊗s U
µU ν∇µ∇ν)F ]] (γ(τ)) = −

∫

dτ [[(∂ ⊗ ∂) ((f ⊗ f)φ∗F )]] (τ)

+

∫

dτf ′(τ)2 [[F ]] (γ(τ))

− 1

2

∫

dτ f(τ)2(∇A [[F ]])(γ(τ)) , (45)

11



where φ∗ denotes a pull-back by φ(τ, τ ′) = (γ(τ), γ(τ ′)), Aµ = ∇UU
µ is the acceleration field

of U and ∂ denotes the derivative on R.

Proof. First, choose fT ∈ D(T ,R) such that fT ◦ γ = f . Then, slightly simplified, the
identity Eq. (38) of Ref. [20] (a consequence of Synge’s rule ∇V [[H]] = 2 [[(1 ⊗s ∇V )H]]) gives

2f 2
T

[[

(1 ⊗s ∇2
U)F

]]

+ ∇U

[[

(1 ⊗s (∇Uf
2
T ))F

]]

= −2 [[(∇U ⊗∇U)((fT ⊗ fT )F )]] + 2(∇UfT )2 [[F ]]

+ 2∇U [[(1 ⊗s ∇U)((fT ⊗ fT )F )]] . (46)

Integrating both sides along γ and dividing by 2, we have

∫

dτf(τ)2
[[

(1 ⊗s ∇2
U)F

]]

(γ(τ)) = −
∫

dτ [[(∂ ⊗ ∂) ((f ⊗ f)φ∗F )]] (τ)

+

∫

dτ(f ′(τ))2 [[φ∗F ]] (τ) , (47)

and the result follows on noting that

[[(1 ⊗s U
µU ν∇µ∇ν)F ]] =

[[

(1 ⊗s ∇2
U)F

]]

− 1

2
∇A [[F ]] (48)

using the Leibniz and Synge rules.

It follows that
∫

dτf(τ)2 [[ρ̂2:W :]] (γ(τ)) = 2ξ

∫

dτ [[(∂ ⊗ ∂) ((f ⊗ f)φ∗:W :)]] (τ)

− 2ξ

∫

dτ f ′(τ)2〈:Φ2:〉ω(γ(τ))

+ ξ

∫

dτf(τ)2(∇A〈:Φ2:〉ω)(γ(τ)). (49)

The first term in this expression can be estimated as a special case (k = 0, Q = 1) of
the following result, which can also be used to bound all terms arising from ρ̂1. (For the
benefit of the reader, we note that on the right-hand side of (50), the functions f̄α and fα
are substituted into a bidistribution obtained as a pull-back of (Q⊗Q)W0.)

Lemma 4. Let Q be a partial differential operator on M with smooth real coefficients and
k ∈ N0. Then the inequality

∫

dτ
[[

(∂k ⊗ ∂k) ((f ⊗ f)φ∗((Q⊗Q):W :))
]]

(τ)

≥ −
∫ ∞

0

dα

π
α2k (φ∗((Q⊗Q)W0)) (f̄α, fα) > −∞ , (50)

holds for all Hadamard states ω and real-valued test functions f ∈ D(R,R), where fα(τ) =
eiατf(τ).
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Proof. This is a slight generalisation of an argument first given in [23]. First note that one
has, for any smooth symmetric function S and test function f as above,

∫

dτ
[[

(∂k ⊗ ∂k) ((f ⊗ f)S)
]]

(τ) =

∫

dτ dτ ′δ(τ − τ ′)∂kτ ∂
k
τ ′ ((f ⊗ f)S) (τ, τ ′)

=

∫ ∞

−∞

dα

2π

∫

dτ dτ ′e−iα(τ−τ
′)∂kτ ∂

k
τ ′ ((f ⊗ f)S) (τ, τ ′)

=

∫ ∞

0

dα

π

∫

dτ dτ ′ α2ke−iα(τ−τ
′)f(τ)f(τ ′)S(τ, τ ′) , (51)

where in the second step we have inserted the Fourier representation of the δ-function and
in the last step used symmetry of S and also integrated by parts k times in both τ and τ ′.
Applying this to S = φ∗((Q⊗Q):W :,

L.H.S. of (50) =

∫ ∞

0

dα

π
α2k (φ∗((Q⊗Q):W :)) (f̄α, fα)

=

∫ ∞

0

dα

π
α2k

(

(φ∗((Q⊗Q)W )) (f̄α, fα) −
(

φ∗((Q⊗Q)W0)(f̄α, fα)
))

, (52)

noting that expressions of the form φ∗((Q⊗Q)W ) are shown to exist in [23], with wave-front
sets obeying

WF(φ∗((Q⊗Q)W )) ⊂ (R × R
+) × (R × R

−) ⊂ T ∗
R × T ∗

R. (53)

Together with other results proved in Ref. [23], this shows that the two terms in the integrand
in (52) are non-negative and decay rapidly as α → +∞ for any Hadamard state ω (see
Theorem 2.2 of Ref. [23]). Here the microlocal properties of Hadamard states play a crucial
role. Consequently, the final expression in (52) may be written as the difference of two
separately convergent nonnegative integrals. Discarding the first of these, the inequality (50)
is proved.

Applying this result to all terms arising from ρ̂1 and the first term in (49), and combining
with the other terms from (49) and (41), we have proved the following result.

Theorem 5. Let W0 be the two-point function of a reference Hadamard state for the non-
minimally coupled scalar field with coupling constant ξ ∈ [0, 2ξc] and mass m ≥ 0 defined on
a globally hyperbolic spacetime M with smooth metric g. Let γ be a smooth timelike curve
parametrised in proper time τ , with velocity Uµ and acceleration Aµ = ∇UU

µ. Then, for all
Hadamard states ω and real-valued test functions f ∈ D(R,R), the normal-ordered effective
energy density obeys the QEI

〈:ρU : ◦ γ〉ω(f 2) ≥ −
(

Q1[f ] + 〈:Φ2: ◦ γ〉ω(Q2[f ] + Q3[f ]) − ξ〈∇A:Φ2: ◦ γ〉ω(f 2)
)

, (54)

where

Q1[f ] =

∫ ∞

0

dα

π

(

φ∗(ρ̂1W0)(f̄α, fα) + 2ξα2φ∗W0(f̄α, fα)
)

, (55)

Q2[f ](τ) =
1 − 2ξ

n− 2
m2f 2(τ) + 2ξ(f ′(τ))2 , (56)

and
Q3[f ](τ) = ξRξ(γ(τ))f(τ)2 . (57)
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An important feature of the QEI (54), and indeed all the QEIs that we will derive in
this paper, is that the lower bound depends on the state of interest ω; that is, it is a state-
dependent QEI, unlike e.g., the quantum weak energy inequality proved for the minimally
coupled scalar field in [23]. Now in fact no state-independent QSEI could possibly hold
(except in the massless minimally coupled case) because the classical model can violate
the SEC. This makes it possible to construct single-particle quantum states relative to the
Minkowski vacuum state whose averaged EED is negative for some test function. Tensoring
together N copies of such a state, the averaged EED scales with N and so it is clear that
no state-independent QSEI can be valid, even in Minkowski space. See Ref. [20], where an
analogous argument is given in detail for the energy density of the nonminimally coupled
field. Nonetheless, the state-dependence of the lower bound raises concerns that will be
discussed more fully in Sec. V. For now we note that the only nontrivial quantum field
appearing in the bound is the Wick square :Φ2: (and at most one derivative thereof), while
the EED itself involves contributions involving two derivatives of Φ and squares of the
derivatives of Φ. This distinction will enable us to show that the QEIs we study in this
paper are nontrivial.

The expression for the QSEI bound simplifies in various situations: if γ is geodesic the
last term in Eq. (54) vanishes; for flat spacetimes Q3 vanishes, while for minimal coupling
(and any spacetime curvature) we have

〈:ρU : ◦ γ〉ω(f 2) ≥ −
[
∫ ∞

0

dα

π
φ∗((∇U ⊗∇U)W0)(f̄α, fα) +

m2

n− 2
〈:Φ2: ◦ γ〉ω(f 2)

]

. (58)

There is another interesting situation in which a variant of the above result can be
obtained. Suppose that the background spacetime is such that Rξ is nonnegative. In
particular, this occurs if the background solves the Einstein equations with matter that
obeys both the strong and weak energy conditions, for then we have RµνU

µU ν ≤ 0 and
R ≥ 2RµνU

µU ν , whereupon

2ξ

n− 2
R−RµνU

µU ν ≥ −
(

1 − 4ξ

n− 2

)

RµνU
µU ν ≥ −

(

1 − 2

n− 1

)

RµνU
µU ν ≥ 0 (59)

if ξ obeys the standing assumption ξ ∈ [0, 2ξc] and the spacetime dimension n ≥ 3. Making
the further mild technical assumption that Rξ has a smooth nonnegative square root,2 the
corresponding contributions to the averaged EED in (41) are of the same form as those in
ρ̂1 and can be treated in the same way. In this situation, the QEI becomes

〈:ρU : ◦ γ〉ω(f 2) ≥ −
(

Q1[f ] + Q4[f ] + (:Φ2: ◦ γ)ω(Q2[f ]) − ξ〈∇A:Φ2: ◦ γ〉ω(f 2)
)

, (60)

where

Q4[f ] = ξ

∫ ∞

0

dα

π

(

φ∗((
√

Rξ ⊗
√

Rξ)W0)
)

(f̄α, fα) . (61)

Although this bound is still state-dependent, the coefficients appearing in the state-
dependent parts no longer depend explicitly on the background geometry. If the background
spacetime solves Einstein equations with matter satisfying the strong energy condition (but
not necessarily the weak energy condition) then a similar procedure could be used to absorb
the −RµνU

µU ν term leaving the Ricci scalar in the state-dependent part.

2 Not all smooth nonnegative functions have smooth square roots; see [41, 42].
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B. Worldvolume

In this subsection we will consider averages of the EED over a spacetime volume. We will
require some more terminology and notation for these purposes. First, following Ref. [26]
we define a small sampling domain to be an open subset3 Σ of (M, g) that (i) is contained
in a globally hyperbolic convex normal neighbourhood of M , and (ii) may be covered by a
single hyperbolic coordinate chart {xa}, which, by definition, requires that ∂/∂x0 is future
pointing and timelike and that there exists a constant c > 0 such that

c|u0| ≥

√

√

√

√

n−1
∑

j=1

u2j (62)

holds for the components of every causal covector u at each point of Σ – in other words,
the coordinate speed of light is bounded. Now we may express the hyperbolic chart {xµ}
by a map κ where Σ → Rn, κ(p) = (x0(p), . . . , xn−1(p)). Any function f on Σ determines a
function fκ = f ◦ κ−1 on Σκ = κ(Σ). In particular, the inclusion map ι : Σ → M induces a
smooth map ικ : Σκ → M . Then the bundle N+ of non-zero future pointing null covectors
on (M, g) pulls back under ικ so that

ι∗κN+ ⊂ Σκ × Γ , (63)

where Γ ⊂ Rn is the set of all ua with u0 > 0 and satisfying Eq. (62) so it is a proper subset
of the upper half space R+ × Rn−1. For brevity, if S is a smooth function on M ×M , we
write Sκ instead of Sκ×κ for S ◦ (κ−1 × κ−1).

1. Bound with explicit mass-dependence

Let f be any real-valued test function compactly supported in the small sampling domain
Σ and let Uµ be a future-directed timelike unit vector field defined on a neighbourhood of
the support of f . Applying the Gram-Schmidt process to the basis U, ∂/∂x1, . . . , ∂/∂xn−1,
we obtain a smooth n-bein {eµa}a=0,1...n−1 on this neighbourhood, with eµ0 = Uµ.

Following a procedure similar to the one used to derive the worldline inequality, we fix
a Hadamard reference state ω0 with 2-point function W0. Then the expectation values of
the effective energy density in Hadamard state ω and normal-ordered relative to ω0, can be
written using Eq. (34) as

〈:ρU :(f 2)〉ω =

∫

dVolf 2
[[

ρ̂I:W :
]]

−
〈

:Φ2:
(

Q
I
2[f ]

)〉

ω
, (64)

where the operator ρ̂I (the superscript I merely serves to distinguish this bound from a
bound without explicit mass dependence that will be described shortly) is given by

ρ̂I =

(

1 − 2ξ

n− 2

)

(Uµ∇µ ⊗ U ν∇ν) +
2ξ

n− 2

n−1
∑

a=1

(eµa∇µ ⊗ eνa∇ν) (65)

3 Ref. [26] allows for Σ to be a timelike submanifold of dimension lower than n, but we will not need that

level of generality here.
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and

Q
I
2[f ] = ξ∇µ∇ν(f

2UµU ν) +
1 − 2ξ

n− 2
m2f 2 − ξRξf

2 . (66)

All terms appearing in ρ̂I take the form Q⊗Q, with Q a partial differential operator with
smooth real coefficients, provided that the coupling obeys ξ ∈ [0, (n−2)/2] = [0, 2(n−1)ξc].
Their contributions to the averaged EED can then all be bounded from below using the
following result, which is similar to Lemma 4 for the worldline.

Lemma 6. Let Q be a partial differential operator on M with smooth real coefficients. Then
the inequality

∫

dVolf 2 [[(Q⊗Q):W :]] ≥ −2

∫

R+×Rn−1

dnα

(2π)n
((Q⊗Q)W0)κ (hα, hα) > −∞ , (67)

holds for all Hadamard states ω and real-valued test functions f supported in the small
sampling domain Σ, where α = (α0, . . . , αn−1) and

hα(x) = eiαµxµ(−gκ(x))1/4fκ(x). (68)

Proof. The proof works in a similar way to that of Lemma 4. First note that, for any smooth
symmetric function S and test function f as above, and writing h(x) = (−gκ(x))1/4fκ(x),
we have

∫

dVolf 2 [[S]] =

∫

dnx dnx′δn(x− x′)h(x)h(x′)Sκ(x, x
′)

=

∫

R×Rn−1

dnα

(2π)n

∫

dnx dnx′e−iα(x−x
′)h(x)h(x′)Sκ(x, x

′)

= 2

∫

R+×Rn−1

dnα

(2π)n

∫

dnx dnx′ e−iα(x−x
′)h(x)h(x′)Sκ(x, x

′)

= 2

∫

R+×Rn−1

dnα

(2π)n
Sκ(hα, hα) , (69)

where we have inserted the Fourier representation of the δ-function in the second step and
in the last step we used the symmetry of S. All these manipulations are valid owing to
the compact support of f (and hence h) and the smoothness of f and S. Applying this to
S = (Q⊗Q):W :, gives

L.H.S. of (67) = 2

∫

R+×Rn−1

dnα

(2π)n
((Q⊗Q):W :)κ (hα, hα)

= 2

∫

R+×Rn−1

dnα

(2π)n
{

((Q⊗Q)W )κ (hα, hα) − ((Q⊗Q)W0)κ (hα, hα)
}

.

(70)

In the last line, the two terms in the integrand involve pull-backs of distributions via κ× κ.
The criteria for existence are trivially satisfied in this case, and their wave-front sets are
bounded by

WF((Q⊗Q)W )κ) ⊂ (ι∗κ × ι∗κ)(N+ ×N−) ⊂ (Σκ × Γ) × (Σκ ×−Γ) (71)

and the same bound for W0. As Γ is contained in the α0 > 0 half-space of Rn, the two
terms in the integrand are separately rapidly decaying as α → ∞ in the integration region
(see [26, p. 444]) Therefore the integrals exist separately; as ((Q ⊗ Q)W ) is non-negative,
we may discard this term, whereupon the inequality (67) is proved.
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Applying this lemma to Eq. (64), we have proved the following result for ξ ∈ [0, (n−2)/2],
a range that includes the conformal coupling ξc:

Theorem 7. For coupling constant ξ ∈ [0, 2(n − 1)ξc], suppose that f is a real-valued test
function compactly supported in a small sampling domain and let Uµ be a future-pointing
unit timelike vector field defined on a neighbourhood of the support of f . Then the QEI

〈:ρU :(f 2)〉ω ≥ −
(

Q
I
1[f ] +

〈

:Φ2:
(

Q
I
2[f ]

)〉

ω

)

, (72)

where

Q
I
1[f ] = 2

∫

R+×Rn−1

dnα

(2π)n
(ρ̂IW0)(hα, hα) , (73)

holds for all Hadamard states ω, where W0 is the 2-point function of the Hadamard reference
state used to define the normal-ordering prescription, and ρ̂I, hα, and QI

2[f ] are as defined
above.

As in Sec. III A there are situations in which some of the state-dependent terms in this
bound may be bounded independently of the state. In particular, the mass term can be
treated in this way if ξ ∈ [1/2, 2(n − 1)ξc], and the Rξ term can if the background obeys
SEC and WEC and ξ ∈ [0, (n− 1)ξc] (and we assume that

√

Rξ is smooth). There are also
obvious simplifications for Ricci flat spacetimes and at minimal coupling ξ = 0. We leave
the details to the reader.

2. Bound without explicit mass dependence

The bound derived depends on the mass of the field but, as in the classical case [9], we
can derive a second bound that does not have explicit mass dependence by using the field
equation.

Instead of starting with (32), we use Eq. (35), with identities (37) and (38), which gives

〈:ρU :(f 2)〉ω =

∫

dVol
[[

ρ̂II:W :
]]

−
〈

:Φ2:
(

Q
II
2 [f ]

)〉

ω
, (74)

where

ρ̂II =
n− 3

n− 2
(Uµ∇µ ⊗ U ν∇ν) +

1

n− 2

n−1
∑

a=1

(eµa∇µ ⊗ eνa∇ν) (75)

and

Q
II
2 [f ] = ξ∇ν∇µ(f 2UµU ν) − 1 − 2ξ

2(n− 2)
�gf

2 − ξR1/2f
2 . (76)

Applying Lemma 6 to the terms arising from ρ̂II, we have proved:

Theorem 8. For coupling constant ξ ∈ R, suppose that f is a real-valued test function
compactly supported in a small sampling domain and let Uµ be a future-pointing unit timelike
vector field defined on a neighbourhood of the support of f . Then the QEI

〈:ρU :(f 2)〉ω ≥ −
(

Q
II
1 [f ] +

〈

:Φ2:
(

Q
II
2 [f ]

)〉

ω

)

, (77)
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holds for all Hadamard states ω, where

Q
II
1 [f ] = 2

∫

R+×Rn−1

dnα

(2π)n
(ρ̂IIW0)(hα, hα) , (78)

W0 is the 2-point function of the Hadamard reference state used to define the normal-ordering
prescription, and ρ̂II, hα, and QII

2 [f ] are as defined above.

As with Theorem 7 there are situations in which some of the state-dependent terms may
be given state-independent lower bounds, and also simplifications at minimal coupling and
in Ricci-flat spacetimes. Details are left to the reader. For ξ ∈ [0, 2(n − 1)ξc] Theorems 7
and 8 may be combined into a single theorem by taking the stricter of the two bounds in
each case. This would be similar to the classical Theorem 2 of Ref. [9].

It is interesting to note that we can write the first term on the R.H.S. of Eqs. (66) and
(76) using

∇ν∇µ(f 2UµU ν) = f 2
(

∇µA
µ + θ2 + ∇Uθ

)

+ ∇2
Uf

2 + 2θ∇Uf
2 + ∇Af

2 (79)

where θ = ∇µU
µ is the expansion and Aµ is the acceleration. If Uµ is an irrotational timelike

geodesic congruence then the Raychaudhuri equation

∇Uθ = RµνU
µU ν − 2σ2 − θ2

n− 1
(80)

gives

∇ν∇µ(f 2UµU ν) = f 2

(

RµνU
µU ν +

n− 2

n− 1
θ2 − 2σ2

)

+ ∇2
Uf

2 + 2θ∇Uf
2 , (81)

where σ is the shear scalar. If the background obeys the SEC then −RµνU
µU ν is nonnegative

and, together with the shear term −2σ2, can be absorbed into the state-independent part
of the bound (assuming they have smooth square roots).

IV. MINKOWSKI SPACE

To illustrate our results let us consider the non-minimally coupled scalar field in the
n-dimensional Minkowski space Mmink = (Rn, η), with η = diag(+1,−1, . . . ,−1) being the
standard Minkowski metric.

A. Worldline

First we will apply the worldline bound of Theorem 5 to n-dimensional Minkowski space
for the case of an inertial curve, i.e., γ is a timelike geodesic. Without loss of generality,
inertial coordinates may be chosen so that γ(t) = (t,0). Also we choose our reference state
to be the vacuum state Ω, which has the two-point function

WΩ(t,x, t′,x′) =

∫

dµ(k)e−ikµ(x−x
′)µ =

∫

dµ(k)e−i[(t−t
′)ω(k)+(x−x

′)·k] , (82)

where

dµ(k) =

∫

dn−1
k

(2π)n−1

1

2ω(k)
, (83)
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is the measure and kµ = (ω(k),k) with ω(k) =
√
k2 +m2. The operator ρ̂1 from Eq. (42a)

can be written as

ρ̂1 =

(

1 − 2ξ
n− 1

n− 2

)

(∂0 ⊗ ∂0) +
2ξ

n− 2

n−1
∑

i=1

(∂i ⊗ ∂i) . (84)

If we use the identity

m2φ∗WΩ(ḡ ⊗ g) +
n−1
∑

i=1

φ∗(∂i ⊗ ∂i)WΩ(ḡ ⊗ g) = φ∗(∂0 ⊗ ∂0)WΩ(ḡ ⊗ g) , (85)

we have for the first part of the bound

Q1[f ] =

∫ ∞

0

dα

π

(

φ∗(ρ̂1WΩ)(f̄α, fα) + 2ξα2φ∗WΩ(f̄α, fα)
)

=

∫ ∞

0

dα

π

((

(1 − 2ξ)(∂ ⊗ ∂) − 2ξ

n− 2
m2 + 2ξα2

)

φ∗WΩ

)

(f̄α, fα)

=

∫ ∞

0

dα

π

∫

dt dt′e−iα(t−t
′)f(t)f(t′) ×

∫

dµ(k)

(

ω2(k)(1 − 2ξ) − 2ξ

n− 2
m2 + 2ξα2

)

e−i(t−t
′)ω(k)

=
Sn−2

(2π)n

∫ ∞

0

dα

∫ ∞

0

dk
kn−2

ω(k)

(

ω2(k)(1 − 2ξ) − 2ξ

n− 2
m2 + 2ξα2

)

|f̂(α + ω(k))|2 .

At the last step we have passed to spherical polar coordinates and written Sn−2 for the
volume of the (n − 2)-dimensional standard unit sphere. Our convention for the Fourier
transform of f is

f̂(ω) =

∫

dt eiωtf(t) . (86)

We can make the change of variables

u = α + ω(k) , v = ω(k) , (87)

and write Q1[f ] as

Q1[f ] =
Sn−2

(2π)n

∫ ∞

m

du|f̂ |2(u)

∫ u

m

dv(v2 −m2)(n−3)/2

(

v2 − 4ξuv + 2ξ

(

u2 − 1

n− 2
m2

))

.

(88)

Using Eq. (86) and the fact that Q3 vanishes at flat spacetime Theorem 5 becomes

Theorem 9. In n-dimensional Minkowski space we have, for 0 ≤ ξ ≤ 2ξc,

〈:ρU : ◦ γ〉ω(f 2) ≥ −
[

Q1[f ]1 + 〈:Φ2: ◦ γ〉ω(Q2[f ])
]

, (89)

where γ is a timelike geodesic,

Q1[f ] =
Sn−2

(2π)n

∫ ∞

m

du un|f̂ |2(u) × (90)

(

1

n
Qn,2

( u

m

)

− 4ξ

n− 1
Qn,1

( u

m

)

+
2ξ

n− 2

(

1 − m2

u2(n− 2)

)

Qn,0

( u

m

)

)

,
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and

Q2[f ](t) =
1 − 2ξ

n− 2
m2f 2(t) + 2ξ(f ′(t))2 , (91)

for f ∈ D(R) and ξ ∈
[

0, n−2
2(n−1)

]

. The functions Qn,r are defined by

Qn,r(y) =
n+ r − 2

yn+r−2

∫ y

1

dx(x2 − 1)(n−3)/2xr . (92)

The functions Qn,r are non-negative functions for n+r ≥ 2 and they vanish for n+r = 2.
Also they have the properties

Qn,r(1) = 0 , lim
y→∞

Qn,r(y) = 1 . (93)

Since n ≥ 3 and ξ ≤ n−2
2(n−1)

Q1[f ] ≤ 2Sn−2

(2π)n(n− 1)

∫ ∞

0

du un|f̂ |2(u) , (94)

where we also assumed that m > 0.
Using Eq. (94) we can investigate the behavior of the bound under rescaling of the

smearing function f , and in particular whether the SEC holds in an averaged sense along
a complete timelike geodesic. This question is prompted by the analogous situation for the
energy density, in which an averaged weak energy condition (AWEC) can be proved for the
nonminimally coupled scalar field under mild assumptions on the growth of the Wick square
along the geoedesic [20]. In fact, we will not be able to prove a direct analogue of the AWEC
result, but instead a slight modification of it.

First we define the smearing function fλ for λ ∈ R to be

fλ(t) =
f(t/λ)√

λ
. (95)

Then its Fourier transform satisfies

(

f̂λ(u)
)2

= λ
(

f̂(λu)
)2

, (96)

and, by analogy with the averaged weak energy condition (AWEC) [20], we would say that
the averaged strong energy condition (ASEC) holds in state ω if

lim inf
λ→+∞

λ〈:ρU : ◦ γ〉ω(f 2
λ) ≥ 0 (97)

because the left-hand side is a measure of the total integral of the EED (up to a factor of
f(0)) along γ.

Using Eq. (94) we have that Q1[fλ] = O(λ−n) as λ→ ∞. Then λQ1(fλ) → 0 as λ→ ∞.
For the state dependent part of the bound we have

λ〈:Φ2: ◦ γ〉ω(Q2[fλ]) =
1 − 2ξ

n− 2
m2

∫

dt 〈:Φ2:〉ω(γ(t))f(t/λ)2 +
2ξ

λ2

∫

dt 〈:Φ2:〉ω(γ(t))f ′(t/λ)2 .

(98)
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If we assume that 〈:Φ2:〉ω(t) is absolutely integrable, then the dominated convergence theo-
rem implies that the first term converges to a constant while the second term goes to zero
for λ→ ∞. This gives a bound

lim inf
λ→∞

λ〈:ρU : ◦ γ〉ω(f 2
λ) ≥ −1 − 2ξ

n− 2
m2f(0)2

∫

dt 〈:Φ2:〉ω(γ(t)) (99)

rather than the ASEC in the form originally stated. This does not show that ASEC cannot
hold, but rather that it cannot be derived from the QSEI by scaling methods. Instead, what
can be proved is that

lim inf
λ→+∞

λ

〈(

:ρU : +
1 − 2ξ

n− 2
m2:Φ2:

)

◦ γ
〉

ω

(f 2
λ) ≥ 0, (100)

provided that |〈:Φ2:〉ω(γ(t))| ≤ c(1 + |t|)1−ǫ for positive constants c, ǫ (we may, without loss,
assume that 0 < ǫ < 1). The proof is simple: for λ ≥ 1 we have

λ

〈(

:ρU : +
1 − 2ξ

n− 2
m2:Φ2:

)

◦ γ
〉

ω

(f 2
λ) ≥ −2ξ

λ2

∫

dt 〈:Φ2:〉ω(γ(t))f ′(t/λ)2

≥ −2cξ

λǫ

∫

du (1 + |u|)1−ǫf ′(u)2 , (101)

where we have changed variables from t to u = t/λ and used the fact that |〈:Φ2:〉ω(γ(λu))| ≤
cλ1−ǫ(1 + |u|)1−ǫ if λ ≥ 1. As the right-hand side vanishes in the limit λ → +∞ the result
follows. It would be interesting to determine whether the ASEC is actually violated in some
Hadamard states, but we do not pursue this here.

B. Worldvolume

Now we turn to the worldvolume quantum inequalities of Theorems 7 and 8. Again we
choose our reference state to be the vacuum state with two-point function given by Eq. (82).
Additionally, we require the vector field Uµ to be translationally invariant. Then we can
choose an inertial coordinate system for which Uµ is purely in the direction of t. We suppress
the distinction between f and its coordinate expression so f becomes identical with h. In
Minkowski space the operators ρ̂I and ρ̂II become

ρ̂I =

(

1 − 2ξ

n− 2

)

(∂0 ⊗ ∂0) +
n−1
∑

i=1

2ξ

n− 2
(∂i ⊗ ∂i) . (102)

and

ρ̂II =

(

n− 3

n− 2

)

(∂0 ⊗ ∂0) +
n−1
∑

i=1

1

n− 2
(∂i ⊗ ∂i) , (103)

Then the state independent part of Theorem 7 becomes

Q
I
1[f ]= 2

∫

R+×Rn−1

dnα

(2π)n
(ρ̂IWΩ)(f̄α, fα) =

=

∫

R+×Rn−1

dnα

(2π)n

∫

dn−1
k

(2π)n−1

1

ω(k)

[

ω(k)2 − 2ξ

n− 2
m2

]

|f̂(α + k)|2 , (104)
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where we used Uµkµ = ω(k) and the convention

f̂(k) =

∫

Rn

dnx eikµx
µ

f(x). (105)

With the change of variables (k,α) → (k,u), where

u = α + k , (106)

QI
1[f ] becomes

Q
I
1[f ] =

∫ ∞

0

dα0

(2π)n

∫

dn−1
k

(2π)n−1

1

ω(k)

[

ω(k)2 − 2ξ

n− 2
m2

]

×
∫

Rn−1

dn−1
u|f̂(α0 + ω(k),u)|2 . (107)

Performing a second change of variables

u0 = α0 + ω(k) , (108)

and changing the order of integration gives

Q
I
1[f ] =

∫

dn−1
k

(2π)2n−1

1

ω(k)

[

ω(k)2 − 2ξ

n− 2
m2

]
∫ ∞

ω(k)

du0

∫

Rn−1

dn−1
u|f̂(u)|2

=
Sn−2

(2π)2n−1

∫

dk
kn−2

ω(k)

[

ω(k)2 − 2ξ

n− 2
m2

]
∫ ∞

ω(k)

du0

∫

Rn−1

dn−1
u|f̂(u)|2 , (109)

where we transitioned to spherical coordinates, using the fact that the integrand is spherically
symmetric in k. Writing k in terms of ω gives

Q
I
1[f ] =

Sn−2

(2π)2n−1

∫ ∞

m

du0

∫

Rn−1

dn−1
u |ĥ(u)|2

∫ u0

m

dω (ω2 −m2)(n−3)/2

×
[

ω2 − 2ξ

n− 2
m2

]

. (110)

Using the functions Qn,k defined in Eq. (92) and noticing that Rξ and R1/2 vanish in flat
spacetime, the following theorem is immediate

Theorem 10. In n-dimensional Minkowski space for ξ ∈ [0, (n− 2)/2], the QSEI of Theo-
rem 8 reduces to

〈:ρU :(f 2)〉ω ≥ −
[

Q
I
1[f ]1 +

〈

:Φ2:
(

Q
I
2[f ]

)〉

ω

]

, (111)

where

Q
I
1[f ] =

Sn−2

(2π)2n−1

∫ ∞

m

du0

∫

dn−1
u |f̂(u)|2un0

×
[

1

n
Qn,2

(u0
m

)

− m2

u20

2ξ

(n− 2)2
Qn,0

(u0
m

)

]

, (112)

and

Q
I
2[f ] = ξ∂20(f 2) +

1 − 2ξ

n− 2
m2f 2 . (113)
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Similarly the state independent part of Theorem 8 becomes

Q
II
1 [f ] = 2

∫

R+×Rn−1

dnα

(2π)n
(ρ̂IIWΩ)(f̄α, fα)

=

∫

R+×Rn−1

dnα

(2π)n

∫

dn−1
k

(2π)n−1

1

ω(k)

[

ω(k)2 − 1

n− 2
m2

]

|f̂(α + k)|2 , (114)

and one may show

Theorem 11. In n-dimensional Minkowski space for ξ ∈ R, the QSEI of Theorem 8 reduces
to

〈:ρU :(f 2)〉ω ≥ −
[

Q
II
1 [f ]1 +

〈

:Φ2:
(

Q
II
2 [f ]

)〉

ω

]

, (115)

where

Q
II
1 [f ] =

Sn−2

(2π)2n−1

∫ ∞

m

du0

∫

dn−1
u|f̂(u)|2un0

×
[

1

n
Qn,2

(u0
m

)

− m2

u20

1

(n− 2)2
Qn,0

(u0
m

)

]

, (116)

and

Q
II
2 [f ] = ξ∂20(f 2) − 1 − 2ξ

2(n− 2)
�gf

2 . (117)

Noting the properties of the functions Qn,k and extending the integration domain, both
QI

1[f ] and QII
1 [f ] can be bounded above by the expression

Sn−2

(2π)2n−1

∫ ∞

0

du0

∫

dn−1
u |f̂(u)|2u

n
0

n
(118)

on the ranges of ξ for which Theorems 10 and 11 are valid.

V. KMS STATES AND TEMPERATURE SCALING

The QEI bounds we have obtained depend on the state, in contrast to the original QEIs,
[1, 22–24, 26, 43–45] that provide state-independent lower bounds. Clearly there are some
very uninteresting state-dependent bounds, such as the trivial bound in which the averaged
stress-energy tensor is simply bounded below by itself! It is therefore important to explain in
what way our state-dependent bounds are nontrivial. The strategy we adopt follows [20, 28]
in which a state-dependent lower bound of the schematic form

〈ρ(f)〉ω ≥ −〈Q(f)〉ω (119)

is regarded as nontrivial provided there are no constants c and c′ (perhaps depending on f)
for which

|〈ρ(f)〉ω| ≤ c+ c′〈Q(f)〉ω (120)

holds for all physically reasonable states ω. This indicates that the lower bound is relatively
small, in comparison with the possible magnitude of quantity that is being bounded. A good
way to establish nontriviality is to consider a family of states in which the averaged energy
density tends to infinity more rapidly than the bound does.

In this section we will do this by examining the behaviour of the bounds we derived for
thermal states in n-dimensional Minkowski space, letting the temperature become large. We
start with the worldline inequality of Theorem 9.
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A. Worldline

We fix inertial coordinates (t,x) on n-dimensional Minkowski spacetime, for n > 3, and
consider the averaged energy density along the inertial trajectory γ(τ) = (τ,0). Let ωβ be
the KMS state at inverse temperature β, with respect to the time parameter t. The state
ωβ is Hadamard, with the two-point function

Wβ(t,x, t′,x′) =

∫

dµ(k)

(

e−ikµ(x−x
′)µ

1 − e−βω(k)
+
eikµ(x−x

′)µ

eβω(k) − 1

)

, (121)

where µ(k) is given by Eq. (83).
After normal ordering with respect to the ground state of Eq. (82) we find4 (abbreviating

〈·〉ωβ
as 〈·〉β)

〈:Φ2:〉β = β2−nBn,0(βm) , (122)

where Bn,r is defined on [0,∞) for r ≥ 0 by

Bn,r(α) =
Sn−2

(2π)n−1

∫ ∞

α

dz(z2 − α2)(n−3)/2 zr

ez − 1
. (123)

As ωβ is time-translationally invariant, the state-dependent part of the bound in Theorem
9 for that state is

〈:Φ2: ◦ γ〉β(Q2[f ]) = β2−nBn,0(βm)

(

1 − 2ξ

n− 2
m2||f ||2 + 2ξ||f ′||2

)

. (124)

On the other hand, the expectation value of the renormalized EED is, after a calculation,

〈:ρU :〉β(x) =

∫

dµ(k)

(

ω(k)2 − 1

n− 2
m2

)

2

eβω(k) − 1

=
Sn−2

(2π)n−1

∫ ∞

m

dω
(ω2 −m2)(n−3)/2

eβω − 1

(

ω2 − 1

n− 2
m2

)

, (125)

Since 〈:ρU :〉β is translationally invariant, the left hand side of Eq. (89) is

〈:ρU : ◦ γ〉β(f 2) =

(

β−nBn,2(βm) − m2

n− 2
β2−nBn,0(βm)

)

||f ||2 . (126)

Now we can state the following theorem

Theorem 12. The bound given in Theorem 9 is nontrivial in the sense that there do not
exist constants c and c′ such that

|〈:ρU : ◦ γ〉ω(f 2)| ≤ c+ c′|Q1(f)1 + 〈:Φ2: ◦ γ〉ωQ2(f)| , (127)

for all Hadamard states ω unless f is identically zero.

4 The corresponding expression in Ref. [20] is missing the factor β2−n in one place, but the final results are

correct.

24



Proof. Assuming f 6≡ 0, in the limit of high temperatures β → 0 we have from Eqs. (122,
126)

lim
β→0

βn〈:ρU : ◦ γ〉β(f 2) = Bn,2(0)||f ||2 > 0 (128a)

lim
β→0

βn
(

Q1(f) + 〈:Φ2: ◦ γ〉βQ2(f)
)

= 0 . (128b)

If the bound of Theorem 9 were trivial there would exist constants c, c′ such that

lim
β→0

βn〈:ρU : ◦ γ〉β(f 2) ≤ lim
β→0

βn
(

c+ c′|Q1(f)| + c′|〈:Φ2: ◦ γ〉βQ2(f)|
)

. (129)

But Eq. (128a) implies
0 < Bn,2(0)||f ||2 ≤ 0 , (130)

which is a contradiction.

B. Worldvolume

The two bounds of the worldvolume quantum inequalities of Theorems 10 and 11 are also
state dependent. Evaluating them for a KMS state ωβ and using Eq. (122) gives

〈:Φ2:(QI,II
2 [f ])〉β = β2−nBn,0(βm)

∫

dVolQI,II
2 [f ] . (131)

The expectation value of the renormalized EED is given by Eq. (125). So the left hand
side of the inequalities of Theorems 10 and 11 for state ωβ, becomes

〈:ρU :(f 2)〉β =

(

β−nBn,2(βm) − 1

n− 2
β2−nBn,0(βm)

)
∫

dVolf 2(x) . (132)

Theorem 13. The bound given in Theorem 10, resp., Theorem 11, is nontrivial in the sense
that there do not exist constants c and c′ such that

∣

∣〈:ρU :(f 2)〉ω
∣

∣ ≤ c+ c′
∣

∣Q
I
1[f ]1 +

〈

:Φ2:
(

Q
I
2[f ]

)〉

ω

∣

∣ , (133)

resp.,
∣

∣〈:ρU :(f 2)〉ω
∣

∣ ≤ c+ c′
∣

∣Q
II
1 [f ]1 +

〈

:Φ2:
(

Q
II
2 [f ]

)〉

ω

∣

∣ , (134)

for all Hadamard states ω unless f is identically zero.

Proof. Assuming f 6≡ 0, in the limit of high temperatures β → 0 we have from Eqs. (131,
132)

lim
β→0

βn〈:ρU :(f 2)〉β = Bn,2(0)

∫

dV olf 2(x) > 0 (135a)

lim
β→0

βn
(

Q
I,II
1 [f ]1 +

〈

:Φ2:
(

Q
I,II
2 [f ]

)〉

β

)

= 0 . (135b)

If the bounds of Theorems 10 and 11 were trivial there would exist constants c and c′ such
that

lim
β→0

βn〈:ρU :(f 2)〉β ≤ lim
β→0

βn
(

c+ c′
∣

∣

∣

∣

Q
I,II
1 [f ]1 +

〈

:Φ2:
(

Q
I,II
2 [f ]

)〉

β

∣

∣

∣

∣

)

. (136)
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But Eq. (135) implies

0 < Bn,2(0)

∫

dV olf 2(x) ≤ 0 , (137)

which is a contradiction.

VI. CONCLUSIONS

The main result of this paper is the derivation of state-dependent, but nontrivial, lower
bounds for the renormalised effective energy density of the non-minimally coupled field,
averaged either along timelike curves or over spacetime volumes. First, we discussed the
quantisation of EED in the context of algebraic quantum field theory and developed a
systematic framework to derive suitable differential operators, following [37]. Additionally
we showed that while the quadratic Wick ordered expressions obey the Leibniz rule but
not the field equation, the differences in their expectation values obey both, so the field
equation can be used to simplify expressions in difference QEIs. Then we proceeded to
establish both worldline and worldvolume bounds for the renormalised EED, for intervals of
coupling constants including both minimal and conformal coupling in all cases.

Applying the results to Minkowski space we derived simplified worldline and worldvol-
ume bounds, which are expected to hold to good approximation in circumstances where the
spacetime is approximately flat or the sampling function has support that is small in compar-
ison with curvature length scales. Finally we analysed the state dependence of the bounds
in the case of n-dimensional Minkowski space, by looking at their temperature dependence
in KMS states. We concluded that both the worldline and the worldvolume bounds are
non-trivial in the sense described in the introduction.

This is the first derivation of a quantum strong energy inequality and one of the few
QEI results to address the scalar field with nonminimal coupling. More importantly, the
establishment of a QSEI is the first step towards a Hawking-type singularity theorem result
employing QEI hypotheses. As shown by Refs. [18] and [9] it is possible to prove singularity
theorems of ‘Hawking type’ if we can establish bounds of the form

∫

RµνU
µU νf(τ)2 ≤ |||f |||2 , (138)

where ||| · ||| is a suitable Sobolev norm. In the case that the metric gµν and Hadamard state
ω are physical solutions of the semiclassical Einstein equation

〈:Tµν :〉ω = −8πGµν . (139)

the QEI bounds derived could, in some cases, be written in the geometric form of Eq. (138).
The investigation of this possibility and proof of a Hawking-type singularity theorem with
a QEI derived hypothesis is part of an ongoing work to appear elsewhere.
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